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Abstract 
Metastatic cancer remains largely incurable due to an incomplete understanding of how cancer cells 
disseminate throughout the body. However, tools for probing metastatic dissemination and associated 
molecular changes at high resolution are lacking. Here we present multiplexed, activatable, clonal, and 
subclonal GESTALT (macsGESTALT), an inducible lineage recorder with concurrent single cell readout of 
transcriptional and phylogenetic information. By integrating multiple copies of combined static barcodes and 
evolving CRISPR/Cas9 barcodes, macsGESTALT enables clonal tracing and subclonal phylogenetic 
reconstruction, respectively. High barcode editing and recovery rates produce deep lineage reconstructions, 
densely annotated with transcriptomic information. Applying macsGESTALT to a mouse model of metastatic 
pancreatic cancer, we reconstruct dissemination of tens-of-thousands of single cancer cells representing 95 
clones and over 6,000 unique subclones across multiple distant sites, e.g. liver and lung metastases. 
Transcriptionally, cells exist along a continuum of epithelial-to-mesenchymal transition (EMT) in vivo with 
graded changes in associated signaling, metabolic, and regulatory processes. Lineage analysis reveals that 
from a majority of non-metastatic, highly epithelial clones, a single dominant clone that has progressed along 
EMT drives the majority of metastasis. Within this dominant clone a parallel process occurs, where a small 
number of aggressive subclones drive clonal outgrowth. By precisely mapping subclones along the EMT 
continuum, we find that size and dissemination gradually increase, peaking at late-hybrid EMT states but 
precipitously falling once subclones are highly mesenchymal. Late-hybrid EMT states are selected from a 
predominately epithelial ancestral pool, enabling rapid metastasis but also forcing extensive and continuous 
population bottlenecking. Notably, late-hybrid gene signatures are associated with decreased survival in 
human pancreatic cancer, while epithelial, early-hybrid, and highly mesenchymal states are not. Our findings 
illuminate features of metastasis and EMT with the potential for therapeutic exploitation. Ultimately, 
macsGESTALT provides a powerful, accessible tool for probing cancer and stem cell biology in vivo.  
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Introduction 
The vast majority of cancer deaths are due to metastasis, a process that transforms a localized, often curable 
lesion into a systemic, largely incurable disease1,2. Recurrent genetic drivers of metastasis have proven 
elusive, suggesting that other levels of dysregulation may principally drive the phenomenon1. Phylogenetic 
histories of cancer progression in individual patients, e.g. based on analyses of copy number variation (CNV) 
or somatic mutation, can inform how the cells comprising metastases are related to the primary tumor, as well 
as to one another3. However, such methods are restricted to natural genetic diversity and additionally fail to 
concomitantly capture the molecular phenotype of each profiled cell, limiting what can be learned about the 
cellular programs that underlie the development and relative success of metastases. 
 
Beginning with GESTALT4 (genome editing of synthetic target arrays for lineage tracing), a new paradigm for 
lineage tracing emerged, employing CRISPR/Cas9 to progressively and stochastically mutagenize a compact, 
genomically-integrated barcode, thereby producing patterns of edits that can be used to reconstruct 
phylogenetic relationships amongst cells5. Such methods can be readily coupled to single-cell RNA 
sequencing (scRNA-seq) to explicitly relate cell lineage histories with transcriptional states6–8. Until recently9,10, 
GESTALT and related methods have primarily been applied to early development, e.g. by injection of 
CRISPR/Cas9 reagents into zygotes and subsequent profiling of edited barcodes and single cell 
transcriptomes from the resulting multicellular organism. However, with refinement, CRISPR/Cas9-based 
lineage tracers have strong potential to be useful in other contexts, such as the study of somatic stem cell 
dynamics or cancer metastasis. 
 
