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The geometry that describes the relationship among colors is unsettled despite centuries of 
study. Here we present a new approach, using multivariate analyses of direct measurements 
of brain activity obtained with magnetoencephalography to reverse-engineer the geometry 
of the neural representation of color space. The analyses depend upon determining similarity 
relationships among the neural responses to different colors and assessing how these 
relationships change in time. To evaluate the approach, we relate patterns of neural activity 
to universal patterns in color naming. Control experiments showed that responses to color 
words could not decode activity elicited by color stimuli. The results suggest that three 
patterns of color naming can be accounted for by decoding the similarity relationships in the 
neural representation of color: the association of warm colors such as reds and oranges with 
“light” and cool colors such as blues and greens with “dark”; the greater precision among all 
languages in naming warm colors compared to cool colors; and the preeminence of red.  

 

It is popular to depict color in three-dimensional spaces in which distances between colors 
correspond to perceptual similarity [1]. But these geometric representations are cartoons that 
do not accurately capture a uniform representation of color [2, 3]. Many attempts have been 
made to develop a truly perceptually uniform color space, including Munsell [4], 
CIELUV/CIELAB/CIECAM02 [5], the Natural Color System [6], and the Optical Society of America 
Color System [7]. Each has a unique 3-dimensional geometry obtained from fitting models to 
perceptual judgements. But none of these, or any other color space developed to date, is 
accurate or formally defined [2, 8]. Moreover, interpretation of the perceptual judgments, and 
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by extension the relationship among colors that those judgements reveal, may be complicated 
by confounds introduced by task demands [9].  

 
The color percept associated with a stimulus can be decoded from functional magnetic 
resonance imaging activity [10], MEG and EEG in humans and monkeys [11-14], or responses of 
single neurons in monkeys [15, 16]. Moreover, as many of these studies show, the extent to 
which activity patterns reflect the sequence of hues in the color wheel can be used to identify 
neurons and brain areas that are likely involved in encoding color. In such experiments, the 
sequence of hues reflects the crude common property of all color spaces but does not capture 
the geometry of color space. In the experiments presented here the logic is flipped: we take as 
the central problem gaps in knowledge about the geometry of the neural representation of 
color, and aim to reverse-engineer this geometry from direct measurements of brain responses 
obtained with magnetoencephalography (MEG). We take up this aim using a decoding 
approach [17, 18]. Our goal is to determine the neural geometry of color by assessing the 
similarity relationships among the patterns of MEG activity elicited by a set of colors: colors 
with more similar patterns of MEG activity are considered more similar. This approach is 
analogous to the way perceptual similarities among colors are established using asymmetric 
color matches [8], where participants might be asked to pick a color that is most similar, but not 
identical, to the target. We use stimuli with equal cone contrast, defined by the cone-opponent 
axes that the retina uses to encode color (Figure 1a) [19-22]. Because MEG is thought to 
predominantly reflect cortical responses, the experiments reveal the transformation of retinal 
signals by the cortex.  
 
To evaluate the approach, we relate the patterns of neural activity elicited by different colors to 
universal patterns in color naming, guided by the idea that the cross-linguistic patterns in color 
naming derive from an underlying geometry of the neural representation. We consider three 
universal aspects of color naming: First, warm colors such as reds and oranges are associated 
with “light” and cool colors such as blues and greens are associated with “dark” [23]. Second, 
among all languages there is a greater precision in naming warm colors compared to cool colors 
[24, 25]. And third, after black and white, red is the most important basic color term [26].  
 
 
Results 
We measured MEG responses to 8 colored spirals; the stimuli comprised four hues at two 
luminance-contrast levels; the cone contrast was equated for all the stimuli, and all stimuli 
modulated activity in all three cone types (Figure 1a). We also measured responses to 
achromatic text of the words “green” and “blue”. The experimental paradigm represents a 
compromise between having a large enough representation of color space, a set of colors with 
well-defined and balanced cone activation, and a small enough set of stimuli to enable each 
stimulus to be presented a large number of times to ensure sufficient power for decoding 
analysis. Except for the words, the stimuli had the same shape and texture, ensuring the same 
pattern of retinotopic activation; thus the extent to which patterns of activation elicited by one 
spiral versus another could be decoded can only be attributed to differences in color.  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245324


The stimuli consisted of two warm colors (colors elicited by L>M cone activity; pink, orange) and 
two cool colors (blue, green). Warm colors are associated with “light”, and cool colors (blues, 
greens) are associated with “dark” among all languages, even those with the most limited 
numbers of consensus color terms [27]. Among the 11 basic color categories (red, pink, orange, 
yellow, brown, green, blue, purple), the cool colors (green, blue) are not distinguished from 
each other by differences in lightness, whereas the warm colors are [23-25, 28]. Consistent with 
this universal pattern, participants often used different terms for the light and dark versions of 
warm colors and the same term for light and dark versions of the cool colors (Figure 1b).  

