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Abstract 13 

Humans are fast and accurate when they recognize familiar faces. Previous 14 

neurophysiological studies have shown enhanced representations for the dichotomy of 15 

familiar vs. unfamiliar faces. As familiarity is a spectrum, however, any neural correlate 16 

should reflect graded representations for more vs. less familiar faces along the spectrum. 17 

By systematically varying familiarity across stimuli, we show a neural familiarity spectrum 18 

using electroencephalography. We then evaluated the spatiotemporal dynamics of 19 

familiar face recognition across the brain. Specifically, we developed a novel informational 20 

connectivity method to test whether peri-frontal brain areas contribute to familiar face 21 

recognition. Results showed that feed-forward flow dominates for the most familiar faces 22 

and top-down flow was only dominant when sensory evidence was insufficient to support 23 

face recognition. These results demonstrate that perceptual difficulty and the level of 24 

familiarity influence the neural representation of familiar faces and the degree to which 25 

peri-frontal neural networks contribute to familiar face recognition. 26 

Keywords: Face Recognition, Familiar Faces, Multivariate Pattern Analysis (MVPA), 27 

Representational Similarity Analysis (RSA), Informational Brain Connectivity 28 
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Introduction  29 

Faces are crucial for our social interactions, allowing us to extract information 30 

about identity, gender, age, familiarity, intent and emotion. Humans categorize familiar 31 

faces more quickly and accurately than unfamiliar ones, and this advantage is more 32 

pronounced under difficult viewing conditions, where categorizing unfamiliar faces often 33 

fails (Ramon and Gobbini, 2018; Young and Burton, 2018). The neural correlates of this 34 

behavioral advantage suggest an enhanced representation of familiar over unfamiliar 35 

faces in the brain (Dobs et al., 2019; Landi and Freiwald, 2017). Here, we focus on 36 

addressing two major questions about familiar face recognition. First, whether there is a 37 

“familiarity spectrum” for faces in the brain with enhanced representations for more vs. 38 

less familiar faces along the spectrum. Second, whether higher-order frontal brain areas 39 

contribute to familiar face recognition, as they do to object recognition (Bar et al,. 2006; 40 

Summerfield et al., 2006; Goddard et al., 2016; Karimi-Rouzbahani et al., 2019), and 41 

whether levels of face familiarity and perceptual difficulty (as has been suggested 42 

previously (Woolgar et al., 2011; Woolgar et al., 2015)) impact the involvement of peri-43 

frontal cognitive areas in familiar face recognition. 44 

One of the main limitations of previous studies, which hinders our progress in 45 

answering our first question, is that they mostly used celebrity faces as the familiar 46 

category (Ambrus et al., 2019; Collins et al., 2018; Dobs et al., 2019). As familiar faces 47 

can range widely from celebrity faces to highly familiar ones such as family members, 48 

relatives, friends, and even one's own face (Ramon and Gobbini, 2018), these results 49 

might not reflect the full familiarity spectrum. A better understanding of familiar face 50 

recognition requires characterizing the computational steps and representations for sub-51 

categories of familiar faces, including personally familiar, visually familiar, famous, and 52 

experimentally learned faces. Such face categories might not only differ in terms of their 53 

visual representations and their information coding, but also the availability of personal 54 

knowledge, relationships, and emotions associated with the identities in question (Ramon 55 

and Gobbini, 2018). These categories may, therefore, vary in terms of the potential for 56 

top-down influences in the process. Importantly, while a few functional magnetic 57 

resonance imaging (fMRI) studies have investigated the differences between different 58 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245241doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245241
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

levels of familiar faces (Gobbini et al., 2004; Landi and Freiwald, 2017; Leibenluft et al., 59 

2004; Ramon et al., 2015; Sugiura et al., 2015; Taylor et al., 2009), there are no studies 60 

that systematically compare the temporal dynamics of information processing across this 61 

familiarity spectrum. Specifically, while event-related potential (ERP) analyses have 62 

shown amplitude modulation by levels of face familiarity (Henson et al., 2008; Kaufmann 63 

et al., 2009; Schweinberger et al., 2002; Huang et al., 2017), they remain silent about 64 

whether more familiar faces are represented better or worse than less familiar faces - 65 

amplitude modulation does not necessarily mean that information is being represented. 66 

To address this issue, we can use multivariate pattern analysis (MVPA or decoding; 67 

Ambrus et al., 2019; Karimi-Rouzbahani et al., 2017a) to compare the amount of 68 

information in each of the familiarity levels. 69 

In line with our second question, recent human studies have compared the neural 70 

dynamics for familiar versus unfamiliar face processing using the high temporal resolution 71 

of electroencephalography (EEG; Ambrus et al., 2019; Collins et al., 2018) and 72 

magnetoencephalography (MEG; Dobs et al., 2019). These studies have found that 73 

familiarity affects the initial time windows of face processing in the brain, which are 74 

generally attributed to the feed-forward mechanisms of the brain. In particular, they have 75 

explored the possibility that the face familiarity effect occurs because these faces have 76 

been seen repeatedly, leading to the development of low-level representations for familiar 77 

faces in the occipito-temporal visual system. This in turn facilitates the flow of familiar face 78 

information in a bottom-up feed-forward manner from the occipito-temporal to the frontal 79 

areas for recognition (di Oleggio Castello and Gobbini, 2015; Ramon et al., 2015; Ellis et 80 

al., 1979; Young and Burton, 2018). On the other hand, studies have also shown the role 81 

of frontal brain areas in facilitating the processing of visual inputs (Bar et al., 2006; 82 

Kveraga et al., 2007; Goddard et al., 2016; Karimi-Rouzbahani et al., 2019), such as faces 83 

(Kramer et al., 2018; Summerfield et al., 2006), by feeding back signals to the face-84 

selective areas in the occipito-temporal visual areas, particularly when the visual input is 85 

ambiguous (Summerfield et al., 2006) or during face imagery (Mechelli et al., 2004; 86 

Johnson et al., 2007). These top-down mechanisms, which were localized in medial 87 

frontal cortex, have been suggested (but not quantitatively supported) to reflect feedback 88 

of (pre-existing) face templates, against which the input faces are compared for correct 89 
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recognition (Summerfield et al., 2006). Despite the large literature of face recognition, the 90 

roles of the feed-forward (i.e. peri-occipital to peri-frontal) and feedback (i.e. peri-frontal 91 

to peri-occipital) brain mechanisms, and their possible temporal interactions, in familiar 92 

face recognition have remained ambiguous. We develop novel connectivity methods to 93 

track the flow of information along the feed-forward and feedback mechanisms and 94 

assess the role of these mechanisms in familiar face recognition. 95 

One critical aspect of the studies that successfully detected top-down peri-frontal 96 

to peri-occipital feedback signals (Bar et al., 2006; Summerfield et al., 2006; Goddard et 97 

al., 2016) has been the active involvement of the participant in a task. In recent E/MEG 98 

studies reporting support for a feed-forward explanation of the face familiarity effect, 99 

participants were asked to detect target faces (Ambrus et al., 2019) or find a match 100 

between faces in series of consecutively presented faces  (Dobs et al., 2019). This makes 101 

familiarity irrelevant to the task of the participant. Such indirect tasks may reduce the 102 

involvement of top-down familiarity-related feedback mechanisms, as was demonstrated 103 

by a recent study (Kay et al., 2017), which found reduced feedback signals (from 104 

intraparietal to ventro-temporal cortex) when comparing fixation versus an active task in 105 

an fMRI study. Therefore, to answer our first research question and fully test the 106 

contribution of feedback to the familiarity effect, we need active tasks that are affected by 107 

familiarity. 108 

Timing information is also crucial in evaluating the flows of feed-forward and 109 

feedback information as these processes often differ in the temporal dynamics. With the 110 

advent of the concept of informational connectivity analysis, we now have the potential to 111 

examine the interaction of information between feed-forward and feedback mechanisms 112 

to characterize their potential spatiotemporal contribution to familiar face recognition 113 

(Goddard et al., 2016; Goddard et al., 2019; Anzellotti and Coutanche, 2018; Basti et al., 114 

2020; Karimi-Rouzbahani et al., 2020). However, this requires novel methods to track the 115 

flow of familiarity information from a given brain area to a destination area and link this 116 

flow to the behavioural task goals to confirm its biological relevance. Such analyses can 117 

provide valuable insights for understanding the neural mechanisms underlying familiar 118 

face recognition in humans. 119 
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In our study, participants performed a familiar vs. unfamiliar face categorization 120 

task on sequences of images selected from four face categories (i.e., unfamiliar, famous, 121 

self, and personally familiar faces), with dynamically updating noise patterns, while their 122 