An inducible lineage recorder with scRNA-seq readout 
To this end, we developed macsGESTALT (multiplexed, activatable, clonal and subclonal GESTALT), an 
integrated, inducible, and scalable method that can be easily adapted to any engineerable mammalian 
system to enable lineage tracing (Fig. 1a). Our approach consists of three components: 1) Each cell contains 
multiple unique barcode integrations. Barcodes are constitutively expressed within the 3' untranslated region 
(UTR) of a polyadenylated puromycin transcript, enabling sequencing via standard mRNA-based capture. 
Each barcode is a combination of a static 10bp sequence of random bases, used for clonal reconstruction, 
and a 250bp editable, evolving region composed of five CRISPR target sites, used for phylogenetic 
reconstruction (Fig. 1b). 2) The evolving region is targeted by an array of five guide RNAs (gRNAs), separated 
by transfer RNA (tRNA) spacers, under a single constitutive mammalian U6 promoter. Upon transcription, 
tRNAs are excised from the array by endogenous RNAse P and Z, releasing the individual gRNAs11. We 
selected this configuration from a screen of five different arrays, as it was compact and could easily be 
placed under different promoters as needed, yet drove robust barcode editing (Extended Data Fig. 1). 3) 
Cas9 expression and barcode editing are induced by doxycycline (dox) binding to a constitutive reverse 
tetracycline transactivator (rtTA) and activating a tetracycline responsive element (TRE) promoter12. Inducible 
barcode editing in vitro was robustly driven with limited leakiness, mostly confined to the first target site 
(Extended Data Fig. 2, 3). We also validated successful barcode recovery and clonal reconstruction in two 
independent experiments, each involving limiting dilution, expansion, and single cell sequencing (Extended 
Data Fig. 4).  
 
Aggressive clones are rare and transcriptionally divergent 
We next set out to investigate cancer metastasis at high resolution by combining macsGESTALT and scRNA-
seq6,8. We focused on pancreatic ductal adenocarcinoma (PDAC), which has a 5-year survival rate of 9%, the 
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lowest of any major cancer13. Furthermore, 90% of PDAC patients have some dissemination at the  time of 
diagnosis13. To study PDAC metastasis, we employed a commonly used model, where cells from KPCY (LSL-
KrasG12D/+; Trp53LSL-R172H/+; Pdx1-cre; LSL-Rosa26YFP/YFP) mouse tumors14–16 are orthotopically transplanted into 
the pancreata of non-tumor-bearing mice15,17. This approach faithfully models human disease, due to the 
following: 1) Kras gain-of-function and p53 loss-of-function are the most common drivers of human PDAC18; 
2) cells experience minimal time in vitro — a drawback of traditional cell lines; 3) a focal lesion develops in the 
pancreas that 4) disseminates to the same sites as human PDAC, including the liver and lung. 
 
To investigate PDAC metastasis and associated transcriptional states, we selected a highly metastatic line 
from a library of characterized PDAC lines previously-derived from KPCY tumors16 (Methods: Cell lines). To 
enable lineage tracing of these cells, we introduced dox-inducible Cas9 and the gRNA array through lentiviral 
transduction, and separately introduced multiplexed barcodes via PiggyBac-transposition, thereby producing 

Figure 1: Most metastases arise from rare, transcriptionally-distinct clones. a, Genetic components of macsGESTALT, a 
broadly-applicable, inducible, and high-resolution lineage tracing system. b, Clone-level information is stored in static barcodes, 
while subclonal or phylogenetic information is dynamically encoded into evolving barcodes via indels (red and blue bars) induced by 
administration of doxycycline. c, Schematic of procedure for single-cell transcriptional profiling and lineage reconstruction of 
metastatic pancreatic cancer across 6 diverse harvest sites, including circulating tumor cells (CTCs). d, 95 clones across 2 mice 
reconstructed by static barcodes. Clones are numbered by size in the primary tumor (largest to smallest). Percent contribution to 
each harvest site (circle size) and enrichment compared to the primary tumor (circle color) are visualized. Top annotations show each 
clone’s Leiden transcriptional cluster and aggression assignments as in j and k, respectively. e, Cumulative fraction of each clone in 
each disseminated site (red) and primary tumor (black). Dotted-lines represent perfect clone-size equality. f, UMAP plot of 28,028 
single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted 
(as mouse.clone). g, h, Two representative non-aggressive clones occupying similar transcriptional space. i, A representative clone 
of medium aggression. j, Leiden transcriptional clustering of f. k, Cells in UMAP space annotated by clonal aggression. l, Number of 
non-, mid-, or high-aggression clones of 95 total. 
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Figure 1: Most metastases arise from rare, transcriptionally-distinct clones. a, Genetic components of macsGESTALT, a broadly-applica-
ble, inducible, and high-resolution lineage tracing system. b, Clone-level information is stored in static barcodes, while subclonal or phyloge-
netic information is dynamically encoded into evolving barcodes via indels (red and blue bars) induced by administration of doxycycline. c, 
Schematic of procedure for single-cell transcriptional profiling and lineage reconstruction of metastatic pancreatic cancer across 6 diverse 
harvest sites, including circulating tumor cells (CTCs). d, 95 clones across 2 mice reconstructed by static barcodes. Clones are numbered by 
size in the primary tumor (largest to smallest). Percent contribution to each harvest site (circle size) and enrichment compared to the primary 
tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression assignments as in j and k, 
respectively. e, Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted-lines represent perfect 
clone-size equality. f, UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with 
select large clones highlighted (as mouse.clone). g, h, Two representative non-aggressive clones occupying similar transcriptional space. i, A 
representative clone of medium aggression. j, Leiden transcriptional clustering of f. k, Cells in UMAP space annotated by clonal aggression. l, 
Number of non-, mid-, or high-aggression clones of 95 total.
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macsGESTALT PDAC cells. To model cancer metastasis in vivo, we injected mouse pancreata with 30,000 
macsGESTALT PDAC cells, representing thousands of static barcode clones (Fig. 1c). After one week of 
engraftment, we administered doxycycline in the drinking water to begin lineage tracing. As expected17, all 
mice were morbid at five weeks post-injection. We randomly selected two mice, M1 and M2, and harvested 
cells from six cancer-bearing sites (primary tumor, liver, lung, peritoneal mets, surgical-site met, circulating 
tumor cells). PDAC cells were fluorescence sorted and processed for scRNA-seq of transcriptomes and 
macsGESTALT barcodes. 
 