Classifying colors using MEG responses 

MEG activity elicited by the colored spirals was measured in 18 people (all of whom also 
participated in the color-naming experiment). Each spiral was presented 500 times—a large 
number of trials, intended to ensure sufficient power for the decoding analyses. For each of the 
18 participants, a classifier was trained to decode stimulus color from the pattern of MEG 
results. The classifiers accurately identified the colors of the spirals based on MEG data, using 
separate data to train and test the classifiers (Figure 2a). The classifier trained to decode which 
among 8 colors gave rise to the pattern of MEG activity reached significance at 55 ms (95% CI: 
[50,55]), with a peak decoding time at 115 ms (95% CI: [105,125]). Across subjects, the time to 
peak decoding ranged between 95-260 ms. The performance of these classifiers cannot be 
attributed to confounds introduced by eye position or pupil diameter (data not shown). Pink 
was decodable with the shortest latency (for light stimuli, pink 70 ms [65, 70, 95 % C.I.]; blue 80 
ms [80 80], green 80 ms [80 80], orange 80 ms [80 80]; for dark stimuli, pink 55 ms [55, 60]; 
blue 75 ms [75 90], green 75 ms [75 75], orange 75 ms [75 75]. Moreover, peak decoding 
accuracy differed for each of the eight colors (Friedman test, p=0.009, Figure 2b). Among all the 
colors, pink (regardless of luminance contrast) showed the highest decoding accuracy 
(Wilcoxon signed rank test, light stimuli, pink>blue, p=0.004; pink>green, p=0.001; pink>orange, 
p=0.02; dark stimuli, pink > blue, p=0.16; pink>green, p=0.22; pink > orange, p=0.013).  
 
At the time point of peak classification accuracy (determined for each participant, across all 
eight colors), classification accuracy varied by hue (repeated measures two-way ANOVA on rank 
transformed data, p=0.0387) but not by luminance level (p=0.8929)(Figure 2c). The variance in 
classification accuracy by hue was not predicted by a simple asymmetry in classifying colors 
along the cardinal cone-opponent (L-vs-M or S axes, Figure 2c). Classification was comparable 
for colors that vary along the L-M axis: warm colors (defined as L-M; pink, orange) compared to 
cool colors (M-L; green, blue) (Wilcoxon signed-rank test, N=18, p= 0.2485); and classification 
was comparable colors that vary along the S axis: S-increment colors (pink, blue) compared to 
S-decrement colors (orange, green) (p=0.0741).  Instead the variance in classification accuracy 
by hue was accounted for by two asymmetries. First, classification was slightly worse for colors 
corresponding to the daylight locus (orange-blue) compared to the anti-daylight locus (pink-
green) (Wilcoxon signed-rank test, p=0.0108). Second, classification accuracy co-varied with 
warm-cool and luminance contrast, such that for warm colors, the light versions were more 
accurately classified compared to the dark versions, while for cool colors, the dark versions 
were more accurately classified compared to the light versions (Figure 2d, repeated measures 
two-way ANOVA, no main effects, significant interaction between warm-cool and luminance 
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contrast, p = 0.0116). This result provides a neural correlate of the association of warm colors 
with higher lightness, and cool colors with lower lightness which is evident in the universal 
pattern in color naming across languages [23].  
 
Representational similarity 
We sought to analyze the MEG results in a way that was analogous to the methods used to 
infer the geometry of perceptual color space. Data from psychophysics experiments that are 
the basis for knowledge of the geometry of color space depend on an evaluation of the 
similarity relationships among colors. In practical terms, these relationships can be measured 
through an asymmetric matching paradigm, in which participants are asked to identify among a 
set of colors the color that is most similar, but not identical, to a given sample. We sought to 
apply this logic to analyze the MEG data to determine the geometry of the neural 
representation of color by asking: what color does the classifier pick when forced to pick any 
color except the correct color? In other words, what color besides the test color elicits a neural 
representation that is most similar to the neural representation of the test color? The pattern 
of errors (Figure 2e) provides an estimate of the similarity in the neural representation among 
colors that is analogous to the similarity among colors recovered in psychophysical color-
ordering tasks. Colors that show more similar neural response patterns correspond to a closer 
relationship in the geometry of color space. (We also performed an analysis on the errors of the 
classifier performance, but the number of errors is relatively low compared to the number of 
trials; the forced-error analysis has more power and is more directly analogous to asymmetric 
color matching paradigms used in psychophysics to evaluate similarity relationships among 
colors.) 

The heatmap shown in Figure 2e is largely symmetric about the identity diagonal, confirming 
that the pattern of results is meaningful (Pearson correlation coefficient comparing the two 
halves of the matrix, r=0.9639, p=2E-16).   For example, the confusion between colors of the 
same hue but different luminance were almost identical: Dark orange was predicted when light 
orange was the actual color with almost the same likelihood that light orange was predicted 
when dark orange was the actual color, and so on for the four hues (see each of the four black-
outlined squares along the inverse diagonal). But the confusion between stimuli of the same 
hue but different luminance varied among the four hues. For example, the pattern of MEG 
activity for blue was similar for light and dark versions of blue, while the pattern of MEG activity 
for orange was dissimilar for light and dark versions of orange. Rank ordered by hue, the 
similarity relationships corresponded to the concordance rates for color naming (Figure 2f; 
correlation coefficient = -0.2848, p=0.0153), and the distance between hues across luminance 
contrast was greater for warm colors (Kruskal-Wallis test, p=0.0034). The results show that the 
neural representation of warm colors is more impacted by luminance contrast than the neural 
representation of cool colors, which is consistent with the color-naming patterns shown in 
Figure 1b, in which blue and green at different luminance levels were typically assigned the 
same labels while pink and orange at different luminance levels were often given different 
labels. 