EEG data were recorded. By varying the signal-to-noise ratio of each image sequence 123 

using perceptual coherence, we were able to investigate how information for the different 124 

familiar categories gradually builds up in the electrical activity recordable by scalp 125 

electrodes, and how this relates to the amount of sensory evidence available in the 126 

stimulus (perceptual difficulty). The manipulation of sensory evidence also allowed us to 127 

investigate when, and how, feedback information flow affects familiar face recognition. 128 

Using univariate and multivariate pattern analyses, representational similarity analysis 129 

(RSA) and a novel informational connectivity analysis method, we reveal the temporal 130 

dynamics of neural representations for different levels of face familiarity.  131 

Our results show that self and personally familiar faces lead to higher perceptual 132 

categorization accuracy and enhanced representation in the brain even when sensory 133 

information is limited while famous (visually familiar) and unfamiliar face categorization is 134 

only possible in high-coherence conditions. Importantly, our extension of information flow 135 

analysis reveals that in high-coherence conditions the feed-forward sweep of face 136 

category information processing is dominant, while at lower coherence levels the 137 

exchange of face category information is dominated by feedback. The change in 138 

dominance of feedback versus feed-forward effects as a function of coherence level 139 

supports a dynamic exchange of information between higher-order (frontal) cognitive and 140 

visual areas depending on the amount of sensory evidence. 141 

 142 

Results 143 

We designed a paradigm to study how the stimulus- and decision-related 144 

activations for different levels of face familiarity build up during stimulus presentation and 145 

how these built-up activations relate to the amount of sensory evidence about each 146 

category. We recorded EEG data from human participants (n=18) while they categorized 147 
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face images as familiar or unfamiliar. We varied the amount of sensory evidence by 148 

manipulating the phase coherence of images on different trials (Figure 1A).  In each 1.2 149 

s (max) sequence of image presentation (trial), the pattern of noise changed in each frame 150 

(16.7 ms) while the face image and the overall coherence level remained the same. 151 

Familiar face images (120) were selected equally from celebrity faces, photos of the 152 

participants' own face, and personally familiar faces (e.g., friends, family members, 153 

relatives of the participant) while unfamiliar face images (120) were completely unknown 154 

to participants before the experiment. Within each block of trials, familiar and unfamiliar 155 

face images with different coherence levels were presented in random order.  156 

 157 

Levels of face familiarity are reflected in behavioral performance 158 

We quantified our behavioral results using accuracy and reaction times on correct 159 

trials. Specifically, accuracy was the percentage of images correctly categorized as either 160 

familiar or unfamiliar. All participants performed with high accuracy (>92%) at the highest 161 

phase coherence (55%), and their accuracy was much lower (~62%) at the lowest 162 

coherence (22%; F(3,272)=75.839, p<0.001; Figure 1B). The correct reaction times show 163 

that participants were faster to categorize the face at high phase coherence levels than 164 

lower ones (F(3,272)=65.797, p<0.001, main effect; Figure 1C). We also calculated the 165 

accuracy and reaction times for the sub-categories of the familiar category separately (i.e. 166 

famous, personally familiar and self). Note that the task was two-alternative forced-choice 167 

between familiar vs. unfamiliar faces, so participants were not specifically asked to 168 

categorize the sub-categories. The calculated accuracy here is the percentage of correct 169 

responses within each of these familiar sub-categories. The results show a gradual 170 

increase in accuracy as a function of phase coherence and familiarity (Figure 1D, two-171 

way ANOVA. factors: coherence level and face category. Face category main effect: 172 

F(2,408)=188.708, p<0.001, coherence main effect: F(3,408)= 115.977, p<0.001, and 173 

interaction: F(6,408)=12.979, p<0.001), with the highest accuracy in categorizing their 174 

own (self), then personally familiar, and finally famous (or visually familiar) faces. The 175 

reaction time analysis also showed a similar pattern where participants were fastest to 176 
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categorize self faces, then personally familiar and famous faces (Figure 1E, two-way 177 

ANOVA, factors: coherence level and face category. Face category main effect: 178 

F(2,404)=174.063, p<0.001, coherence main effect: F(3,404)= 104.861, p<0.001, and 179 

interaction: F(6,404)=17.051, p<0.001). All reported p-values were corrected for multiple 180 

comparisons using Bonferroni correction. 181 

           182 

Figure 1. Experimental design and behavioral results for familiar vs. unfamiliar face categorization. 183 
(A) Upper row shows a sample face image (from the famous category) at the four different phase coherence 184 
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levels (22, 30, 45, and 55%) used in this experiment, in addition to the original image (not used). Lower row 185 
shows schematic representation of the experimental paradigm. In each trial, a black fixation cross was 186 
presented for 300-600 ms (randomly selected). Then, a noisy and rapidly updating (every 16.7 ms) stimulus 187 
of a face image (unfamiliar, famous, personally familiar, or self), at one of the four possible phase coherence 188 
levels, was presented until response, for a maximum of 1.2 s. Participants had to categorize the stimulus 189 
as familiar or unfamiliar by pressing one of two buttons (button mappings swapped across the two sessions, 190 
counterbalanced across participants). There was then a variable intertrial interval (ITI) lasting between 1-191 
1.2 s (chosen from a uniform random distribution; see a demo of the task here https://osf.io/n7b8f/). (B) 192 
Mean behavioral accuracy for face categorization across all stimuli, as a function of coherence levels; (C) 193 
Median reaction times for correctly categorized face trials across all conditions, as a function of coherence 194 
levels. (D) and (E) show the results for different familiar face sub-categories. Error bars in all panels are the 195 
standard error of the mean across participants. 196 

Is there a “familiarity spectrum” for faces in the brian? 197 

Our behavioral results showed that there is a graded increase in participants' 198 

performance as a function of familiarity level - i.e., participants achieve higher 199 

performance if the faces are more familiar to them. In this section we address the first 200 

question of this study about whether we can find a familiarity spectrum in neural 201 

activations, using both the traditional univariate and novel multi-variate analyses of EEG. 202 

 203 

Event-related potentials reflect behavioral familiarity effects  204 

As an initial, more traditional, pass at the data, we explored how the neural 205 

responses were modulated by different levels of familiarity and coherence by averaging 206 

event-related potentials (ERP) across participants for different familiarity levels and phase 207 

coherences (Figure 2B). This is important as recent work failed to capture familiar face 208 

identity information from single electrodes (Ambrus et al., 2019). At high coherence, the 209 

averaged ERPs, obtained from a representative centroparietal electrode (CP2), where 210 

previous studies have found differential activity for different familiarity levels (Henson et 211 

al., 2008; Kaufmann et al., 2009; Huang et al., 2017), demonstrated an early, evoked 212 

response, followed by an increase in the amplitude proportional to familiarity levels. This 213 

showed that self faces elicited the highest ERP amplitude, followed by personally familiar, 214 

famous, and unfamiliar faces (Figure 2B for 55% phase coherence). This observation of 215 

late differentiation between familiarity levels at later time points seems to support 216 
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evidence accumulation over time, which is more pronounced at higher coherence levels 217 

where the brain had access to reliable information. 218 

 219 

Figure 2. The effect of familiarity and sensory evidence on event-related potentials (ERPs). Averaged 220 
ERPs for 22% (A) and 55% (B) phase coherence levels and four face categories across all participants for 221 
an electrode at a centroparietal site (CP2). Note that the left panels show stimulus-aligned ERPs while the 222 
right panel shows response-aligned ERPs. Shaded areas show the time windows, when the absolute ERP 223 
differences between the four face categories were significantly (p<0.05) higher in the 55% vs. 22% 224 
coherence levels. The significance was evaluated using one-sided unpaired t-test with correction for 225 
multiple comparisons across time. The differences were significant at later stages of stimulus processing 226 
around 400 ms post-stimulus onset and <100 ms before the response was given by the participant in the 227 
stimulus- and response-aligned analyses, respectively.  228 

 229 

We also observed a similar pattern between the ERPs of different familiarity levels 230 

at the time of decision (just before the response was made). Such systematic 231 
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differentiation across familiarity levels was lacking at the lowest coherence level, where 232 

the amount of sensory evidence, and behavioral performance, were low (c.f. Figure 2A 233 

for 22% phase coherence; shaded areas, evaluated using unpaired one-sided t-test 234 

p<0.05, Bonferroni-corrected for multiple comparisons across time). These results reveal 235 

the neural correlates of perceptual differences in categorizing different familiar face 236 

categories under perceptually difficult conditions.     237 

 238 

Dynamics of neural representation and evidence accumulation for different 239 

face familiarity levels  240 

Our results so far are consistent with previous event-related studies showing that 241 

the amplitude of ERPs is modulated by the familiarity of the face (Henson et al., 2008; 242 