Overall, 89% of transcriptomes had corresponding clonal lineage information for M1 and 77% for M2, 
demonstrating improved barcode recovery using macsGESTALT compared to prior methods6,9. In total, 
across all sites in both mice, we recovered both the transcriptome and clonal history for 28,028 single cells 
(M1: 12,657; M2: 15,371) (Extended Data Fig. 5a,b). The set of static barcodes defining a clone were 
determined via hierarchical clustering and custom pipelines (Methods: Clonal reconstruction and multiplet 
elimination). Cells were then sorted into each clone based on their static barcode content, permitting even 
cells with missing barcodes to be assigned to the appropriate clone, while enabling explicit multiplet 
detection and filtration and resulting in only ~0.5% unmatched cells (M1: 0.54% and M2: 0.51%) (Extended 
Data Fig. 5a). For M1, an average of 3.7 out of a possible 5.9 barcodes were recovered per cell, while 
recovery for M2 was 1.7 of 2.5 (Extended Data Fig. 5a), with the lower number of barcodes per cell in M2 
likely contributing to its lower overall clonal lineage recovery. 
 
Clonal reconstruction revealed 95 distinct clones across the two mice (Fig. 1d), identified by 227 static 
barcodes (Extended Data Fig. 5a), indicating that less than 1% of all injected clones successfully engraft. By 
contrast, in vitro experiments using the same cells and a similar time course revealed that most cells (clones) 
survive and form colonies on plates (Extended Data Fig. 4). Thus, cancer cells in this model experience 
dramatic bottlenecking during in vivo engraftment.  
 
Among the surviving clones, fitness differences were pronounced and shaped population structure across 
sites (Fig. 1d,e). In the primary tumor, the majority (>50%) of cells came from a minority of clones (2 clones in 
M1; 6 clones in M2). Bottlenecking was even more extensive at metastatic sites, wherein 80-90% of cells 
typically came from a single clone (Fig. 1d,e), and both mice had one clearly dominant clone across all 
disseminated sites (M1.1, M2.2). On the other hand, 51% of clones (48/95) failed to metastasize at all, 
suggesting that mutations in Kras and p53 alone do not ensure metastatic success. 
 
We next asked whether clones were transcriptionally distinct. Indeed, cells from the same clone clustered 
together in UMAP space (Fig. 1f). This was true of both large and small clones (Fig. 1g-i). Importantly, 
this  finding extended to cells harvested from different sites, suggesting that cells retain their clonal 
transcriptional identity even after dissemination (Extended Data Fig. 6). These stable transcriptional 
differences may result from either epigenetic drift or large-scale copy number changes, the latter observed in 
our data (Extended Data Fig. 7) and a hallmark of PDAC chromosomal instability19. 
 