Figure 3 quantifies the similarity relationships among the colors. Figure 3a shows 
multidimensional scaling plots constructed from confusion matrices to generate 2-dimensional 
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pictures of the relationship among the colors—the MDS plots are not simply a replotting of the 
confusion matrices, but instead show the best spatial representation of the RDMs as 
constrained by two orthogonal dimensions (constraining to two dimensions is warranted given 
the stimuli were varied along two dimensions, hue and luminance contrast). The MDS plots 
were produced using the stress metric. In the MDS plots, data points that are closer together 
correspond to neural representations that are more similar, i.e. more likely to be mistaken if 
the classifier fails. Each MDS plot shows the similarity relationships among colors for a single 
snapshot in time. The RDM data used to produce the MDS plots were sampled relative to the 
time to peak decoding for each subject, with negative values corresponding to times before 
peak decoding was achieved. Figure 3a shows the MDS plots at six time points, three spanning 
times around the peak decoding of stimulus onset (-5 ms, 0 ms, 5 ms) and three corresponding 
to times around the peak decoding of stimulus cessation (105 ms, 110 ms, 115 ms).  The 
goodness of fit ranges of the six MDS plots to the measured differences: R=0.835307 – 
0.951547 and p=7.84e-15 – 3.21e-8 (see Figure 3 legend). The MDS plots show qualitatively two 
striking patterns: first, each MDS plot can be oriented such that the light and dark hues are 
displaced vertically, and in this configuration the hues at both luminance levels for all six MDS 
plots follow a similar order: cool color, warm color, warm color, cool color. Second, the MDS 
plots corresponding to peak decoding of stimulus cessation are distinguished by a dramatic 
separation of the hues by luminance contrast.  

Panels b-d quantify the temporal dynamics of the three main similarity relationships. The 
shaded gray area indicates the 95% C.I, computed by bootstrapping over subjects. First, 
representations of the two warm colors were more similar than representations of the two cool 
colors within a luminance level (e.g., among light dots, the pink and orange dots are closer 
together than the blue and green dots; Figure 3b). Second, representations for hues of a given 
luminance contrast were more similar than representations for colors across luminance levels 
(light and dark hues are linearly separable), and this pattern existed for at least 200 ms after 
peak onset decoding (Figure 3c), a longer duration than the pattern shown in Figure 3b. Finally, 
light and dark versions of each of the cool colors were closer together compared to light and 
dark versions of warm colors (e.g., the two pink dots were further apart than the two blue 
dots), but this pattern was only significant for a brief window of time near peak decoding 
(Figure 3d).  

Distinct representations of colors and color words 

Do color names by themselves conjure mental representations analogous to those elicited by 
colors? This possibility is not inconceivable  by Stroop tests that show judgements about the 
color of text are relatively slow when the color of the text is incongruent with the color name 
spelled in the text (e.g. people tend to be slower judging the color of red text spelling the word 
“blue” than judging the color of blue text spelling “blue”). Thus one interpretation of the results 
in Figure 2f is that the universal patterns in color naming—warm colors associated with “light” 
and cool colors with “dark”; warm colors named with more precision than cool colors—arise 
because participants unavoidably conjure color names when they view the color spirals, and the 
mental representations of color names drive the pattern of MEG results to colored spirals. To 
test the extent to which neural representations of color instantiated by language and 
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perception are comparable, we randomly interleaved trials with the words “green” and “blue”, 
written in achromatic text, and evaluated whether classifiers trained on the pattern of MEG 
activity elicited by the words could decode color from MEG activity elicited by green and blue 
spirals. We chose “green” and “blue” words because the corresponding colored stimuli showed 
the highest concordance between stimuli of the same hue but different luminance, so we 
reasoned that the pattern of MEG activity elicited by these words would have the greatest 
likelihood of predicting patterns of activity elicited by colored spirals. Of course, the brain might 
first generate a perceptual representation, then a cognitive representation that maps word 
labels onto this perception. So one might expect a delay between when the pattern of activity 
elicited by the colored spirals matches the pattern of activity elicited by the color words, which 
requires that we test for cross-temporal generalization of the MEG patterns. 

Unsurprisingly, term identity could be readily decoded from the pattern of MEG activity (onset 
of 65 ms [95% CI: 65, 70]; peak accuracy of 0.7991% [0.7387, 0.8627] obtained at 100 ms [90, 
120]; Figure 4a). The early onset of decoding accuracy is consistent with the sensitivity V1 to 
the difference in appearance of the two words. But classifiers trained on the MEG data 
obtained using the words could not decode the color of the spirals from MEG activity elicited by 
the blue and green spirals, at any time delay between training and testing (Figure 4b left panel). 
Similarly, classifiers trained on the MEG data obtained using the colored spirals could not 
decode the term identity from MEG activity elicited by words, at any time delay between 
training and testing (Figure 4b right panel). These results suggest that the earliest neural 
representations of color instantiated by language and perception are distinct. The results also 
imply that the pattern of MEG activity in response to colored stimuli shown in Figures 2 and 3 
are not confounded by language; thus the analyses provide the first direct measure of the 
geometry of the neural representation of color space.  

Decoding was significant for a substantial amount of time, ranging from 55 to 590 ms (from 
Figure 2b). To what extent is the representation of color stable versus dynamic in time? The 
question can be addressed by examining the extent to which decoding patterns generalize 
across time [17, 29, 30]. Can classifiers trained at one point in time decode activity at another 
point in time? Several theoretical possibilities exist for the nature of the temporal 
representation. Two possibilities are the following. First, if the representation consists of a 
dynamic chain, with neural activity progressing through a series of unique states, classification 
performance will only be possible when test and train data are from the same time point. 
Second, if representations are relatively stable, it should be possible to classify activity obtained 
at one time point using training data obtained at a different time point. Figure 5a shows the 
cross-temporal generalization analysis for spiral identity, and Figure 5b indicates time points 
where decoding performance was significantly above chance. Decoding performance was 
strongest along the diagonal, consistent with the first possibility. But the plot also shows 
evidence of faint bands of significant decoding performance parallel to the diagonal, which is 
consistent with some version of the second possibility, specifically one in which a pattern of 
neural activity is reactivated at some later time point. To determine the time course of this 
reactivation, we reproduced the cross-temporal generalization analysis using 2 ms bins and 
performed a 2-D auto-correlation analysis on the temporal generalization plot. For the analysis, 
we restricted the train times to a window of 275-600ms. We shifted the temporal 
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generalization plot horizotally along the test time axis and computed the 2-D Pearson’s 
correlation coefficient between the original plot and each of the shifted plots. We computed 
the second derivatives of the correlation coefficients and performed a Fourier analysis on the 
resulting time series. The frequency with the maximum amplitude was 20 Hz, which 
corresponds to a reactivation time of 50 ms (Figure 5c). 