Kaufmann et al., 2009; Schweinberger et al., 2002; Huang et al., 2017). However, more 243 

modulation of ERP amplitude does not necessarily mean more information. To address 244 

this issue, we used multivariate pattern and representational similarity analyses on these 245 

EEG data to quantify the time course of familiar vs. unfamiliar face processing. Compared 246 

to traditional single-channel (univariate) ERP analysis, MVPA allows us to capture the 247 

whole-brain widespread and potentially subtle differences between the activation 248 

dynamics of different familiarity levels (Ambrus et al., 2019; Dobs et al., 2019). 249 

Specifically, we asked: (1) how the coding dynamics of stimulus- and response-related 250 

activities change depending on the level of face familiarity; and (2) how manipulation of 251 

sensory evidence (phase coherence) affects neural representation and coding of different 252 

familiarity levels.  253 

To obtain the temporal evolution of familiarity information across time, at each time 254 

point we trained the classifier to discriminate between familiar and unfamiliar faces. Note 255 

that the mapping between response and fingers were swapped from the first session to 256 

the next (counterbalanced across participants) and the data were collapsed across the 257 

two sessions for these analyses, which ensures the motor response cannot drive the 258 

classifier. We trained the classifier using 90% of the trials and tested them on the left-out 259 

10% of data using a standard 10-fold cross-validation procedure (see Methods). This 260 
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analysis used only correct trials. Our decoding analysis showed that, up until ~200 ms 261 

after stimulus onset, decoding accuracy is near chance for all coherence levels (Figure 262 

3A). The decoding accuracy then gradually increases over time and peaks around 500 263 

ms post-stimulus for the highest coherence level (55%) but remains around chance for 264 

the lower coherence level (22%, Figure 3A). The accuracy for intermediate coherence 265 

levels (30% and 45%) falls between these two bounds but only reaches significance 266 

above chance for the 45% coherence level. This ramping up temporal profile suggests an 267 

accumulation of sensory evidence in the brain across the time course of stimulus 268 

presentation, which has a processing time that depends on the strength of the sensory 269 

evidence (Hanks and Summerfield, 2017; Philiastides et al., 2006). 270 

To examine if neural responses can be decoded at finer categorization levels, we 271 

separately calculated the decoding accuracy for each of the familiar face sub-categories 272 

(after collapsing the data across all coherence levels and decoding familiar vs. unfamiliar 273 

trials as explained above): unfamiliar, famous, self and personally familiar faces (Figure 274 

3B).  The decoding accuracy was highest for self faces, both for stimulus- and response-275 

aligned analyses, followed by personally familiar, famous and unfamiliar faces. Accuracy 276 

for the response-aligned analysis shows that the decoding gradually increased to peak 277 

decoding ~100 ms before the response was given by participants. This temporal evolution 278 

of decoding accuracy begins after early visual perception and rises in proportion to the 279 

amount of the face familiarity. 280 

Low-level stimulus differences between conditions could potentially drive the 281 

differences between categories observed in both ERP and decoding analyses (e.g., 282 

familiar faces being more frontal than unfamiliar faces, leading to images with brighter 283 

centers and, therefore, separability of familiar from unfamiliar faces using central 284 

luminance of images; Dobs et al., 2019; Ambrus et al., 2019). To address such potential 285 

differences, we carried out a supplementary analysis using RSA (Supplementary 286 

Materials), which showed that any such differences between images could not drive the 287 

differentiation between categories. 288 

 289 
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 290 

Figure 3. Decoding of face familiarity from EEG signals.  (A) Time course of decoding accuracy for 291 
familiar versus unfamiliar faces from EEG signals for four different phase coherence levels (22%, 30%, 292 
45%, and 55%). (B) Time course of decoding accuracy for four face categories (i.e., unfamiliar, famous, 293 
self and personally familiar faces) from EEG signals collapsed over phase coherence levels. The chance 294 
accuracy is 50%. Thickened lines indicate the time points when the accuracy was significantly above 295 
chance level (sign rank test, FDR corrected across time, p<0.05). (C) Correlation between behavioral 296 
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performance and decoding accuracy (across all conditions) over time. Thickened lines indicate the time 297 
points when the correlation was significant. The left panels show the results for stimulus-aligned analysis 298 
while the right panels show the results for response-aligned analysis (averaged over 18 participants).   299 

 300 

To determine whether the dynamics of decoding during stimulus presentation are 301 

associated with the perceptual task, as captured by our participants' behavioral 302 

performance, we calculated the correlation between decoding accuracy and perceptual 303 

performance. For this, we calculated the correlation between 16 data points from 304 

decoding accuracy (4 face categories * 4 phase coherence levels) and their 305 

corresponding behavioral accuracy rates, collapsed over participants. The correlation 306 

peaked ~500 ms post-stimulus (Figure 3C), which was just before the response was 307 

given. This is consistent with an evidence accumulation mechanism determining whether 308 

to press the button for 'familiar' or 'unfamiliar', which took another ~100 ms to turn into 309 

action (finger movement). 310 

 311 

Do higher-order peri-frontal brain areas contribute to familiar face 312 

recognition? 313 

In this section we address the second question of this study about whether peri-314 

frontal brain areas contribute to the recognition of familiar faces in the human brain using 315 

a novel model-based connectivity analyses on EEG.  316 

 317 

Task difficulty and familiarity level affect information flow across the brain 318 

We investigated how the dynamics of feed-forward and feedback information flow 319 

changes during the accumulation of sensory evidence and the evolution over a trial of 320 

neural representations of face images. We developed a novel connectivity method based 321 

on RSA to quantify the relationships between the evolution of information based on peri-322 

occipital EEG electrodes and those of the peri-frontal electrodes. As an advantage to 323 
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previous Granger causality methods (Goddard et al., 2016; Goddard et al., 2019; Karimi-324 

Rouzbahani et al., 2019), the connectivity method developed here allowed us to check 325 

whether the transferred signals contained specific aspects of stimulus information. 326 

Alternatively, it could be the case that the transferred signals might carry highly abstract 327 

but irrelevant information between the source and destination areas, which can be 328 

incorrectly interpreted as connectivity (Anzellotti and Coutanche, 2018; Basti et al., 2020). 329 

Briefly, feed-forward information flow is quantified as the degree to which the information 330 

from peri-occipital electrodes contributes to the information recorded at peri-frontal 331 

electrodes at a later time point, which reflects moving the frontal representation closer to 332 

that required for task goals. Feedback flow is defined as the opposite: the contribution to 333 

information at peri-frontal electrodes to that recorded later at peri-occipital electrodes 334 

(Figure 4A). 335 

The results show that at the highest coherence level (55%), information flow is 336 

dominantly in the feed-forward direction. This is illustrated by the shaded area in Figure 337 

4B where partialling out the peri-frontal from peri-occipital correlations only marginally 338 

reduces the total peri-occipital correlation (Figure 4B, black curves and shaded area), 339 

meaning that there is limited information transformation from peri-frontal to peri-occipital. 340 