An EMT continuum associated with aggression 
We next asked if differences in clonal behavior corresponded to transcriptional differences. While clones had 
distinct transcriptional identities, we found that many overlapped in UMAP space (Fig. 1f-i). Furthermore, 
81% of clones (77/95 across both mice) primarily resided in a single transcriptional cluster, Cluster 3 (Fig. 
1d,j). To relate transcriptional state to tumor aggression, we derived a clonal aggression scoring system 
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based on clone size and dissemination (Fig. 1d, 
Methods: Clonal reconstruction and multiplet 
elimination). We found that 85% (81/95) of clones 
were non-aggressive and were transcriptionally 
similar, residing in a small region of the 
aforementioned Cluster 3 (Fig. 1k,l). Conversely, 
highly-aggressive clones were exceedingly rare, 
yet were a dominant contributor to transcriptional 
diversity, as illustrated by their large spatial 
distribution in the UMAP embedding (Fig. 1k). 
 
We then sought to understand the specific 
transcriptional programs associated with 
aggression. While both mice were strikingly similar 
in terms of clonal composition (Fig. 1d), we 
focused on M1, since we harvested cells from 
more sites and recovered over twice as many 
barcodes per cell, which permits effective 
downstream subclonal reconstruction (Extended 
Data Fig. 5a,b). Reanalyzing the data apart from 
M2, non-aggressive clones again appeared 

transcriptionally similar to one another (Fig. 2a). Interestingly, these clones were enriched for expression of 
canonical epithelial markers, such as Epcam, Muc1, and Cdh1 (Fig. 2b-d, Extended Data Fig. 8a). 
Conversely, mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were enriched in cells of the 
aggressive clone, M1.1 (Fig. 2e-g, Extended Data Fig. 8b). Loss of epithelial genes and gain of 
mesenchymal genes are defining hallmarks of epithelial-to-mesenchymal transition (EMT)20,21. 
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for all cells from h. Gene clusters are labeled as epithelial (E), 
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EMT is a process of transdifferentiation, wherein epithelial cells lose the properties of cell polarity and 
adhesion, while gaining the ability to be motile and migratory20,21. In cancer, EMT is implicated in invasion, 
metastasis, tumor stemness, plasticity, and drug resistance20,21. EMT is primarily a transcriptional process 
mediated by a group of key master-regulator transcription factors (EMT-TFs)22. We observed elevated 
expression in aggressive clones of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Fig. 2f, Extended 
Data Fig. 8c). Expression of Prrx1, an important regulator of EMT in PDAC23, was also increased. 
 
Traditionally, EMT was considered a binary process, where cells switch from fully epithelial to fully 
mesenchymal. However, recent studies have reported discrete intermediate EMT states24–28 or even a 
continuum of states29,30. In our data, epithelial and mesenchymal UMAP regions were not well segregated. 
Specifically, epithelial and mesenchymal genes appeared to gradually lose and gain expression as a function 
of distance from two extremes (Fig. 2b-g), suggesting that a continuum of EMT states exists in vivo.  
 
We leveraged our single-cell data to explore the transcriptional correlates of EMT as a continuum. We 
performed unbiased trajectory inference using Monocle 331 and found that the main trajectory in our data 
corresponded to the observed EMT gene expression axis (Fig. 2h). We named this trajectory "pseudoEMT" 
(akin to pseudotime for developmental trajectories) and placed the root of the trajectory, or the zero EMT 
state, at the most epithelial transcriptional region (Fig. 2h). Hence, the expression of canonical epithelial 
markers was highest at the root. We found that many genes, including known epithelial or mesenchymal 
markers, rise and fall at different rates across pseudoEMT (Fig. 2i, Extended Data Fig. 9a-c); for example, 
many extracellular matrix genes activate only very late in the trajectory (Fig. 2i, Extended Data Fig. 9b). 
Additionally, numerous genes, such as Cd44 or Inhba, displayed unusual patterns, rising and then falling or 
plateauing (Extended Data Fig. 9d). Plotting cells along pseudoEMT also highlighted that smaller, non-
aggressive clones reside on the epithelial extreme, while more mesenchymal states are restricted to large, 
aggressive clones, such as M1.2 and particularly M1.1 (Fig. 2i). 
 