 

 

Discussion 

This paper presents an approach for investigating the similarity relationships among colors 
using multivariate analyses of MEG responses. The MEG data were obtained using colored 
stimuli defined by the cone-opponent cardinal mechanisms thought to be implemented by 
bipolar cells of the retina. MEG reflects predominantly cortical activity; thus any asymmetries in 
the MEG responses provide clues to the transformation by the cortex of the subcortical 
representation of color. Colors could not be decoded from patterns of MEG activity elicited in 
response to presentation of color words, which suggests that the decoding of color stimuli does 
not arise from implicit linguistic associations or implicit category effects of colors and words. 
Instead we interpret the results as evidence of the geometry of the neural representation of 
color, which, we suggest, is what accounts for perceptual similarity judgements that drive many 
universal patterns in color naming.  

The results uncovered three asymmetries in the cortical representation of color related to 
color-naming patterns. One asymmetry reflects an interaction of luminance contrast and hue 
along the warm-cool axis of color space: warm colors were better decoded when they were 
relatively high luminance contrast, while cool colors were better decoded when they were 
relatively low luminance contrast. This asymmetry reflects a universal pattern in color naming 
in which “light” and “dark” are associated with “warm” and “cool” [23-25]. A second 
asymmetry shows that the neural representation elicited by stimuli of the same hue across 
luminance levels were more dissimilar for warm colors compared to cool colors. This pattern of 
results correlated with the extent to which participants used the same term for both light and 
dark versions of each hue. For example, the patters of MEG activity elicited in response to light 
and dark pink were more dissimilar than the patterns of MEG activity elicited in response to 
light and dark green; and participants are more likely to use different terms for the light and 
dark versions of pink than they are to use different terms for the light and dark versions of 
green. The MEG results show that patterns of activity elicited warm colors were more precisely 
encoded, and therefore more accurately decoded compared to cool colors, which may account 
for the greater naming efficiency of warm colors (Gibson et al, 2017). A third asymmetry 
reflects the preeminence of red among all colors. Regardless of luminance contrast, pink was 
decoded with the highest decoding accuracy and with the shortest onset latency. This result 
cannot be attributed to differences in contrast of the stimuli (the stimuli were all matched in 
cone contrast). The result echoes observations in monkeys showing that reddish hues produce 
very high gamma oscillations [31], and provides a neural correlate for the preeminence of red 
among all chromatic colors in color naming [23-25]. 
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In addition to the three asymmetries described above that relate to universal patterns in color 
naming, the results uncover two other asymmetries. First, classification was slightly worse for 
colors corresponding to the daylight locus (orange-blue) compared to the anti-daylight locus 
(pink-green). This observation may have implications for understanding neural mechanisms of 
color constancy [32-36]. Second, the neural representations for colors at a given luminance 
level were more similar between the two warm colors than between the two cool colors. How 
does this surprising result relate to behavior? Color naming studies have shown that across 
luminance levels, warm colors are more readily distinguished compared to cool colors (see 
Figure 1b). But to our knowledge, color naming studies have not shown (or explicitly tested) 
whether colors at a given luminance level are less efficiently communicated for warm colors 
compared to cool colors. We wonder whether the result reflects the adaptation of the visual 
cortex to the statistics of the colors of objects, which are biased towards having warm colors 
[37]. Regardless, the set of results underscore the existence of a representation of hue that 
cannot be completely decoupled from a representation of luminance contrast. The existence of 
this neural representation may explain why establishing a uniform representation of color, in 
which hue and luminance contrast constitute independent dimensions, has been so difficult. 
Indeed, the present results suggest that the pursuit of a perceptually uniform color space may 
be ill founded, even if it has intuitive appeal.  

The plots of cross-temporal generalization show a pattern of bands parallel to the identity 
diagonal which provides a rare empirical example (to our knowledge the first) of a theoretical 
possibility—the reactivation pattern, described by King and Dehaene [17]. This pattern suggests 
that color is encoded by a unique sequence of brain states that is reactivated at some later time 
point. The reactivation time course evident in this plot is 50 ms, implying that the brain state 
encoding color information depends on recurrent activation loops of 20 Hz. We speculate that 
these reactivation loops involve the hierarchical network of color-biased regions within the 
ventral visual pathway [38-40], that connect primary visual cortex with frontal cortex [41, 42]. 

In sum, despite what seems like perennial failure, the quest to identify a uniform 
representation of color persists. But the fact remains: the underlying principles that govern the 
geometric relationships among colors—the neural activity that clinical exams such as the 
Farnsworth hue-sorting test purportedly assess—and the connection between perceptual 
representations and color naming, remain unknown [16, 27, 43]. Indeed, the existence of so 
many color spaces exposes a deep mystery about how color is encoded by the brain. The 
present work establishes a proof of concept, using multivariate analysis of MEG activity to 
recover the similarity relationships among colors. A next step will be to measure responses to 
more colors, and to colors that vary in saturation, to establish more finely how color space is 
represented in the brain. In future work, we aim to develop of a complete color solid in which 
the spacing of the colors corresponds to equal distances in the dissimilarity of the neural 
responses.  
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Methods 