In contrast, partialling out the peri-occipital from peri-frontal correlations leads to a 341 

significant reduction in peri-frontal correlation, reflecting a feed-forward exchange of 342 

information (Figure 4B, brown curves and shaded area). This trend is also seen for 343 

response-aligned analysis. 344 

These differences are shown more clearly in Figure 4C where the peaks of feed-forward 345 

and feedback curves show that the feed-forward information is dominant earlier, followed 346 

by feedback information flow, as shown by the later peak of feedback dynamics. These 347 

results suggest that when the sensory evidence is high, feed-forward information flow 348 

may be sufficient for categorical representation and decision making while feedback only 349 

slightly enhances the representation. However, in lower coherence levels (i.e., low 350 

sensory evidence), the strength of information flow is either equivalent between feed-351 

forward and feedback directions (30%, 45%) or dominantly feedback (22%, Figure 4D).  352 
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Figure 4. Feed-forward and feedback information flow revealed by RSA. (A) A schematic presentation 354 
of the method for calculating informational connectivity between the peri-frontal and peri-occipital 355 
electrodes, termed feed-forward and feedback information flow. Feed-forward information flow is calculated 356 
as the correlation between the present peri-frontal neural RDM and the predicted model RDM minus the 357 
same correlation when the earlier peri-occipital neural RDM is partialled out from it. (B) Time course of 358 
partial Spearman's correlations representing the partial correlations between the peri-occipital (black) and 359 
peri-frontal (brown) EEG electrodes and the model (see the inset in A) while including (solid) and excluding 360 
(dashed) the effect of the other area at phase coherence of 55%. The shaded area shows the decline in 361 
partial correlation of the current area with the model after excluding (partialling out) the RDM of the other 362 
area. Note that in both the dashed and solid lines, the low-level image statistics are partialled out of the 363 
correlations, so we call them partial correlations in both cases. (C) Feedforward (brown) and feedback 364 
(black) information flows obtained by calculating the value of the shaded areas in the corresponding curves 365 
in B. (D) Direction of information flow for different coherence levels, determined as the difference between 366 
feed-forward and feedback information flow showed in C. Thickened lines indicate time points at which the 367 
difference is significantly different from zero (sign permutation test and corrected significance level at 368 
p < 0.05), and black dotted lines indicate 0 correlation. The left panels show the results for stimulus-aligned 369 
analysis while the right panels represent the results for response-aligned analysis. 370 

 371 

Here, we can see that the lower sensory evidence correlates with greater 372 

engagement of feedback mechanisms, suggesting that feedback is recruited to boost 373 

task-relevant information in sensory areas under circumstances where the input is weak. 374 

Therefore, the dynamics and relative contribution of feedback and feed-forward 375 

mechanisms in the brain appear to vary with the sensory evidence / perceptual difficulty 376 

of the task. 377 

Importantly, we also were interested in knowing whether the degree of familiarity 378 

changes the direction of information flow between the peri-frontal and peri-occipital brain 379 

areas. For this analysis, we collapsed the data across all coherence levels as we were 380 

interested in the impact of face familiarity on information flow. Accordingly, we generated 381 

a wide range of RDM models, which allowed us to evaluate how much information about 382 

each subcategory of familiar faces (i.e., famous, personally familiar and self), levels of 383 

familiar faces, all familiar faces as a group, and unfamiliar faces were transferred between 384 

the two brain areas (Figure 5). As the results show, when the data were aligned to 385 

stimulus onset, self, familiar and familiarity level models showed the highest amount of 386 

feed-forward flow of information starting to accumulate after the stimulus onset, reaching 387 

sustained significance ~500 ms. However, less familiar categories did not reach 388 

significance. In the response-aligned analysis, again, the significant time points show the 389 

domination of feed-forward flow for the self, familiar and familiarity level models. Together, 390 
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these results suggest that while the information about the unfamiliar category could not 391 

evoke the domination of information in any directions, the representations of familiar, 392 

familiarity levels and self faces showed dominant feed-forward information flows from the 393 

peri-occipital to the peri-frontal brain areas. Note that, in this analysis, we also tried to 394 

minimize the effect of the participant's decision and motor response in the models by 395 

excluding the opposing category (i.e. unfamiliar category when evaluating the familiar 396 

models and vice versa), which potentially contributed to the information flows in the 397 

previous analysis.  398 

 399 

Figure 5. Directions of information flow for different familiarity levels using their corresponding 400 
RDM models. The models, as depicted on the top, are constructed to measure the extent and timing by 401 
which information about unfamiliar, familiar, familiarity levels and each familiar sub-category moves 402 
between the peri-occipital and peri-frontal brain areas. The yellow areas in the models refer to the target 403 
category (including unfamiliar, famous, self and personally familiar faces). Thickened lines indicate time 404 
points at which the difference is significantly different from zero (sign permutation test and corrected for 405 
multiple comparisons at significance level of p < 0.05), and black horizontal dotted lines indicate 0 406 
correlation. The left panel shows the result for stimulus-aligned analysis while the right panels represent 407 
the result for response-aligned analysis. 408 

 409 
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Altogether, the results of the information connectivity analysis suggest that, in 410 

familiar face recognition, both top-down and bottom-up mechanisms play a role, with the 411 

amount of sensory evidence determining their relative contribution. It also suggests that 412 

the degree to which sensory information is processed feed-forward can be modulated by 413 

the familiarity level of the stimulus. 414 

 415 

Discussion 416 

This study investigated the neural mechanisms of familiar face recognition. We 417 

asked how perceptual difficulty and levels of familiarity affected the contribution of feed-418 

forward and feedback processes in face processing. We first showed that manipulating 419 

the familiarity affected the informational content of neural responses about face category, 420 

in line with a large body of behavioral literature showing an advantage of familiar over 421 

unfamiliar face processing in the brain. Then, we developed a novel extension to 422 

informational connectivity analyses to track the exchange of familiarity information 423 

between peri-occipital and peri-frontal brain regions to see if frontal brain areas contribute 424 

to familiar face recognition. Our results showed that when the perceptual difficulty was 425 

low (high sensory evidence), the categorical face information was predominantly 426 

streamed through feed-forward mechanisms. On the other hand, when the perceptual 427 

difficulty was high (low sensory evidence), the dominant flow of face familiarity information 428 

reversed, indicating reliance on feedback mechanisms. Moreover, when teasing apart the 429 

effect of task and response from neural representations, only the familiar faces, but not 430 

the unfamiliar faces, showed the domination of feed-forward flow of information, with 431 

maximum flow for the most familiar category, the self faces. 432 

 Our results are consistent with the literature suggesting that visual perception 433 

comprises both feed-forward and feedback neural mechanisms transferring information 434 

between the peri-occipital visual areas and the peri-frontal higher-order cognitive areas 435 

(Bar et al., 2006; Summerfield et al., 2006; Goddard et al., 2016; Karimi-Rouzbahani et 436 

al., 2017b; Karimi-Rouzbahani et al., 2017c; Karimi-Rouzbahani et al., 2019). However, 437 
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previous experimental paradigms and analyses did not dissociate feedback and feed-438 

forward information flow in familiar face recognition, and argued for a dominance of feed-439 

forward processing (Dobs et al., 2019; di Oleggio Castello and Gobbini, 2015; Ellis et al., 440 

1979; Young and Burton, 2018). The more nuanced view we present is important because 441 

stimulus familiarity, similar to other factors including levels of categorization 442 

(superordinate vs. basic level; Besson et al., 2017; Praß et al., 2013), task difficulty (Chen 443 

et al., 2008; Woolgar et al., 2015; Kay et al., 2017) and perceptual difficulty (Fan et al., 444 

2020; Hupe et al., 1998; Gilbert and Li, 2013; Gilbert and Sigman, 2007; Lamme and 445 

Roelfsema, 2000; Woolgar et al., 2011), may affect the complex interplay of feed-forward 446 

and feedback mechanisms in the brain. Our results showed that the contribution of peri-447 

frontal to peri-occipital feedback information was inversely proportional to the amount of 448 

sensory evidence about the stimulus. Specifically, we only observed feedback when the 449 

sensory evidence was lowest (high perceptual difficulty) in our face familairty 450 

categorization task. Although a large literature has provided evidence for the role of top-451 

down feedback in visual perception, especially when sensory visual information is low, 452 

they generally evaluated the feedback mechanisms within the visual system (Ress et al., 453 

2000; Lamme and Roelfsema, 2000; Super et al., 2001; Lamme et al., 2002; Pratte et al., 454 

2013; Fenske et al., 2006; Lee and Mumford, 2003; Felleman et al., 1991;  Delorme et 455 

al., 2004; Mohsenzadeh et al., 2018; Kietzmann et al., 2019) rather than across the fronto-456 

occpital brain networks (Bar et al., 2006; Summerfield et al., 2006; Goddard et al., 2016; 457 