To systematically characterize gene expression along EMT, we identified the top 3000 significantly 
differentially expressed genes across pseudoEMT (q ~ 0, Moran's I > 0.1) (Supplementary Table 1). 
Hierarchical clustering of genes revealed six gene sets with similar kinetics (Fig. 2j). We classified these sets 
from most epithelial to most mesenchymal as follows: Epithelial (E), Hybrid 1, 2, 3, and 4 (H1, H2, H3, H4), 
and Mesenchymal (M) (Fig. 2j, Supplementary Table 1). We performed hypergeometric gene set enrichment 
using the Molecular Signatures Database (MSigDB) Hallmark gene sets, which represent well-defined 
biological states and processes (Fig. 2j, Supplementary Table 2). In concordance with the pseudoEMT 
trajectory, gene set enrichment indicated an EMT process. Early clusters (E, H1) were enriched for apical 
surface genes, consistent with epithelial cell polarity, while late clusters showed gradually increased 
enrichment for EMT (H4: p = 3x10-6, M: p = 3x10-29). An inducer of EMT and metastasis, TGF-β signaling21,32,33, 
as well as Jak/Stat3 and Stat5 signaling34, peaked in the late hybrid state (H4) and tapered off in the highly 
mesenchymal state (M). Other pathways purported to be involved in EMT, such as TNF-α35, Wnt36,37, and 
Hedgehog38 were also only enriched in H4 or M. Interestingly, Notch signaling was recently implicated as a 
hybrid-EMT stabilizer39,40, consistent with our finding that it was only enriched in H4. 
 
Striking metabolic changes across EMT were also apparent. Transitioning from early (H1, H2) to late (H3, H4) 
hybrid gene clusters, we observed a strong shift from enrichment of oxidative phosphorylation (OXPHOS) 
toward glycolysis, potentially related to the enrichment of mTOR signaling in H241. Consistent with metabolic 
shifts, hybrid EMT states also were highly enriched for proliferative gene sets, such as G2M, E2F, and mitotic 
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spindle. Specifically, enrichment began 
modestly in H2 and peaked 
dramatically in H3 (G2M, H2: p = 3x10-

2,  H3: p = 1x10-20). We next determined the cell cycle phase of each cell (G1, G2M, or S) to estimate the 
proportion of actively dividing cells (S/G2M) across pseudoEMT (Methods: Single cell transcriptome data 
processing). Consistent with Hallmark gene set enrichment, cell cycling peaked at EMT regions representing 
the E and H2/H3 gene clusters (Extended Data Fig. 9e). These hybrid EMT proliferative changes were 
potentially driven by Myc42, as Myc targets mirrored proliferative gene set enrichment and cell cycling fraction 
(Myc-v1, H2: p = 1x10-3, H3: p = 1x10-30). 
 
We next asked which TFs might regulate progression through EMT. Using HOMER43, we detected 45 
significantly enriched DNA motif binding factors across all gene clusters (Fig. 2k). EMT master regulators, 
Zeb1, Zeb2, Snai1, and Snai2, were enriched in early clusters, E and H1. As EMT-TFs are primarily 

Figure 3: High-resolution subclonal lineage 
reconstruction of metastatic cancer. a, 
Percent at which each base is mutated along 
the length of 227 evolving barcodes from 95 
clones across both mice. Target site spacers 
(light grey) and PAMs (dark grey) are indicated. 
b, Edit types observed at each target site 
across the same evolving barcodes as in a. c, 
Example phylogenetic reconstruction of a small 
clade within clone M1.1. Clade M1.1.310 (root 
node in red) contains 6 distinct subclones 
composed of 58 cells from 5 different harvest 
sites. Each cell in this clade has 6 evolving 
barcodes, illustrated by white bars with colored 
edits overlaid. Cells with the same barcode 
editing pattern are grouped into a subclone; 
subclone phylogeny is inferred from common 
and distinct edits. Dotted lines emerging from 
each subclone node represent the harvest sites 
from which cells were recovered. Subclone 
dissemination is a statistical metric of how 
equally a subclone's cells are distributed 
across sites (Shannon Equitability, adjusted for 
sampling size), where 0 is no dissemination. 
Individual cells are stacked and colored by site 
on the far right. d, Circle packing plot of the full 
single cell phylogeny of mouse 1, with clade 
M1.1.310 from c circled in red. Outermost 
circles (heavy black borders) define individual 
clones, with the 6 largest clones labeled. Within 
each clone, nested circles group increasingly 
related cells based on their barcode editing 
patterns. Innermost circles contain cells from 
reconstructed subclones. Each point 
represents a single cell, colored by harvest site. 
e, Cumulative fraction of each subclone of 
clone M1.1 in each harvest site. Dotted-line 
represents perfect subclone-size equality. 
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transcriptional repressors that downregulate epithelial genes22, this finding illustrates our ability to discover 
regulators of the EMT continuum. ETS-domain TFs, which are associated with metastasis, invasion, and 
EMT44,45, dominated the enrichment profiles of hybrid states H2 and H3. Motifs bound by members of the Sox 
and Fox families were enriched in H4 and M, respectively. Sox TFs are often associated with stemness-
related processes46. Notably, the six gene clusters have no overlapping genes, yet adjacent clusters often 
displayed overlapping TF and gene set enrichment, lending further support for a gradual continuum of EMT 
transitions (Fig. 2j,k). Overall, across this continuum of 3000 genes, we describe many classic EMT markers, 
pathways, and regulators, but we also find many novel or less well-characterized genes and processes of 
potential interest for furthering understanding of EMT in vivo (Supplementary Table 1, 2). 
 