Visual Stimuli 

Visual Stimuli 
Stimuli were eight square-wave spiral gratings on a neutral gray background (Figure 1a) [10, 44, 
45] or achromatic words (white text on a gray background) of the words “green” and “blue”. 
The color words “green” and “blue” were chosen for the experiment because they were the 
terms used with the highest consensus in the color-naming experiment. Participants were 
asked to imagine the corresponding spiral color indicated by the term each time they saw the 
words. The 8 stimulus colors, four hues at two luminance-contrast levels, of matched cone 
contrast, were defined in DKL color space [19, 20] using implementations by Westland [46] and 
Brainard [47]: the axes of this color space are defined in terms of activation of the two cone-
opponent post-receptoral chromatic mechanisms (Figure 1a). The z-axis is defined by 
luminance. The four hues were defined by the intermediate axes of DKL space: at 45° (pink), 
135° (blue), 225° (green), and 315° (orange). Two spirals – one high luminance (20° elevation; 
“light”) and one low luminance (340° elevation; “dark”) -- were created at each hue. The 
neutral adapting background was 50 cd/m2. The luminance contrast of the stimuli was 26%. 
Modulation of the cone-opponent mechanisms, shown in Figure 1a, was computed relative to 
the adapting background gray, using the Stockman and Sharpe 2degree cone fundamentals, 
Judd corrected.   
 
Color-naming 

Color names for the eight spirals used in the MEG experiments were obtained from fifty-two 
participants tested online, and the eighteen participants from the MEG experiment, who were 
tested in laboratory using the same display used for the MEG experiments.  

The 52 online participants (29 female, age 19-63 years) were recruited and tested using 
Amazon Mechanical Turk (mTurk) and provided monetary compensation for their participation. 
They were shown each of the color stimuli (Figure 1) three times in random order and given the 
prompt “The color of the spiral is ____. (Use one word that you think other people would use to 
describe this spiral).” Only one response per spiral per participant was used in the analysis 
(selected at random from among the three responses per stimulus provided by each 
participant). The spiral was presented on a neutral gray background, as large as the screen 
would allow. Before beginning the experiment, participants were presented with a consent 
screen notifying them that participation was anonymous and that the task could be completed 
only once. In addition to color answers, some basic demographic information was collected 
(age, gender, language spoken, nationality, education level, vision, colorblindness, normal 
sleep/wake times, and handedness). Participants were excluded if English was not their first 
language or if they reported color blindness.  

The 18 MEG participants completed the color-naming task during the first of two MEG sessions. 
Participants sat in the unlit MEG room before performing the main experiment and were 
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presented with each stimulus three times in random order. Upon each presentation, 
participants were instructed to speak a one-word name for the color, which was relayed to the 
researcher sitting outside the room via 2-way intercom. Participants controlled the duration 
they saw each spiral via button press. 

The results from the two sets of participants (online vs in-lab) were comparable and consistent 
with predictions based on the literature. For (MTurk|in-lab) participants, the same term was 
used at both luminance levels for hue 315° by (31%|61%); for hue 45° by (56%|56%); for hue 
135° by (83%|94%); and for hue 225° by (85%|100%). The percentage of people who used the 
same term for the light and dark versions was the same for the MTurk and in-lab participants 
(Chi-square test of proportions, Bonferroni corrected for multiple comparisons alpha = 0.0125; 
for hue 45°, p =0.99; for hue 135°, p =0.22; for hue 225°, p =0.08; for hue 315°, p =0.02). These 
results showed that participants in both experiments tended to use the same label for the high 
and low luminance version of each hue more often when labeling cool colors (hues 135° and 
225°) than warm colors (hues 45° and 315°). The most commonly used terms for hues 135° and 
225° were the same for the MTurk participants and the in-lab participants (blue, green; 
consistent across luminance contrasts). The most commonly used terms for hue 45° were 
pink|pink (light|dark MTurk participants) and pink|purple (in-lab); for hue 315°, yellow|yellow 
(MTurk); orange|brown (in-lab). Because the results were comparable between the two sets of 
participants, we combined the data in the analyses that relate the MEG results to color naming.  

 

MEG Acquisition and Preprocessing 
 
Participants were scanned in the Athinoula A. Martinos Imaging Center of the McGovern 
Institute for Brain Research at the Massachusetts Institute of Technology (MIT) over the course 
of 2 sessions, on an Elekta Triux system (306-channel probe unit consisting of 102 sensor 
triplets, with 204 planar gradiometer sensors, and 102 magnetometer sensors). Stimuli were 
back-projected onto a 44” screen using a SXGA+ 10000 Panasonic DLP Projector, Model No. PT-
D10000U (50/60Hz, 120V). Data was recorded at a sampling rate of 1000Hz, filtered between 
0.03-330Hz. Head location was recorded by means of 5 head position indicator (HPI) coils 
placed across the forehead and behind the ears. Before the MEG experiment began, 3 
anatomical landmarks (bilateral preauricular points and the nasion) were registered with 
respect to the HPI coils, using a 3D digitizer (Fastrak, Polhemus, Colchester, Vermont, USA). 
During recording, pupil diameter and eye position data were collected simultaneously using an 
Eyelink 1000 Plus eye tracker (SR Research, Ontario, Canada) with fiber optic camera. 
 
Once collected, raw data was preprocessed to offset head movements and reduce noise by 
means of spatiotemporal filters (Taulu et al, 2004; Taulu & Simola, 2006), with Maxfilter 
software (Elekta, Stockholm). Default parameters were used: harmonic expansion origin in 
head frame = [0 0 40] mm; expansion limit for internal multipole base = 8; expansion limit for 
external multipole base = 3; bad channels omitted from harmonic expansions = 7 s.d. above 
average; temporal correlation limit = 0.98; buffer length = 10 s). In this process, a spatial filter 
was applied to separate the signal data from noise sources occurring outside the helmet, then a 
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temporal filter was applied to exclude any signal data highly correlated with noise data over 
time. Following this, Brainstorm software (Tadel et al., 2011) was used to extract the peri-
stimulus MEG data for each trial (-200 to 600 ms around stimulus onset) and to remove the 
baseline mean. 
 