Karimi-Rouzbahani et al., 2018; Karimi-Rouzbahani et al., 2019). Our findings support 458 

theories suggesting that fronto-occipital information transfer may feedback (pre-existing) 459 

face templates, against which the input faces are compared for correct recognition (Bar 460 

et al., 2006; Summerfield et al., 2006). As an advantage to the previous results, which 461 

could not determine the content of the transferred signals (Bar et al., 2006; Summerfield 462 

et al., 2006; Goddard et al., 2016; Karimi-Rouzbahani et al., 2018; Karimi-Rouzbahani et 463 

al., 2019), using our novel connectivity analyses, we showed that the transferred signal 464 

contained information which contributed to the categorization of familiar and unfamiliar 465 

faces. 466 

Despite methodological differences, our findings support previous human studies 467 

showing increased activity in lower visual areas when the cognitive and perceptual tasks 468 
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were difficult relative to easy, which the authors attributed to top-down contributions (Ress 469 

et al., 2000; Kay et al., 2017). However, due to the low temporal resolution of fMRI, these 470 

studies cannot show the temporal evolution of these top-down contributions or the validity 471 

of the hypothesized direction. Importantly, the observed increase in activity in lower visual 472 

areas does not necessarily correspond to the enhancement of neural representations in 473 

those areas - increased univariate signal does not show whether there is better / more 474 

information that will support performance. Electrophysiological studies in animals have 475 

also shown that cortical feedback projections robustly modulate responses of early visual 476 

areas when sensory evidence is low, or the stimulus is difficult to segregate from the 477 

background figure (Hupe et al., 1998). A recent study has also found cortical feedback 478 

modulated the activity of neurons in the dorsolateral geniculate nucleus (dLGN), which 479 

was less consistent when presenting simple vs. complex grating stimuli (Spacek et al., 480 

2019). Therefore, varying perceptual difficulty seems to engage different networks and 481 

processing mechanisms, and we show here that this also pertains to faces: less difficult 482 

stimuli such as our high-coherence faces seem to be predominantly processed by the 483 

feed-forward mechanisms, while more difficult stimuli such as our low-coherence faces 484 

recruit both feed-forward and feedback mechanisms. However, the exact location of the 485 

feedback in all these studies, including ours, remains to be determined with the 486 

development of more accurate modalities for neural activity recording. 487 

We observed that the direction of information flow is influenced by the familiarity 488 

of the stimulus. The models of familiar faces, familiarity levels and self faces, evoked a 489 

dominant flow of feed-forward information. The unfamiliar category, however, did not 490 

evoke information flow in any direction, as evaluated by our connectivity method. This is 491 

consistent with enhanced representations of familiar face categories in the feed-forward 492 

pathways (Dobs et al., 2019; di Oleggio Castello and Gobbini, 2015; Ellis et al., 1979; 493 

Young and Burton, 2018), which, in turn, requires less top-down contributions to facilitate 494 

the perception of relevant information (Bar et al., 2006; Gilbert and Sigman, 2007). Our 495 

results might initially seem inconsistent with Fan et al. 's (2020) study, which did not report 496 

significant differences between the temporal dynamics of familiar and unfamiliar face 497 

representations; however, they only used famous faces within the familiar face spectrum. 498 

In our sub-category analysis, we also did not observe differences between famous faces 499 
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and unfamiliar faces; our main findings were from highly familiar self faces. Overall, then, 500 

our results suggest that processing of familiar faces, especially the most familiar (self) 501 

faces, is dominated by feed-forward information flow. 502 

Results also show that, in lower coherence levels, the information about the 503 

familiarity levels was generally stronger than the information about familiarity itself (as 504 

captured by familiar-unfamiliar model RDM; Supplementary Figure 1). This suggests a 505 

lower threshold for the appearance of familiarity level compared to familiar-unfamiliar 506 

representations, which are differentially developed through life-time experience and task 507 

instructions, resepectively. Specifically, development of neural representations reflecting 508 

familiarity levels could be a result of exposure to repetitive faces, which can lead to 509 

developing face-specific representations in the visual system (Dobs et al., 2019), while 510 

task instructions could temporarily enhance the processing of relevant information in the 511 

brain through top-down mechanisms (Hebart et al., 2018; Karimi-Rouzbahani et al., 512 

2019). That is probably the reason for the dominance of feed-forward and feedback 513 

information flows in the processing of familiarity levels and familiar-unfamiliar information, 514 

respectively (Figure 5). 515 

The RSA-based connectivity method used in this study further develops a recent 516 

shift towards multivariate brain connectivity methods (Anzellotti and Coutanche, 2018; 517 

Basti et al., 2020; Keitzmann et al., 2019; Goddard et al., 2016; Clarke et al., 2018; Karimi-518 

Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019; Karimi-Rouzbahani et al., 2020), and 519 

introduces several advantages over previous methods of connectivity analyses. 520 

Traditional connectivity methods examine inter-area interactions through indirect 521 

measures such as gamma-band synchronization (Gregoriou et al., 2009), shifting power 522 

(Bar et al., 2006) or causality in the activity patterns (Summerfield et al., 2006; Fan et al., 523 

2020). Such connectivity methods consider simultaneous (or time-shifted) correlated 524 

activations of different brain areas as connectivity, but they are unable to examine how (if 525 

at all) relevant information is transferred across those areas. Goddard et al. (2016) 526 

developed an RSA-based connectivity method to solve these issues, which allowed us 527 

and others to track the millisecond transfer of stimulus information across peri-frontal and 528 

peri-occipital brain areas (Karimi-Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019; 529 
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Goddard et al., 2019; Keitzmann et al., 2019). This method, however, has the limitation 530 

that, it cannot tell us what aspects of the representation are transferred and modulated. 531 

In other words, we need new methods to tell how (if at all) the transferred information is 532 

contributing to the representations in the destination area. Alternatively, we might find 533 

aspects of information which correlate the information in the source area and are 534 

observed in the destination of area with some delay, but do not show any contribution to 535 

the behavioural goals. To address this issue, Clarke et al., (2018), proposed an RSA-536 

based informational connectivity method which incorporated RDM models, such as the 537 

ones that we used here, to track specific aspects of the transferred information. However, 538 

their method did not show the temporal dynamics of information flow across brain areas. 539 

Our novel connectivity analysis method allowed us, for the first time, to explicitly 540 

determine the content, the direction and the temporal evolution of the information 541 

transferred from the peri-frontal to peri-occipital areas and vice versa. The relevance of 542 

the transferred information is determined by the amount that the representations in the 543 

destination area are shifted towards our predefined predicted RDM models. In this way, 544 

we could determine the temporal dynamics of the contributory element of the transferred 545 

information. This informational connectivity method can be used to address questions 546 

about information exchange using a variety of multivariate brain imaging modalities. Note 547 

that, although the spatiotemporal flow of information observed in this study was obtained 548 

from familiar/unfamiliar face recognition data, a similar approach can be adopted to study 549 

the flow of information across a wide set of tasks, such as object recognition, target 550 

detection and image matching. 551 

Our results specify the neural correlates for the behavioral advantage in 552 

recognizing more vs. less familiar faces in a “familiarity spectrum”. As in previous studies, 553 

our participants were better able to categorize highly familiar than famous or unfamiliar 554 

faces, especially in low-coherence conditions (Kramer et al., 2018; Young and Burton, 555 

2018). This behavioral advantage could result from long-term exposure to variations of 556 

personally familiar faces under different lighting conditions and perspectives, which is 557 

usually not the case for famous faces. Our neural decoding results quantified a neural 558 

representational advantage for more familiar faces compared to less familiar ones (i.e. 559 

higher decoding for the former than the latter) to suggest that more familiar faces lead to 560 
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more distinguishable neural representations as well. Decoding accuracy was also 561 

proportional to the amount of sensory evidence: the higher the coherence levels, the 562 

higher the decoding accuracy. We observed that the decoding accuracy “ramped-up” and 563 

reached its maximum ~100 ms before participants expressed their decisions using a key 564 

press. These results are suggestive of sensory evidence accumulation and decision 565 

making processes during face processing in humans, consistent with previously reported 566 

data in monkey and recent single-trial ERP studies (Kelly et al., 2013; Hanks and 567 

Summerfield, 2017; Philiastides et al., 2006; Philiastides and Sajda, 2006; Shadlen and 568 

Newsome, 2001). The significant correlation between MVPA and our behavioral results, 569 

moreover, showed a direct relationship between neural representation and behavioral 570 

outcomes with regard to familiar face processing. This means that the behavioral 571 

advantages of self faces and the condition with the highest sensory evidence (highest 572 

coherence) could have been driven by the enhanced neural representations in those 573 

conditions. 574 

The time courses of our EEG results showed their maximum effects after 400 ms 575 

post-stimulus onset, which makes our results incomparable to the previous studies, as 576 

these generally show face familiarity modulation during early ERP components such as 577 

N170, N250, and P300 (Dobs et al., 2019; Ambrus, 2019; Fan et al., 2020; Henson et al., 578 