Late-hybrid EMT states are proliferatively and metastatically advantageous 
Most cells in the mid-to-late EMT continuum came from a single dominant clone, M1.1, providing only coarse 
resolution into the transcriptional processes associated with tumor aggression and highlighting the limitations 
of static barcoding (Fig. 2i). We therefore leveraged editing patterns of macGESTALT evolving barcodes to 
more precisely relate EMT and aggression at the subclonal level. 
 
We recovered a large number of edited and informative target sites per cell, conducive to phylogenetic 
analysis. Altogether, we observed an editing rate of 96% across 384,870 recovered target sites (Extended 
Data Fig. 10a). Editing was distributed across the length of the barcodes with peaks at the expected Cas9 
cut-sites, 3bp upstream of the protospacer adjacent motifs (PAMs) (Fig. 3a). Deletions predominated over 
insertions as expected4,6,9, with an approximately equal number of single- and multi-target deletions (Fig. 3b, 
Extended Data Fig. 10b). The average edit size varied by edit type, with 11bp for insertions, 18bp for single-
target deletions, and 80bp for multi-target deletions (Extended Data Fig. 10c). Multi-target deletions were of 
a large size range and involved 2, 3, 4, or 5 target sites at frequencies ranging from 10-19% (Extended Data 
Fig. 10b,c). Individual target site editing rates varied between 89-99% (Fig. 3b). We recovered an average of 
18.5 target sites (3.7 barcodes) per cell for M1 and 8.5 (1.7) for M2 (Extended Data Fig. 5a).  
 
Intraclonal tree reconstruction was performed in three main steps (Fig. 3c). First, different barcodes from the 
same cell were concatenated based on their static barcodes into a "barcode-of-barcodes", which contains all 
of the phylogenetic information recovered for that cell. Second, cells with identically edited barcode-of-
barcodes were grouped into subclones, since they are indistinguishably close relatives. Third, phylogenetic 
relationships between subclones were reconstructed based on edit inheritance patterns (Fig. 3c). Subclonal 
metastatic aggression was quantified via Shannon's Equitability (EH) – a statistical measure of dissemination 
across harvest sites (Methods: Subclonal dissemination calculation). For example, a subclone found at 
only one harvest site is not metastatically aggressive and has an EH of zero. 
 
We recovered 6,055 unique barcode-of-barcodes, which yielded 1,692 transcriptionally-useful subclones 
across 95 clones (Extended Data Fig. 10a, Methods: Subclonal and phylogenetic reconstruction). 903 of 
these subclones were from M1, as it contained over twice as many edited target sites per cell compared to 
M2 (Extended Data Fig. 10a). The greater reconstructive power for M1 was particularly apparent in the 
difference between the critical dominant clones of each mouse, where M1.1 with seven barcode integrants 
had 601 subclones compared to M2.2 with only two integrants and 110 resulting subclones. The full clonal 
and subclonal phylogenetic visualization of M1 highlights the overwhelming proliferative and metastatic 
dominance of clone M1.1 (Fig. 3d). However, within M1.1, we also observed vast heterogeneity with respect 
to subclonal aggression and metastatic success. Most strikingly, the same bottlenecking observed on the 
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clonal level was also present on the subclonal level within M1.1 (Fig. 3e). Subclonal bottlenecking further  
increased at metastatic sites, again mirroring observations at the clonal level. Thus, cancer progression 
appears to be defined by a state of constant competition and selection, separate from the effects of 
engraftment. 
 
