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Abstract

We propose PairGP, a non-stationary Gaussian process method to compare gene expression time-
series across several conditions that can account for paired longitudinal study designs and can identify
groups of conditions that have different gene expression dynamics. We demonstrate the method on both
simulated data and previously unpublished RNA-seq time-series with five conditions. The results show
the advantage of modeling the pairing effect to better identify groups of conditions with different dy-
namics. The implementations is available at https://github.com/michelevantini/PairGP

1 Introduction

Gene expression time-series studies have become
popular as they can reveal dynamics of transcrip-
tional processes. These studies typically use longi-
tudinal experimental designs where repeated mea-
surements (over time) of each cell sample are col-
lected. A common study design involves compar-
isons between treatments, or conditions, and the
goal is to identify groups of conditions that have dif-
ferent gene expression dynamics. Further, to reduce
variability between conditions and to increase sta-
tistical power, biological samples in different con-
ditions are typically matched, resulting in paired
longitudinal designs. Thus, it is important to take
the paired design into account in the data analy-
sis in order to reveal the true differences between
different treatments.

Standard methods for longitudinal data anal-
ysis include linear mixed effect (LME) models.
A number of non-linear, non-stationary and non-
parametric methods for gene expression time-series
have been proposed using Gaussian processes (GP)
(see Supplementary materials for related research).

Recently, we have developed GP based methods
to implement Bayesian non-parametrics for longi-
tudinal studies [1, 2] that can also be applied to
data from paired longitudinal designs. However,
posterior sampling for such models has a higher
computational cost and does not scale efficiently
to genome-wide studies. We propose PairGP, a GP
method for paired, multi-condition longitudinal de-
signs. The method is tested on simulated data, lon-
gitudinal gene expression data involving two treat-
ments, and a previously unpublished longitudinal
RNA-seq data from five treatments.

2 Methods

Each measured gene expression time-series is mod-
eled as a combination of three components; 1) the
response model, 2) the pairing model, and 3) un-
correlated random noise fluctuations. The response
model is inferred from the data, so that all treat-
ments that produce similar responses share a com-
mon response model. The pairing model is shared
by all measurements coming from the same biolog-

∗corresponding author

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.245621doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245621


ical replicate or batch, and models the deviation
from the response model. To enforce that the pair-
ing model does not confound the response model,
the sum of all the pairing model components is con-
strained to zero, as explained below. The model
considers each gene separately. The measured gene
expression x is transformed as y = log(x + 1) so
that it can be more accurately modeled by a normal
distribution. Most gene expression experiments
are “hit-and-run”, where the changes are rapid in
the beginning and then slow down, thus, making
it a non-stationary process. To model the non-
stationarity, the user is given the choice to trans-
form the wall-clock time t̃ as t = ω(t̃) = log(1 + t̃).
This transformation was used in all analyses re-
ported below.

The standardized measurements of treatment
(condition) c ∈ {1, . . . , C} and pairing p ∈
{1, . . . , P} is modeled as

ycp(t) = fr(t) + fp(t) + ε,

where ε ∼ N(0, σ2
ε ). Each response effect fr

is a GP with the exponentiated quadratic (EQ)
kernel kr(t, t

′) = σ2
r exp[− 1

2
`−2
r (t − t′)2], where

σ2
r is the variance and `r the length scale of re-

sponse effect r. For each pairing p, the pairing
effect fp is modeled with a centered EQ kernel
kρ((p, t), (p, t

′)) = σ2
ρ exp[− 1

2
`−2
ρ (t− t′)2], where σ2

ρ

is the common variance and `ρ the common length
scale of the pairing effect. The centered EQ ker-
nel has negative covariance between the pairing ef-
fects fp and fp′ (p 6= p′) to force their sum to zero,
i.e, kρ((p, t), (p

′, t′)) = − 1
P−1

σ2
ρ exp[− 1

2
`−2
ρ (t− t′)2]

when p 6= p′ [2]. Note that the response and pair-
ing GPs are non-stationary as the logarithmic time
transformation corresponds to input-warped GPs
with kernel k(t̃, t̃′) = σ2 exp[− 1

2
`−2(ω(t̃)− ω(t̃′))2].

Prior distributions of hyperparameters used to an-
alyze real data are described in Suppl. Material.