MEG Participants and Task 
 
All participants (N=18, 11 female, age 19-37 years) had normal or corrected-to-normal vision, 
were right handed, and spoke English as a first language. One participant was an author and 
thus not naïve to the purpose of the study. During participants’ first session, they were 
screened for colorblindness using Ishihara plates; they also completed a version of a color-
naming task as part of a separate study. After this task, participants completed a 100-trial 
practice session of the 1-back task that would be used in the MEG experimental sessions. Once 
this was complete, participants were asked if they had any questions about the task or the 
experiment; eye-tracking calibration was performed; and MEG data collection began. 
 
During stimulus presentation, participants were instructed to fixate at the center of the screen. 
Spirals were presented subtending 10° of visual angle, for 116 ms, centered on the fixation 
point, which was a white circle that appeared during inter-trial intervals (ITIs, 1s).  In addition to 
the spirals, the words “green” and “blue” were presented in white on the screen for the same 
duration, and probe trials to evaluate task performance were presented with a white “?”. 
Following each probe trial, which occurred every 3-5 stimulus trials (pseudorandomly 
interspersed, 24 per run), participants were instructed to report via button press if the two 
preceding spirals did or did not match in color (1-back hue task). Maximum response time was 
1.8s, but the trials advanced as soon as participants answered.  
 
Participants were encouraged to blink only during probe trials, as blinking generates large 
electrical artifacts picked up by the MEG. Each run comprised 100 stimulus presentations, and 
participants completed 25 runs per session over the course of approximately 1.5 hours. 
Between each run, participants were given a break to rest their eyes and speak with the 
researcher if necessary. Once 10s had elapsed, participants chose freely when to end their 
break by button-press. Over the course of both sessions, participants viewed each stimulus 500 
times. Data from all participants was used (no data was excluded because of poor behavioral 
performance). 
 
In addition to the 18 participants analyzed in the main thrust of this study, two pilot versions of 
the experiment were deployed. The first, more limited pilot experiment, was deployed with 2 
participants (1 female, age 20-30 years) to determine the behavioral task and decoding 
parameters. The data from these participants was used to choose the parameters for the 
decoding analysis used in the rest of the study (see below). The second pilot experiment was 
more extensive, involving four participants, four colors, and 500 stimulus presentations per 
stimulus. This experiment was used to evaluate the power for color decoding; the results of the 
second pilot experiment were presented at the Society for Neurosciences Annual meeting in 
2016 [12]. 
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All experimental procedures involving participants tested in laboratory were approved by the 
Wellesley College Institutional Review Boards, the Massachusetts Institute of Technology 
Committee on the Use of Humans as Experimental Subjects, and the National Institutes of 
Health Intramural Institute Clinical Research Review Committee.  
 
MEG Processing and Decoding Analyses  
 
Brainstorm software was used to process MEG data. Trials were discarded if they contained 
eyeblink artifacts, or contained out-of-range activity in any of the sensors (0.1-8000 fT). Three 
participants exhibited sensor activity consistently out of range, so this metric was not applied to 
their data as it was not a good marker of abnormal trials. After excluding bad trials, there were 
at least 375 good trials for every stimulus type for every participant. Data were subsampled as 
needed to ensure the same number of trials per condition were used in the analysis. 
 
Decoding was performed using the Neural Decoding Toolbox (NDT) [48]. We used the maximum 
correlation coefficient classifier in the NDT to train classifiers to associate patterns of MEG 
activity across the sensors with the visual stimuli presented. This classifier computes the mean 
population vector for sets of trials belonging to each class in the training dataand calculates the 
Pearson’s correlation coefficient between those vectors and the test points. The class with the 
highest correlation is the classifier’s prediction. The main conclusions were replicated when 
using linear support vector machine classifiers. The classifiers were tested using held-out data—
i.e. data that was not used in training. Data from both magnetometers and gradiometers were 
used in the analysis, and data for each sensor was averaged into 5-ms non-overlapping bins 
from 200 ms before stimulus onset to 600 ms after stimulus onset. 
 
Custom MATLAB code was used to format MEG data preprocessed in Brainstorm for use in the 
NDT and to combine the two data-collection sessions for each participant. Decoding was 
performed independently for each participant, and at each time point. For each decoding 
problem, at each timepoint (a 5 ms time bin), the 375 trials for each stimulus condition were 
divided into 5 sets of 75 trials. Within each set, the 75 trials were averaged together. This 
process generated 5 cross-validation splits: the classifier was trained on four of these sets, and 
tested on one of them, and the procedure was repeated five times so that each set was the test 
set once. This entire procedure was repeated 50 times, and decoding accuracies reported are 
the average accuracies across these 50 decoding “runs”. This procedure ensured that the same 
data was never used for both training and testing, and it also ensured the same number of trials 
was used for every decoding problem. The details of the cross-validation procedure, such as the 
number of cross-validation splits, were determined during the pilot experiments to be those 
that yielded a high signal-to-noise ratio (SNR) and high decoding accuracy in both participants 
on the stimulus identity problem.  

 
On each run, both the training and test data were z-scored using the mean and standard 

deviation over all time of the training data. Following others, we adopted a de-noising method 
that involved selecting for analysis data from the most informative sensors [49]; we chose the 
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25 sensors in the training data whose activity co-varied most significantly with the training 
labels. These sensors were identified as those with the lowest p-values from an F-test 
generated through an analysis of variance (ANOVA); the same sensors were then used for both 
training and testing. The sensor selection was specific for each participant. The sensors chosen 
tended to be at the back of the head. Analyses using all channels, rather than selecting only 25, 
yielded similar results.   