2008; Kaufmann et al., 2009; Schweinberger et al., 2002; Huang et al., 2017). Typically, 579 

these studies use event-related paradigms, which evoke initial brain activations peaking 580 

at around 200 ms, whereas our dynamic masking paradigm releases the information 581 

gradually along the time course of the trial. Moreover, the extended (>200ms) static 582 

stimulation used in previous studies has been suggested to bias towards domination of 583 

feed-forward processing (Goddard et al., 2016; Karimi-Rouzbahani, 2018), because of 584 

the co-processing of the incoming sensory information and the recurrence of earlier 585 

windows of the same input (Kietzmann et al., 2019; Mohsenzadeh et al., 2018), making 586 

it hard to measure feedback. However, our paradigm, while providing a delayed 587 

processing profile compared to previous studies, avoids this and also slows down the 588 

process of evidence accumulation so that it becomes more trackable in time. 589 
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In conclusion, our study demonstrates that the processing of face information 590 

involves both feed-forward and feedback flow of information in the brain, and which 591 

predominates depends on the strength of incoming perceptual evidence and the 592 

familiarity of the face stimulus. Our novel extension of multivairate connectivity analysis 593 

methods allowed us to disentangle feed-forward and feedback contributions to familiarity 594 

representation. This connectivity method can be applied to study a wide range of cognitive 595 

processes, wherever information is represented in the brain and transferred across areas. 596 

We also showed that the behavioral advantage for familiar face processing is robustly 597 

reflected in neural representations of familiar faces in the brain and can be quantified 598 

using multivariate pattern analyses. These new findings and methods emphasise the 599 

importance of, and open new avenues for, exploring the impact of different behavioral 600 

tasks on the dymanic exchange of information in the brain. 601 

 602 

Materials and Methods 603 

Participants 604 

We recorded from 18 participants (15 male, aged between 20-26 years, all with 605 

normal or corrected-to-normal vision). Participants were students from the Faculty of 606 

Mathematics and Computer Science at the University of Tehran, Iran. All participants 607 

voluntarily participated in the experiments and gave their written consent prior to 608 

participation. All experimental protocols were approved by the ethical committee of the 609 

University of Tehran. All experiments were carried out in accordance with the guidelines 610 

of the Declaration of Helsinki. 611 

 612 
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Stimuli 613 

We presented face images of four categories, including unfamiliar, famous, self 614 

and personally familiar faces. The unfamiliar faces (n=120) were unknown to participants. 615 

The famous faces (n=40) were pictures of celebrities, politicians, and other well-known 616 

people. These faces were selected from different, publicly available face databases1. In 617 

both categories, half of the images were female, and half were male. To ensure that all 618 

participants knew the famous face identities, participants completed a screening task prior 619 

to the study. In this screening, we presented them with the names of famous people in 620 

our data set and asked if they were familiar with the person. 621 

The personally familiar faces were selected from participants' family, close 622 

relatives, and friends (n=40); self-images were photographs of participants (n=40). The 623 

images of self and personally familiar faces were selected to have varied backgrounds 624 

and appearances. On average, we collected n=45 for personally familiar and n=45 for self 625 

faces for every individual participant. All images were cropped to have 400×400 pixels 626 

and were converted to greyscale (Figure 1A). We ensured that spatial frequency, 627 

luminance, and contrast were equalized across all images. The magnitude spectrum of 628 

each image was adjusted to the average magnitude spectrum of all images in our 629 

database 2. 630 

The phase spectrum was manipulated to generate noisy images characterized by 631 

their percentage phase coherence (Dakin et al., 2002). We used a total of four different 632 

phase coherence values (22%, 30%, 45%, and 55%), chosen based on behavioral pilot 633 

experiments, so overall behavioral performance spanned the psychophysical dynamic 634 

range. Specifically, the participants scored 52.1%, 64.7%, 85.2% and 98.7% in the 635 

mentioned coherence levels in the piloting. At each of the four phase coherence levels, 636 

 

1 http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html 
  https://megapixels.cc/datasets/msceleb/ 
2 https://github.com/Masoud-Ghodrati/face_familiarity 
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we generated multiple frames for every image: the number of frames generated 637 

depended on the reaction time of the participants, as explained below. 638 

 639 

EEG acquisition and Apparatus 640 

We recorded EEG data from participants while they were performing the face 641 

categorization task. EEG data were acquired in an electrostatically shielded room using 642 

an ANT Neuro Amplifier (eego 64 EE-225) from 64 Ag/AgCl scalp electrodes and from 643 

three periocular electrodes placed below the left eye and at the left and right outer canthi. 644 

All channels were referenced to the left mastoid with input impedance <15k and chin 645 

ground. Data were sampled at 1000 Hz and a software-based 0.1-200 Hz bandpass filter 646 

was used to remove DC drifts, and high-frequency noise and 50 and 100 Hz (harmonic) 647 

notch filters were applied to minimize line noise. These filters were applied non-causally 648 

(using MATLAB filtfilt) to avoid phase-related distortions. We used Independent 649 

Component Analysis (ICA) to remove artefactual components in the signal. The 650 

components which were reflecting artefactual signals (eye movements, head 651 

movements) were removed based on ADJUST's criteria (Mognon et al., 2011). Next, trials 652 

with strong eye movement or other movement artifacts were removed using visual 653 

inspection. On average, we kept 98.74%±1.5% artifact-free trials for any given condition. 654 

We presented images on LCD monitor (BenQ XL2430, 24”, 144 Hz refresh rate, 655 

resolution of 1920 ×1080 pixels) and the stimulus presentation was controlled using 656 

custom-designed MATLAB codes and Psychtoolbox 3.0 (Brainard, 1997; Pelli, 1997). We 657 

presented stimuli at a distance of 60 cm to the participant, and each image subtended 8° 658 

× 8° of visual angle.  659 

 660 
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Procedure 661 

Participants performed a familiar vs. unfamiliar face categorization task by 662 

categorizing dynamically updating sequences of either familiar or unfamiliar face images 663 

in two recording sessions (Figure 1A). Image sequences were presented in rapid serial 664 

visual presentation (RSVP) fashion at a frame rate of 60 Hz frames per second (i.e.,16.67 665 

ms per frame without gaps). Each trial consisted of a single sequence of up to 1.2 seconds 666 

(until response) with a series of images from the same stimulus (i.e., selection from either 667 

familiar or unfamiliar face categories) at one of the four possible phase coherence levels. 668 

Importantly, within each phase coherence level, the overall amount of noise remained 669 

unchanged, whereas the spatial distribution of the noise varied across individual frames 670 

such that different parts of the underlying image was revealed sequentially. If stimuli are 671 

presented statically for more than ~200ms, this would result in a dominant feed-forward 672 

flow of information simply due to the incoming information (Goddard et al., 2016; Karimi-673 

Rouzbahani, 2019; Lamme et al., 2000). On the other hand, if we present stimuli for very 674 

brief durations (e.g. < 50 ms), there may be insufficient time to evoke familiarity 675 

processing. 676 

We instructed participants to fixate at the center of the monitor and respond as 677 

accurately and quickly as possible by pressing one of two keyboard keys (left and right 678 

arrow keys) to identify the image as familiar or unfamiliar using the right index and middle 679 

fingers, respectively. The mapping between familiar-unfamiliar categories and the two 680 

fingeres were swapped from the first session to the next (counterbalanced across 681 

participants) and the data were collapsed across the two sessions before analyses. As 682 

soon as a response was given, the RSVP sequence stopped, followed by an inter-trial 683 

interval of 1–1.2 s (random with uniform distribution). The maximum time for the RSVP 684 

sequence was 1.2 secs. If participants failed to respond within the 1.2 secs period, the 685 

trial was marked as a no-choice trial and was excluded from further analysis. We had a 686 

total of 240 trials (i.e., 30 trials per perceptual category, familiar and unfamiliar, each at 687 

four phase coherence levels) during the experiment. We presented six blocks of 36 trials 688 

each, and one block of 24 trials and participants had some resting time between the 689 
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blocks. Each image from the image set was presented to the participants once in each 690 

session.  691 

 692 

Analysis 693 

Decoding (MVPA) analysis 694 

We decoded the information content of our conditions using Multivariate Pattern 695 

Analysis (MVPA) methods with Support Vector Machine (SVM) classifiers (Cortes et al., 696 

1995). MVPA utilizes within-condition similarity of trials and their cross-condition 697 

dissimilarity to determine the information content of individual conditions. We trained an 698 

SVM classifier on the patterns of brain activity (from 64 EEG electrodes) from 90% of 699 

familiar (including personally familiar, famous, and self categories) and 90% of unfamiliar 700 

trials, and then tested the trained classifier on the left-out 10% of trials from each category. 701 

