
with X’s bootstrap distribution. The larger of the two p values were reported. Bold indicates 
statistical significance after FDR correction (q < 0.05). 
 

 
 
Figure S4. Meta-matching outperformed classical kernel ridge regression (KRR) 
baseline. (A) Prediction performance (coefficient of determination; COD) averaged across 34 
non-brain-imaging phenotypes in the test meta-set (N = 10,000 – K). The K participants were 
used to train and tune the models (Figure 3). Boxplots represent variability across 100 
random repeats of K participants (Figure 2A). Whiskers represent 1.5 inter-quartile range. (B) 
Statistical difference between the prediction performance (COD) of classical (KRR) baseline 
and meta-matching algorithms. “n.s.” indicates that difference was not statistically significant 
after multiple comparisons correction (FDR q < 0.05). "*" indicates p < 0.05 and statistical 
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significance after multiple comparisons correction (FDR q < 0.05). "**" indicates p < 0.001 
and statistical significance after multiple comparisons correction (FDR q < 0.05). "***" 
indicates p < 0.00001 and statistical significance after multiple comparisons correction (FDR 
q < 0.05). Green indicates that meta-matching outperforms classical (KRR) baseline. Red 
indicates that classical (KRR) baseline outperforms meta-matching. Observe that all 
algorithms performed poorly (COD ≤ 0) when there were less than 50 participants (K < 50), 
suggesting chance or worse than chance prediction for all algorithms. 
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Figure S5. Meta-matching outperformed classical kernel ridge regression (KRR) 
baseline. (A) Prediction performance (coefficient of determination; COD) with different 
number of participants. This plot is the same as Figure S4A, but the boxplots now show the 
bootstrap distribution of each approach based on 1000 bootstrapped samples. The triangles 
show the average performance (COD) of 34 non-brain-imaging phenotypes using the original 
100 random repeats (Figure S4A). We observe that the mean of the bootstrap distributions 
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matches the mean of the original experiments (Figure S4A) quite well. Bootstrapping could 
not be performed for advanced meta-matching (finetune) because 1000 bootstrap samples 
would have required 60 days of compute time. (B) Statistical differences among the different 
algorithms. For rows comparing advanced meta-matching (finetune) and another algorithm 
X, p values were derived by comparing the mean of advanced meta-matching (finetune) with 
algorithm X’s bootstrap distribution (assuming Gaussanity). For other rows comparing 
algorithms X and Y, bootstrap distributions were available for both X and Y. Therefore, one 
p value was obtained by comparing the original mean of X with Y’s bootstrap distribution 
and another p value was obtained by comparing the original mean of Y with X’s bootstrap 
distribution. The larger of the two p values were reported. Bold indicates statistical 
significance after FDR correction (q < 0.05). 
 
 

 
 
Figure S6. Examples of non-brain-imaging phenotypic prediction performance in the 
test meta-set in the case of 100-shot learning. Here, prediction performance was measured 
using coefficient of determination (COD). "Alcohol 3" (average weekly beer plus cider 
intake) was most frequently matched to "Bone C3" (bone-densitometry of heel principal 
component 3). "Digit-o C1" (symbol digit substitution online principal component 1) was 
most frequently matched to "Matrix C1" (matrix pattern completion principal component 1). 
"Breath C1" (spirometry principal component 1) was most frequently matched to "Grip C1" 
(hand grip strength principal component 1). "Time drive" (Time spent driving per day) was 
most frequently matched to "BP eye C3" (blood pressure & eye measures principal 
component 3). 
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Figure S7. Prediction improvements were driven by correlations between training and 
test meta-set phenotypes. Vertical axis shows the prediction improvement of advanced 
meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 
scenario. Prediction performance was measured using coefficient of determination (COD). 
Each dot represents a test meta-set phenotype. Horizontal axis shows each test phenotype’s 
top absolute Pearson’s correlation with phentoypes in the training meta-set. Test phenotypes 
with stronger correlations with at least one training phenotype led to greater prediction 
improvement with meta-matching.  
 

 
Figure S8. Phenotypes better predicted by classical kernel ridge regression benefited 
more from meta-matching. Vertical axis shows the prediction improvement of advanced 
meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 
scenario. Prediction performance was measured using Pearson’s correlation. Each dot 
represents a test meta-set phenotype. Horizontal axis shows the prediction performance with 
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the classical (KRR) baseline under the 100-shot scenario. Similar conclusions were obtained 
with coefficient of determination (Figure S9).  
 

 
Figure S9. Phenotypes better predicted by classical kernel ridge regression benefited 
more from meta-matching. Vertical axis shows the prediction improvement of advanced 
meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 
scenario. Prediction performance was measured using coefficient of determination (COD). 
Each dot represents a test meta-set phenotype. Horizontal axis shows the prediction 
performance with the classical (KRR) baseline under the 100-shot scenario.  
 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245373doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245373
http://creativecommons.org/licenses/by/4.0/


Reference 
Eriksson, D., Bindel, D., Shoemaker, C.A., 2019. pysot: Surrogate Optimization Toolbox [WWW 

Document]. GitHub. URL https://github.com/dme65/pySOT 

Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A., 2017. Efficient hyperparameter optimization of 

deep learning algorithms using deterministic RBF surrogates, in: 31st AAAI Conference on 

Artificial Intelligence, AAAI 2017. pp. 822–829. 

Paszke, A., Chanan, G., Lin, Z., Gross, S., Yang, E., Antiga, L., Devito, Z., 2017. Automatic 

differentiation in PyTorch. Adv. Neural Inf. Process. Syst. 30 1–4. 

Regis, R.G., Shoemaker, C.A., 2013. Combining radial basis function surrogates and dynamic 

coordinate search in high-dimensional expensive black-box optimization. Eng. Optim. 45, 529–

555. https://doi.org/10.1080/0305215X.2012.687731 

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245373doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245373
http://creativecommons.org/licenses/by/4.0/