For each gene, all the partitionings of the treat-
ments are modeled, and the one with the largest
marginal likelihood (type-II) is selected as the cor-
rect response model. For example, an experiment
with three treatments c1, c2 and c3 evaluates five
different partitionings (models) for each gene: 1) all
the three treatments have a similar response, and
there is only one response model: r1 = {c1, c2, c3};
2) treatment c1 has a different response compared
to c2 and c3, and the two response models are
r1 = {c1} and r2 = {c2, c3}; 3) same as (2)
but with treatment c2 singled out, r1 = {c2} and
r2 = {c1, c3}; 4) same as (2) but with treatment
c3 singled out, r1 = {c3} and r2 = {c1, c2}}; and
5) all three treatments produce different responses,
r1 = {c1}, r2 = {c2}, and r3 = {c3}.

The above method is implemented using the

GPy package [3]. Instructions for the usage are
available on the github page.

3 Results

We first tested our method on simulated time-series
data with different number of treatments and a
varying amount of pairing effect size (see Suppl.
Material for simulation details). Comparing our
model to an otherwise equal GP model but with-
out the pairing effect shows that modeling the pair-
ing component improves the identification of cor-
rect partitioning (Fig. 1, Suppl. Fig. 2).

Next, we applied our method to microarray-
based longitudinal gene expression data measured
from activated CD4+ human T cells (Th0) and cells
differentiated towards T helper 2 (Th2) cell type
with three paired replicates [4]. We identified genes
that respond differentially between Th0 and Th2
during the first 72 hours of differentiation (Suppl.
Figs. 3 and 4, Suppl. Table 1).

We also applied our method to previously un-
published, longitudinal RNA-seq data measured
from CD4+ mouse T cells that were either acti-
vated or differentiating towards Th17 lineage. Ex-
periments include six cell cultures and five different
treatments: two treatments (Th0, Th17) applied
for the first three cultures and three treatments
(Th17+IL1b, Th17+IL21, Th17+IL1b+IL21) for
the last three cultures, resulting in two groups of
three paired replicates (see Suppl. Material). Our
model identifies genes that have different dynam-
ics in different subsets of the five treatments. One
example gene (Fasl) is shown in Fig. 1 and more
examples are shown in Suppl. Figs. 5-6. Suppl. Ta-
ble 2 summarizes how the pairing effect affects the
proportion of genes detected for each partition.

4 Conclusions

We have implemented a GP-based model for anal-
ysis of longitudinal gene expression data that ac-
counts for paired multi-condition study designs.
Results demonstrate that our model improves the
detection of correct partitioning of different condi-
tions.
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Figure 1: (a) Accuracy of the model inference for three treatments without pairing effect (base model) and
our model with pairing effect. The accuracies (y-axis) are computed with simulated data where pairing effect
(x-axis) ranges from zero (no pairing effect) to substantial (0.5). The correct partitioning of treatments for
each row is indicated on left. (b) Result of the pairing effect model on the gene Fasl. Different colors indicate
different subsets of the identified optimal partitioning and different markers represent data points coming
from different replicates. (c) The pairing effect learnt from the data.
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In this supplementary material we present the data sets that have been used in this study, details of the
data simulation, some implementation details of our Gaussian process method and supplementary results.

1 Data

The methods have been developed generically and can be applied to any data set that has the following
structure: the data set is made of N genes, C conditions (or treatments), P replicates and T time points
for each gene. Thus, we have C × P time-series of length T for each gene. We used simulated data and two
gene expression time-series data sets.

1.1 Simulated data

To simulate the data, we simulated one GP for each response and one GP for each replicate pair with a fixed
set of hyperparameters. To simulate the data for a specific condition c and for a specific replicate pair p we
use the following formulation

ycp(t) = fr(t) + fp(t) + ε,

where fr and fp are GPs
fr ∼ GP(0, kr(x, x

′))

fp ∼ GP(0, kp(x, x
′))

and ε ∼ N (0, σ2
ε ) is a random noise term. Recall that the C treatments (or conditions) result in R different

responses, depending on the partitioning (or model; see below), and each treatment c belong to one of the
R responses. We used the same T = 9 time points 0.5h, 1h, 2h, 4h, 6h, 12h, 24h, 48h, 72h, as with the real
data (see below). Once the kernel hyperparameters are fixed, then to simulate the data for a gene with C
conditions and P replicates we simulate one realization from fr for each response effect, and one realization
from fp for each replicate pair and we combine them together with additive noise as shown above. As a
result, we obtain C ×R× T time points for each simulated gene.