The classification accuracy from categorization of the testing data shows whether there 702 

is information about familiarity in the neural signal. We only used the trials in which the 703 

participant correctly categorized the stimulus as familiar or unfamiliar. We repeated this 704 

procedure iteratively 10 times until all trials from the two categories were used in the 705 

testing of the classifier once (no trial was included both in the training and testing sets in 706 

a single run), hence 10-fold cross-validation, and averaged the classification accuracy 707 

across the 10 validation runs. To obtain the decoding accuracy through time, we down-708 

sampled the EEG signals to 100 Hz and repeated the same classification procedure for 709 

every 10 ms time point from -100 to 600 ms relative to the onset of the stimulus, and from 710 

-500 to 100 ms relative to the response. This allowed us to assess the evolution of face 711 

familiarity information relative to the stimulus onset and response separately. 712 

To investigate the potential differences in the temporal evolution of the sub-713 

categories contained in the familiar category (i.e., famous, personally familiar and self), 714 

we additionally calculated the decoding accuracy for each sub-category separately. Note 715 

that the same decoding results obtained from decoding of familiar vs. unfamiliar 716 
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categories were used here, only calculated separately for each sub-category of familiar 717 

faces. 718 

We used random bootstrapping testing to evaluate the significance of the decoding 719 

values at every time point. This involved randomizing the labels of the familiar and 720 

unfamiliar trials 10,000 times and obtaining 10,000 decoding values using the above 721 

procedure. The p-values of the true decoding values were obtained as [1- p(randomly 722 

generated decoding values which were surpassed by the corresponding true decoding 723 

value)]. We then corrected the p values for multiple comparisons across time (using 724 

MATLAB's mafdr function). After the correction, the true decoding values with p < 0.05 725 

were considered significantly above chance (e.g., 50%).  726 

 727 

Brain-behavior correlation 728 

To investigate if the decoding results could explain the observed behavioral face 729 

categorization results, we calculated the correlation between the decoding and the 730 

behavioral results using Spearman's rank correlation. We calculated the correlation 731 

between a 16-element vector containing the percentage correct behavioral responses for 732 

the four coherence levels of the four familiarity levels (i.e. Familiar, Famous, Self and 733 

Unfamiliar), and another vector with the same structure containing the decoding values 734 

from the same conditions at every time point separately. Please note that here we 735 

calculated the percentage correct for familiar and unfamiliar sub-categories in contrast to 736 

what we did when plotting the behavioral accuracy for the whole experiment in Figure 1B. 737 

To determine the significance of the correlations, the same bootstrapping procedure as 738 

described above was repeated at every time point by generating 10,000 random 739 

correlations after shuffling the elements of the behavioral vector. The true correlations 740 

were compared with the randomly generated correlations and deemed significant if their 741 

p-values (as computed above) were < 0.05 after correction for multiple comparisons. 742 

 743 
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Representational similarity analysis 744 

Representational similarity analysis is used here for three purposes. First, to partial 745 

out the possible contributions of low-level image statistics to our decoding results, which 746 

is not directly possible in the decoding analysis (Supplementary Materials). Second, to 747 

investigate possible coding strategies that the brain might have adopted which could 748 

explain our decoding, specifically, whether the brain was coding familiar versus unfamiliar 749 

faces, the different levels of familiarity or a combination of the superordinate and 750 

subordinate categories. Third, to measure the contribution of information from other brain 751 

areas to the representations of each given area (see Information flow analysis). 752 

We constructed neural representational dissimilarity matrices (RDMs) by 753 

calculating the (Spearman's rank) correlation between every possible representation 754 

obtained from every single presented image leading to a 240 by 240 RDM matrix. The 755 

matrices were constructed using signals from the electrodes over the whole brain as well 756 

as from peri-occipital and peri-frontal electrodes separately as explained later (Figures 4-757 

6). We also constructed image RDMs for which we calculated the correlations between 758 

every possible pair of images which had generated the corresponding neural 759 

representations used in the neural RDMs. Finally, to evaluate how much the neural RDMs 760 

coded the familiar vs. unfamiliar faces and/or different familiarity levels, we constructed 761 

two models RDMs. In the Familiar-Unfamiliar model RDM, the elements which 762 

corresponded to the correlations of familiar with familiar, or unfamiliar with unfamiliar, 763 

representations (and not their cross-correlations) were valued as 1, and the elements 764 

which corresponded to the cross-correlations between familiar and unfamiliar faces were 765 

valued as 0. The Familiarity level model, on the other hand, was filled with 0s (instead of 766 

1s) for the representations which corresponded to the cross-correlations between 767 

different sub-categories of familiar faces (e.g. personally familiar vs. famous) with 768 

everything else being the same as the Familiar-Unfamiliar model RDM. To correlate the 769 

RDMs, we selected and reshaped the upper triangular elements of the RDMs (excluding 770 

the diagonal elements) into vectors called 'RDV'. To evaluate the correlation between the 771 

neural RDVs and the model RDVs, we used Spearman's partial correlation in which we 772 
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calculated the correlation between the neural and the model RDV while partialling out the 773 

image RDV as in equation (1): 774 

 775 

𝜕𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) = ⍴𝑅𝐷𝑉𝑁𝑒𝑢𝑟𝑎𝑙(𝑡)𝑅𝐷𝑉𝑀𝑜𝑑𝑒𝑙 . 𝑅𝐷𝑉𝐼𝑚𝑎𝑔𝑒 .                     (1) 776 

 777 

As indicated in the equation, the partial correlation was calculated for every time 778 

point of the neural data (10 ms time steps), relative to the stimulus onset and response 779 

separately using the time-invariant model and image RDVs. To evaluate the significance 780 

of the partial correlations, we used a similar bootstrapping procedure as was used in 781 

decoding. However, here we randomized the elements of the model RDV 10,000 times 782 

(while keeping the number of ones and zeros equal to the original RDV) and calculated 783 

10,000 random partial correlations. Finally, we compared the true partial correlation at 784 

every time point with the randomly generated partial correlations for the same time point 785 

and deemed it significant if it exceeded 95% of the random correlations (p < 0.05) after 786 

correcting for multiple comparisons. 787 

 788 

Informational connectivity analysis 789 

We developed a novel model-based method of information flow analysis to 790 

investigate how earlier information content of other brain areas contributes to the present-791 

time information content of a given area. While several recent approaches have 792 

suggested for information flow analysis in the brain (Goddard et al., 2016; Karimi-793 

Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019), following the recent needs for these 794 

approaches in answering neuroscience questions (Anzellotti and Coutanche, 2018), none 795 

of the previously developed methods could answer the question of whether the 796 

transferred information was improving the representation of the target area in line with the 797 

behavioral task demands. Our proposed model, however, explicitly incorporates the 798 

specific aspects of behavioral goals or stimuli in its formulation and allows us to measure 799 
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if the representations of target areas are shifted towards the behavioural/neural goals by 800 

the received information. An alternative would be that the incoming information from other 801 

areas are just epiphenomenal and are task-irrelevant. This new method can distinguish 802 

these alternatives. 803 

Accordingly, we split the EEG electrodes in two groups, each with 16 electrodes: 804 

peri-frontal and peri-occipital (Figure 4A) to see how familiarity information is (if at all) 805 

transferred between these areas that can be broadly categorized as “cognitive” and 806 

“sensory” brain areas, respectively. We calculated the neural RDMs for each area 807 

separately and calculated the correlation between the neural RDV and the model RDV, 808 

partialling out the image RDM from the correlation (as explained in equation (1)). This 809 

resulted in a curve when calculating the partial correlation at every time point in 10 ms 810 

intervals (see the solid lines in Figure 4B). Note that the partial correlation curve for the 811 

peri-frontal area could have received contributions from the present and earlier 812 

representations of the same area (i.e., the latter being imposed by our sequential stimulus 813 

presentation). It could also have received contributions from earlier peri-occipital 814 

representations through information flow from peri-occipital to the peri-frontal area. To 815 

measure this potential contribution, we partialled out the earlier peri-occipital 816 

representations in calculation of the partial correlation between peri-frontal and model 817 

RDVs according to equation (2): 818 

 819 

𝑃𝑒𝑟𝑖 − 𝑓𝑟𝑜𝑛𝑡𝑎𝑙𝜕𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) =820 

⍴𝑅𝐷𝑉𝑁𝑒𝑢𝑟𝑎𝑙(𝑓𝑟𝑜𝑛𝑡𝑎𝑙, 𝑡)𝑅𝐷𝑉𝑀𝑜𝑑𝑒𝑙 . {𝑅𝐷𝑉𝐼𝑚𝑎𝑔𝑒 , 𝑅𝐷𝑉𝑁𝑒𝑢𝑟𝑎𝑙(𝑜𝑐𝑐𝑖𝑝𝑖𝑡𝑎𝑙, 𝑡 − 𝑇)}.         (2) 821 