 
Chance classification performance was 1/8 for all analyses except when comparing 

classification performance using data elicited by hues versus words, in which case classification 
was binary (chance equal to 50%). For each problem, a classifier was trained and tested in 5ms 
bins from time t=200ms before stimulus onset to t=600ms after stimulus onset. The classifiers’ 
performances were generated through a bootstrapping procedure. First, the problems were 
evaluated for each participant (resulting in 18 independent decoding time courses). Then, for 
each unique problem, we averaged the decoding time courses across participants. The gray 
shading in Figure 2a shows the standard error of the bootstrap mean. Significant decoding was 
defined as time bins in which decoding accuracy was above chance for five consecutive 5ms 
time bins. For the cross temporal generalization analysis, each classifier trained using data 
obtained at each time bin was tested using data obtained at every 5 ms time bin from -200 to 
600 ms after stimulus onset creating a 2-dimensional matrix of decoding results.  

 
Decoding analyses were also performed using eye tracking data collected during the 

MEG sessions. Two analyses were conducted: one using pupil diameter and one using eye 
position (Figure S2). All parameters were identical to the MEG analysis except for the number 
of input features to the classifier. Rather than MEG sensors, the classifier used either the 
diameters of the two pupils (two features) or the xy coordinates of the positions of the two 
eyes (four features). 

 
Representational Similarity Analysis and Multidimensional Scaling Analysis  
 
To examine the similarities between neural representations of colors, we obtained the results 
using ‘forced-error’ classifier tests. In this analysis, classifiers were trained and tested as in the 
other analyses, but the classifier was prevented from choosing the true stimulus. For each 
problem, the classifier returned the stimulus that elicited the most similar pattern of neural 
activity as elicited by the correct stimulus. This approach was designed not only to yield more 
data about dissimilarities between stimuli (which could be obtained just by analyzing the errors 
in the classifier), but also because it is directly analogous to the asymmetric matching task used 
in behavioral experiments aimed at recovering perceptual similarity among different colors. The 
dissimilarity matrix was then used in multidimensional scaling analysis, to uncover the 
geometry of the neural representation projected onto two dimensions. First, we constructed a 
confusion matrix of the errors the classifier made for each stimulus, for each individual 
participant (each column of which was normalized to sum to 1). Then, this matrix was averaged 
across the diagonal (for instance the instances when light pink was mistaken for light orange 
were averaged with the instances when light orange was mistaken for light pink) and 
normalized within each subject so that the largest percentage was equal to 1 and the smallest 
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equal to 0. Finally, these values (measures of confusion) were subtracted from 1 to yield a 
representational dissimilarity matrix for each participant. These RDMs were averaged together 
and normalized 0-1.  
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Figures and legends 

 

Figure 1. Specification of the stimulus colors, and how they are named.  

a, Stimuli were colored spirals surrounded by neutral adapting gray; the colors defined within a color 
space defined by the cardinal cone-opponent mechanisms, indicated by the right panel [19, 20]. The left 
panels show the cone and luminance contrast of the stimuli, relative to the gray adapting background. b, 
Left: Configuration of the stimuli; spirals subtended 10° of visual angle, and varied in hue (rows) and 
luminance (columns), as defined in DKL color space. Center: Word clouds, reflecting the distribution of 
color names assigned to the stimuli. Font size reflects how many subjects assigned that word to the 
stimulus (N=70). The smallest words (ex: ‘lavender’) represent just one response; the largest words 
(‘green’ and ‘blue’ in dark hues column) represent 66 responses. Subjects were mTurk volunteers (N=52) 
and the participants in the main MEG experiment (N=18). Right: Concordance, measuring how similar 
responses were within hues and across luminance sets (N=70). The size of the pie chart reflects the 
proportion of participants who used the same word across luminance sets, and the content of chart 
indicates which words were used for both luminance sets. Almost all people used “green” for both high 
and low luminance contrast versions of that hue (large pie for hue 225°), whereas relatively few people 
used the same term for both high and low luminance contrast versions of the yellow/brown/ochre 
stimulus (small pie for color 315°), and among these people, several terms were used (many pie slices 
for 315°). The same term was used for both versions of the given hue (“concordance” across luminance 
sets) for: pink= 55.6% of participants; Blue=85.7%; Green=88.6%; Orange=38.6%. The most commonly 
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used term for hue 135° (blue) at the light|dark luminance level was used by 87%|94% of participants; 
the most commonly used term for hue 225° (green) was used by 90%|94% of participants. For hue 45° 
(pink), there was lower consensus (81%|50%) and lower concordance (44% used pink for light and dark 
versions; 11% used purple). For hue 315° (orange), there was no clear consensus: the most commonly 
used term, orange, was only used by 30% of participants (at both luminance levels). There was no 
difference in the level of concordance between blue and green (chi-square test of proportions, p=0.61; 
Bonferroni alpha = 0.0083); similarly, there was no difference in concordance between pink and orange 
(p=0.04; Bonferroni alpha = 0.0083).  
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Figure 2. Decoding stimulus color from MEG data 