In our settings, we used the EQ kernels with lengthscale lr = 1.0 and variance σ2
r = 1.0 for the response

kernel kr, and lp = 1.0 and σ2
p ∈ [0.001, 0.01, 0.05, 0.1, 0.3, 0.5] for the pairing effect kernel kp. If the

individuals that are participating to the study are, for example, studied in a controlled environment, such as
laboratory mice, then the variation between individuals is expected to be smaller compared to studies done
with humans. Therefore, we decided to simulate data with different levels of pairing effect variance, aiming
to cover several possible values. Additionally, for the random noise variance σ2

ε we used the set of values
[0.1, 0.2, 0.4]. Similarly as for the pairing effect variance, the noise variance can also vary depending on the
experiments. Thus, we want to assess the performance of the pairing effect model on simulated data as a
function of the pairing effect variance and the noise variance, and compare the results to those obtained with
the base model on the same data. We simulated gene expression time-series data with 3 and 4 conditions
and 3 replicates with all the combinations of parameter values described above.

To evaluate the accuracy on simulated data we generated several simulated data sets, which is composed
of genes generated according to each of the possible partition of the conditions. In particular, we used all
the combinations of pairing effect variance, noise variance and number of conditions mentioned above to
analyse how the pairing effect model behaves under several different settings. A total of 1000 genes for each
partition have been simulated in each data set. However, some partitions of the conditions are de facto
the same, for example, simulating data as {{c1}, {c2, c3}} or as {{c1, c2}, {c3}} is equivalent. Therefore,
we simulate data for 3 partitions for a data set with 3 conditions, and 5 partitions for a data set with 4
conditions. Importantly, however, the model during the inference process can still choose between all the
possible partitions of the condition set.
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1.2 Human T-helper cell differentiation data

The first data set contains gene expression time-series data from human CD4+ T cells measured using
microarrays originally published in [1]. We use data from two treatments measured at time points 0.5h, 1h,
2h, 4h, 6h, 12h, 24h, 48h, 72h. Th0 condition (or treatment) corresponds to activation of naive CD4+ T
cells, and Th2 corresponds to activation and differentiation of naive CD4+ cells towards T helper 2 (Th2)
lineage. Both conditions (across all timepoints) are measured from three cell cultures that correspond to
three biological replicates that are paired across the conditions. Microarray data is RMA preprocessed as
in [1] and further standardized.

1.3 Mouse T-helper cell differentiation data

The second data set has been collected from laboratory mice, and it has a total of five treatments and six
cell cultures (i.e., biological replicates). The experimental details are as in [2]. Th0 treatment corresponds to
activation of naive T cells. The other four treatments are Th17, Th17+IL1b, Th17+IL21, Th17+IL1b+IL21.
Th17 corresponds to activation and differentiation of naive CD4+ cells towards T helper 17 (Th17) lineage.
Th17+IL1b, Th17+IL21, Th17+IL1b+IL21 treatments corresponds to simultaneous activation and differen-
tiation of naive CD4+ cells towards Th17 lineage and treatment with interleukin 1 beta (IL-1β), interleukin
21 (IL-21) and combination of IL-1β and IL-21 (with concentration 20 ng/ml) (R&D Systems), respectively.
Experimental data for the treatments Th0 and Th17 have been measured from the first three replicates (cell
cultures), using a paired design. Experimental data for the other three treatments have been measured from
the other three replicates (cell cultures), again using a paired design. Cells are sampled for gene expression
analysis at nine time points: 0.5h, 1h, 2h, 4h, 6h, 12h, 24h, 48h, 72h. Sequence reads were mapped with
TopHat to mouse mm9 genome as well as to Ensembl transcriptome. After the alignment, the number of
reads that mapped to each gene were summarized using HTSEQ-count tool. The raw RNA-seq data used
in this manuscript will be made available upon publication via Gene Expression Omnibus (GEO).

1.4 Data standardization

After quantification of gene expression count data from the RNA-seq data, the expression data is further
log-transformed. Microarray and RNA-seq data are standardized before analysis.