 822 

where 𝑁𝑒𝑢𝑟𝑎𝑙𝑅𝐷𝑉(𝑓𝑟𝑜𝑛𝑡𝑎𝑙, 𝑡) refers to the peri-frontal neural RDV at present and 823 

𝑁𝑒𝑢𝑟𝑎𝑙𝑅𝐷𝑉(𝑜𝑐𝑐𝑖𝑝𝑖𝑡𝑎𝑙, 𝑡 − 𝑇) refers to the peri-occipital neural RDV in an earlier time 824 

point. We then calculated the difference between the original partial correlation at the 825 

peri-frontal areas and the partial correlation calculated using equation (2) to determine 826 

the contribution of earlier peri-occipital representations we called this “contribution of 827 
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information feed-forward flow” (as indicated by the brown shades in Figure 4). To 828 

determine the contribution of the peri-frontal representations in moving the peri-occipital 829 

representations, we used equation (3): 830 

 831 

𝑃𝑒𝑟𝑖 − 𝑜𝑐𝑐𝑖𝑝𝑖𝑡𝑎𝑙𝜕𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) =832 

⍴𝑅𝐷𝑉𝑁𝑒𝑢𝑟𝑎𝑙(𝑜𝑐𝑐𝑖𝑝𝑖𝑡𝑎𝑙, 𝑡)𝑅𝐷𝑉𝑀𝑜𝑑𝑒𝑙 . {𝑅𝐷𝑉𝐼𝑚𝑎𝑔𝑒 , 𝑅𝐷𝑉𝑁𝑒𝑢𝑟𝑎𝑙(𝑓𝑟𝑜𝑛𝑡𝑎𝑙, 𝑡 − 𝑇)}.         (3) 833 

with the same notations as in equation (2). Accordingly, to determine the 834 

contribution of earlier peri-frontal representations in directing the peri-occipital 835 

representations towards the model RDV, namely 'contribution of information feedback 836 

flow', we calculated the difference between the original partial correlation at the peri-837 

occipital areas (using equation (1)) and the partial correlation calculated using equation 838 

(3). In equations (1) and (2), the delay time (T) was considered 50 ms and the earlier 839 

representations were averaged in a 50 ms time window (including 5 RDVs obtained from 840 

5 steps of 10ms intervals), according to the previously reported delay times between the 841 

peri-occipital and peri-frontal areas in visual processing (Foxe and Simpson, 2002, 842 

Karimi-Rouzbahani et al., 2019).  843 

Finally, to characterize the information flow dynamics between the peri-occipital 844 

and peri-frontal areas, we calculated the difference between the feed-forward and 845 

feedback contribution of information flows. This allowed us to investigate the transaction 846 

of targeted information between the brain areas aligned to the stimulus onset and 847 

response. We repeated the same procedure using the Familiar-Unfamiliar as well as 848 

Familiarity level models to see if they differed. We determined the significance of the 849 

partial correlations using the above-explained random bootstrapping procedure. We 850 

determined the significance of the differences between partial correlations (the shaded 851 

areas in Figure 4 and the lines in panel C) and the differences in the feed-forward and 852 

feedback contribution of information using Wilcoxon's signed-rank test using p < 0.05 853 

threshold for significance after correction for multiple comparisons (using Matlab mafdr). 854 

 855 
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Supplementary Materials 1058 

 1059 

Low-level image statistics do not explain the separation of familiar from 1060 

unfamiliar faces 1061 

Although, we did equalize the frequency content, pixel intensities and contrast of 1062 

the images of our dataset (see methods), but we checked whether there are other low-1063 

level differences by creating a model representational dissimilarity matrix (RDM) for each 1064 

of the categories under different phrase coherences. Briefly, neural RDMs are 1065 

constructed by calculating the correlations (or dissimilarities) of the brain response to 1066 

different face stimuli to give an abstract representation of information encoding in the 1067 

brain. We also construct a low-level feature RDM, for which we calculate the correlations 1068 

between images corresponding to each brain response. Model RDMs predicted 1069 

representations in the brain (see Methods). The model RDMs were created for 1070 

discriminating (1) familiar from unfamiliar (Supplementary Figure 1A) and also (2) the 1071 

familiarity levels from one another (Supplementary Figure 1B). We then computed partial 1072 

Spearman's correlations between one of the models and neural RDMs for every time 1073 

point and participant, while partialling out (Supplementary Figure 1)/not partialling out 1074 

(Supplementary Figure 2) low-level feature model RDM . 1075 

This analysis revealed the emergence of familiarity representation (familiar vs. 1076 

unfamiliar faces) at around 270 ms post-stimulus for the highest coherence level (55%, 1077 

Supplementary Figure 1A). The onset of significant representation is slightly later for 1078 

lower coherence levels (e.g., 45%, Supplementary Figure 1A), which may suggest the 1079 

need for additional processing time required to evaluate the sensory evidence. 1080 

Interestingly, while the dynamics of familiarity level representations also showed gradual 1081 

accumulation of information (Supplementary Figure 1B), especially for the 45% and 55% 1082 

coherence, the correlation values are generally higher for the model of familiarity level 1083 

compared to familiar-unfamiliar (c.f. Supplementary Figure 1A). This suggests that there 1084 

might be well-established neural mechanisms in the brain that discriminate levels of 1085 
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familiarity so strongly that is not suppressed/dominated by the task (i.e. here familiar-1086 

unfamiliar) or the response of the participants. This could also be supported by the 1087 

observation that, as opposed to the familiar-unfamiliar representations, for which the 55% 1088 

coherence provided the most information (at least in the stimulus-aligned analysis), the 1089 

familiarity level representations provided their highest information in lower coherence 1090 

levels such as 45% (in both stimulus- and response-aligned analyses) and 30% or even 1091 

22% in the response-aligned analysis. Note that participants’ task and response could 1092 

have also potentially contributed to the analysis of face familiarity model as those factors 1093 

matched the familiar-unfamiliar model used in Supplementary Figure 1A. 1094 

  1095 

Supplementary Figure 1. Representations of face familiarity and categories revealed by RSA. Time 1096 
course of Spearman’s correlations between neural RDMs and model RDM (shown as insets) for (A) face 1097 
familiarity; and (B) face familiarity levels, famous, self and personally familiar faces, after partialling out 1098 
contributions from low-level features (see Methods). Each colored trace shows the correlations over time 1099 
for one phase coherence level. Thickened lines indicate time points where the correlation is significant (sign 1100 
permutation test, FDR-corrected significance level at p < 0.05), and black horizontal dotted lines indicate 0 1101 
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correlation. The left panels show the results for stimulus-aligned analysis while the right panels represent 1102 
the results for response-aligned analysis. 1103 

 1104 

Apart from a small difference in absolute decoding rates, the dynamics of neural 1105 

representations were similar when not partialling out the low-level feature model RDM 1106 

(Supplementary Figure 2), presenting the ramping up of information, with earlier and most 1107 

mounting trends for highest coherence levels (i.e. 45% and 55%). The similar patterns of 1108 

neural information decoding between the correlation patterns with and without the low-1109 

level feature model suggest that low-level image statistics may only play a minor role in 1110 

driving the observed decoding analyses. Nonetheless, we partialled out the low-level 1111 

feature model in all the following RSA-based analyses to avoid their potential contribution 1112 

to the results. 1113 

 1114 
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 1115 

Supplementary Figure 2. Representations of face familiarity and categories revealed by RSA. Time 1116 

course of Spearman’s correlations between neural RDMs and model RDM (shown as insets) for (A) face 1117 

familiarity; and (B) face familiarity levels, famous, self and personally familiar faces, before partialling out 1118 

contributions from low-level features (see Methods). Each colored trace shows the correlations over time 1119 

for one phase coherence level. Thickened lines indicate time points where the correlation is significant (sign 1120 

permutation test, FDR-corrected significance level at p < 0.05), and black horizontal dotted lines indicate 0 1121 

correlation. The left panels show the results for stimulus-aligned analysis while the right panels represent 1122 

the results for response-aligned analysis. Note that the correlation values are higher compared to the results 1123 

after partialling out contributions from low-level features (see Supplementary Figure 1). 1124 
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