a, Average classification accuracies across time for decoding the color of the 8 spirals, averaged over all 
8 classification problems (N=18 participants; chance = 1/8; shading shows 95% C.I.). Step at the bottom 
shows the stimulus duration. The classifier was trained and tested for each subject individually using the 
25 MEG sensors most selective for stimulus class on ANOVA. 0ms on the x-axis represents stimulus 
onset; the classifier was trained and tested in bins of 5ms. The horizontal line shows the times at which 
the classifier guessed the stimulus color above chance (bootstrapped 1000 times and FDR-corrected, 
p<0.05). b, Average classification accuracy for decoding each of the 8 colors (line color corresponds to 
stimulus color); other conventions as for panel (a). c, The peak decoding accuracy of each color, plotted 
in DKL hue angle space (b, blue; p, pink; o, orange; g, green). Color accuracies were sampled from each 
subject at their overall individual peak decoding time, and then averaged across subjects. Radius = 
averaged accuracy across individual classifiers. Error bars = SEM. d, Classification accuracy for light 
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colors versus dark colors. Values and error bars as in (c); dark versions of cool colors showed higher 
classification accuracy compared to light versions, and light versions of warm colors showed higher 
classification accuracy compared to dark versions (repeated measures two-way ANOVA, interaction 
between wamrth and luminance, p=0.0116). e, Representational dissimilarity matrix (RDM) showing the 
classification forced error, at each subject’s individual peak decoding time, averaged across subjects. The 
heatmap shows the probability, normalized by column to sum to 1, that the classifier would assign a 
given spiral identity (vertical axis) when tested with data obtained by presenting a given spiral 
(horizontal axis). The classifier was trained in the same manner as in (a), but forced to guess the most 
likely spiral besides the correct option. White on the color bar = chance level. Asterisks indicate that the 
value in a box is either significantly above chance (red boxes) or below chance (blue boxes) 
(bootstrapped 95% confidence intervals; n=1000).  f, RDM distances between warm colors and cool 
colors within each luminance level (p = 0.02).  
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Figure 3. Multidimensional scaling (MDS) representation of the similarity relationships among colors 
determined by MEG.  

a, Six MDS plots sampled from different time points relative to the time point of peak decoding accuracy 
0 ms corresponds to peak decoding of stimulus onset; 110 ms corresponds to peak decoding of stimulus 
cessation; the vertical dashed line separates MDS plots corresponding to onset from those 
corresponding to stimulus cessation. Symbol color corresponds to the color of the stimulus, and the light 
versions are outlined in black to further distinguish the data points. Shorter distances correspond to 
higher levels of classification confusion (higher similarity). The area of each line is directly proportional 
to the dissimilarity in the representation of the colors joined by the line. Hues are clearly separated by 
luminance contrast (light colors are at the top in each panel); and arranged by hue in a sequence, from 
left to right, of blue, orange (or pink), pink (or orange), green. Fit of MDS for each panel, left to right: 
Pearson’s ; R=0.84, p=2x10-8; R=0.84, p=3x10-8; R=0.85, p=2x10-8; R=0.91, p=1x10-11; R=0.94, p=9x10-14; 
R=0.95, p=7x10-15. b, Quantification of the patterns of MEG activity for warm colors within one 
luminance level were more similar than patterns of MEG activity for cool colors within one luminance 
level. Shading shows the 95% C.I. Similarity was determined using the representational dissimilarity 
matricies at each time point relative to peak decoding accuracy (the RDM corresponding to the peak 
decoding time is shown in Figure 2e). At peak of the curve, p=0.014; total number of significant 5 ms 
bins: 33; longest span of significance: 19 bins (25 ms to  120 ms); time point of maximum, - 35 ms. c, 
Quantification of the observation that patterns of MEG activity for hues of a given luminance level were, 
on average, more similar than patterns of activity for hues across luminance levels. At peak of the curve, 
p=5x10-4; total number of significant 5 ms bins: 71; longest span of significance: 60 bins (-60 ms to  240 
ms); time point of maximum, -120 ms. other conventions as for panel (b). d, Quantification of 
observation that patterns of MEG activity elicited by warm colors across luminance levels were more 
dissimilar than those patterns elicited by cool colors across luminance levels. At peak of the curve, 
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p=0.002; total number of significant 5 ms bins: 5; longest span of significance: 4 bins (-10 ms to  10 ms); 
time point of maximum, 0 ms. other conventions as for panel (b). 

 

 

 

 

Figure 4. Spiral color cannot be decoded from MEG responses elicited by printed color names. 

a, Average accuracy of maxCorr classifiers (N=18 participants) decoding color term identity; the accuracy 
is likely attributed to slightly different retinotopic patterns of activation elicited by the two words. 
Plotting conventions as in Figure 2a. b, Cross-temporal decoding. Left: Average accuracy of maxCorr 
classifiers trained on color term data and tested on green and blue spiral data (accuracies averaged 
across both luminance levels of spirals). At every 5ms bin of the training data, a classifier was trained, 
and accuracy (color on the heatmap) was measured at every 5ms bin of test data. Right: maxCorr 
classifiers trained on green and blue spiral data and tested on color term data; same conventions as left. 

 

 

 

 

 

 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245324doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245324


 

Figure 5. Cross-temporal generalization of color identity. 

a, Mean classification accuracy across participants (N=18) in classifying the eight color spirals. In addition 
to the strong classification accuracy along the diagonal, the plot shows faint bands of significant 
classification accuracy parallel to the diagonal (arrowheads). b, Plot showing time points of significant 
decoding, estimated by bootstrapping (p<0.05). c, Analysis of the spatial pattern in panel (a) to 
determine the temporal profile of the parallel bands. We performed a 2-D autocorrelation analysis on 
cross-temporal decoding accuracies by shifting the cross-temporal decoding map horizontally along the 
test-time axis and restricting the train-time axis (2 ms bins; 275 ms and 600 ms windows for the train-
time and test-time axes respectively). We computed the 2-D Pearson's correlation coefficient of the 
original map with each of the shifted maps and performed a Fourier analysis on the second derivatives 
of the 2-D correlation coefficients. The plot shows the second derivatives with a sine wave that has a 
frequency equal to the peak of the single-sided amplitude spectrum. The inset shows the single sided 
amplitude spectrum of the second derivative time series; shading shows the 99.95% CI of the scrambled 
second derivatives plot. 
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