2 Methods

2.1 Previous methods

Gene expression microarray and RNA-seq techniques allow quantitative, genome-wide analysis of gene ex-
pression levels. A number of software tools are available for statistical analysis of gene expression data
measured by microarrays (e.g. LIMMA [3]) and RNA-seq (e.g. DEseq [4] and edgeR [5]). These tools rely
on linear and generalized linear models, use empirical Bayes to share information between genes, allow
modeling complex experimental designs, and support testing a variety of hypothesis, but are not designed
for longitudinal studies that involve repeated measurements of individuals over time. Standard methods
for longitudinal data analysis include linear and generalized linear mixed effect (LME) models, as imple-
mented in e.g. lme4 package [6]. Bayesian alternatives for modeling gene expression time-series data have
been proposed e.g. in [7, 8] that also support non-Gaussian likelihood models. Methods of gene expression
time-series data analysis include also lmms [9] and ImpulseDE2 [10]. The former is based on linear mixed
models and ANOVA log likelihood ratio tests, while the latter is based on an impulse model as a continuous
representation of temporal responses.

A number of non-linear, non-stationary and non-parametric methods for gene expression time series have
been proposed using Gaussian processes (GP). Yuan was among the first who used GPs to model gene
expression time course data [11]. A number of improved methods have been proposed, such as methods
that can account for outliers [12], a method for analyzing multiple conditions [13], methods that identify
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time intervals of differential expression [12, 14], and methods for accounting time delays between replicates
and non-Gaussian likelihood models [15]. However, none of these tools can account for paired experimental
designs that are commonly used in biological studies. Similar ideas have been proposed in the context
of GP-based clustering of time-series data [16], where authors propose a hierarchical GP regression model.
Nonetheless, the effects in [16] are not across replicate pairs but, instead, a different replicate effect is learned
for each individual condition. To that end, Spies et al. [17] provide an extensive review of a large selection
of methods proposed in the literature for time course data.

Recently, we have developed GP based methods to implement Bayesian non-parametrics for longitudinal
studies [18, 19] that can also be applied to data from paired longitudinal designs. However, posterior
sampling for such models has high computational cost. We propose a non-stationary GP method for paired,
multi-condition longitudinal designs that provides efficient analysis for genome-wide studies.

2.2 Model selection

Given that an experiment contains C treatments, they can be partitioned into BC different partitionings (or
models), where

BC =
C−1∑

k=0

(
C − 1

k

)
Bk (1)

is the Bell number. For example, Bell number for 3, 4 and 5 treatments are B3 = 5, B4 = 15, and B5 = 52.
For each partitioning, we evaluate the marginal likelihood

log p(y|X,θ) = −1

2
yT (KX,X + σ2

ε I)−1y − 1

2
log
∣∣(KX,X + σ2

ε I)
∣∣− n

2
log 2π, (2)

where y ∈ RC·P ·T contains the standardized gene expression data for a gene from all C treatments, P repli-
cates and T time points, X = (x1, · · · ,xC·P ·T ) contains the explanatory covariates (treatment c, replicate
p and time point t) for each measurement, θ is a vector containing all the kernel hyperparameters, KX,X

is the sum of the response covariance matrix and the pairing covariance matrix defined by the centered EQ
kernels, σ2

ε is the Gaussian random noise variance, and n = CPT . An example of the covariance matrix
KX,X and its components Kr and Kp are shown in Figures 1.

Figure 1: An example of the covariance matrices. (left) the combination of covariance matrices KX,X =
Kr + Kp without centering. (middle) the response covariance matrix Kr. (right) the pairing covariance
matrix Kp without centering. In this example, there are data from 5 different conditions and conditions are
assumed to be partitioned into 3 response models r1 = {c1}, r2 = {c2, c3} and r3 = {c4, c5}.

We call the model presented above the pairing effect model. To assess the performance of this model,
we compare it against the base model. The base model is obtained by optimizing one GP regression model
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for each possible subset of the condition set, and then combining the score of these models to have a score
for each partitioning of the condition set. In other words, the log marginal likelihood log p(y|X,θ) of the
models of different subsets is summed up to obtain the score for the partitioning that corresponds to the set
of considered subsets. In the base model, we use EQ kernels which model the response functions, but not
the pairing effect. In the pairing effect model we standardize the data of all the conditions together, while in
the base model we standardize separately the data of the sets of conditions that corresponds to the different
response functions.

2.3 Prior distribution for kernel hyperparameters

Typically, the hyperparameter optimization is done by maximizing the log marginal likelihood of the model.
If one has prior information about the hyperparameters, then in a hierarchical structure one can also impose
prior distribution on the hyperparameter, also called hyperprior. The kernel choice for the GP regression
models is the exponentiated quadratic (EQ) kernel. This means that we can define hyperpriors for the
variance σ2 and the lengthscale `. The assumption that we have on the data are essentially two:

• the lengthscale parameters for the response effect kernels should be relatively high as higher lengthscale
parameters imply smoother functions.

• The variance parameter for the pairing effect kernel must be relatively small; the magnitude of the
pairing effect cannot be as high as the response effect, but it should just represent slight variation
around condition mean that is associated with the different replicates. The only exception to this is
when a gene is silent. In this case, the variation in the gene expression over time is almost 0, thus the
variation due to the effect introduced by the different replicate can be potentially higher.

We use the log-Gaussian distribution log-Normal(µ, σ2) with µ = 0.5, σ2 = 0.5 as hyperprior distribution
for the lengthscale of the condition effect, exponential distribution Exp(λ) with λ = 2 for the pairing
effect variance and log-Gaussian distribution log-Normal(µ, σ2) with µ = 0, σ2 = 0.5 for the pairing effect
lengthscale. We do not use here any hyperprior distribution on the noise variance σ2

ε .

The optimization is done w.r.t. to the following objective function

arg max
θ

log p(y|X,θ) + log p(θ), (3)

where p(θ) represents the hyperpriors. We use the above prior distributions for kernel hyperparameters
when analyzing real microarray or RNA-seq data and optimize the above objective function. For simulated
data we ignore the hyperpriors and optimize the standard marginal likelihood, i.e., log p(y|X,θ). We use the
gradient-based method L-BFGS-B [20] for the optimization. The optimizer is run for a maximum of 1000
iterations with tolerance for deciding convergence equals to 1e−5.

3 Results

3.1 Simulated data
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Figure 2: Accuracy of inferring the correct partitioning of conditions as a function of the pairing effect vari-
ance and the noise variance, obtained through simulated data using (top) 3 conditions (bottom) 4 conditions.
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3.2 Microarray data

Partition Base Pairing

{{Th0, Th2}} 75.1 69.6
{{Th0}, {Th2}} 24.9 30.4

Table 1: Proportion of partitions obtained by fitting the base model and the pairing effect model on the
genes from the human T-helper cell gene expression data set. Thus, when taking into account the paired
design of the experiment, 30.4% of the genes were found to be differentially expressed between Th2 and Th0
cells, whereas 24.9% of genes were differentially expressed when only the response effect was modelled.
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Figure 3: (top) The result of the base model on the gene KCNG3 (probe set 1552897 a at). (middle) The
result of the pairing effect model on the gene KCNG3 and (bottom) the relative pairing effect learned from
the data.
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Figure 4: (top) The result of the base model on the gene PALLD (probe set 200897 s at). (middle) The
result of the pairing effect model on the gene PALLD and (bottom) the relative pairing effect learned from
the data.
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3.3 RNA-seq data

Partition Base Pairing

{{Th0}, {Th17, Th17+IL1b, Th17+IL21, Th17+IL1b+IL21}} 47.9 22.8
{{Th0, Th17, Th17+IL1b, Th17+IL21, Th17+IL1b+IL21}} 9.6 19.4

{{Th17}, {Th0, Th17+IL1b, Th17+IL21, Th17+IL1b+IL21}} 0.5 6.6
{{Th0}, {Th17}, {Th17+IL1b, Th17+IL21, Th17+IL1b+IL21}} 19.7 5.6
{{Th0, Th17}, {Th17+IL1b, Th17+IL21, Th17+IL1b+IL21}} 17.4 3.9

{{Th0}, {Th17, Th17+IL21}, {Th17+IL1b, Th17+IL1b+IL21}} 2.3 3.8
others 2.6 37.9

Table 2: Most frequent partitions obtained by fitting the base model and the pairing effect model on all the
genes from the T-helper cell RNA-seq data set. The percentage of the total amount of genes is reported.
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Figure 5: (top) The result of the base model on the gene Fbxo2. (middle) The result of the pairing effect
model on the gene Fbxo2 and (bottom) the relative pairing effect learnt from the data.
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Figure 6: (top) The result of the base model on the gene Scand1. (middle) The result of the pairing effect
model on the gene Scand1 and (bottom) the relative pairing effect learnt from the data.
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