To understand how differences in subclonal behavior may relate to EMT, we calculated the mean pseudoEMT 
value for each subclone and plotted this and subclonal dissemination (EH) for clone M1.1 (Fig. 4a,b). While 
M1.1 was highly mesenchymal compared to other M1 clones, many subclones within M1.1 were actually 
quite epithelial. These epithelial subclones were primarily small and non-metastatic (Fig. 4a,b). Interestingly, 
the same was true of highly mesenchymal subclones. On the other hand, the largest and most disseminated 
subclones appeared to express hybrid EMT states (Fig. 4a,b), supporting the idea that EMT extremes are less 
metastatic than hybrid states21,28,47,48. 
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Figure 4: Peak metastatic aggression corresponds to late hybrid-EMT transcriptional states. a, b, Circle packing plots of the 
phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (a) and by dissemination score (b). c, Relationship 
between metastatic dissemination and pseudoEMT transcriptional state for all subclones from a and b. d, Density along pseudoEMT 
of M1.1 cells and their increasingly ancestral (arrow) phylogenetic groups, i.e. subclones and root clades (examples highlighted in a), 
illustrating that epithelial transcriptional states are outcompeted over time. e, Relationship between PDAC patient survival (TCGA-
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To precisely characterize where aggression peaked along the EMT continuum, we mapped subclonal 
dissemination (EH) and size along pseudoEMT (Fig. 4c). We found that dissemination gradually peaked around 
the H3 and H4 hybrid states (pseudoEMT score of 20-22) and then sharply declined at highly mesenchymal 
states. Thus, late-hybrid EMT states are metastatically advantageous and are associated with specific 
proliferative, metabolic, and signaling processes (Fig. 2j), as well as distinct regulatory binding factors (Fig. 
2k).  
 
Notably, hybrid-EMT states appeared transcriptionally stable – for example, a large, hybrid subclone often 
had close relatives that were also large and hybrid (Fig. 4a). To understand the stability of EMT states, we 
plotted the distribution of cells, subclones, and root clades along pseudoEMT (Fig. 4d, Methods: 
PseudoEMT across ancestral relationships). Root clades mark the first phylogenetic subdivision within a 
clone and are hence an older subgrouping of cells than a subclone. Examples of root clades and subclones 
are highlighted in Fig. 4a. Root clades exist at the time of dox initiation (one week post orthotopic transplant), 
cells exist at the time of harvest, and subclones in between; thereby we compared different levels of ancestral 
groups. Moving from root clades to cells, there was a shift from epithelial to hybrid states, suggesting that 
while epithelial states are the prevailing default, they are outcompeted by hybrid states (Fig. 4d). This 
intraclonal observation again mirrored findings at the clonal level, where most clones were epithelial but were 
heavily outcompeted by the dominant clone M1.1. Therefore, ongoing natural selection of rare, late-hybrid 
EMT states over predominating epithelial states permits both rapid dissemination and forces continuous 
clonal and subclonal bottlenecking. 
 
As late-hybrid EMT states, namely the H3 and H4 gene clusters, were profoundly associated with metastasis 
in our model, we asked whether a similar trend might exist in human PDAC (Fig. 4e). Using The Cancer 
Genome Atlas (TCGA) matched gene expression and clinical data, we found that while the E, H1, and H2 
gene clusters had no association with disease prognosis, patients enriched for H3 and H4 had a significantly 
increased risk of death and that this risk disappeared for the highly mesenchymal cluster M  (Fig. 4e). 
Remarkably, these human PDAC findings faithfully mirror the rise and fall of subclonal metastatic aggression 
along pseudoEMT in our model (Fig. 4c). 
 
Discussion 
Recurrent genetic drivers of metastasis remain lacking, suggesting that non-genetic adaptations may be key 
to understanding cancer dissemination. To study such processes at high-resolution, we developed 
macsGESTALT, a flexible, inducible lineage tracer that can be easily coupled with scRNA-seq. In applying 
macsGESTALT to understand pancreatic cancer metastasis, we gained critical insight into cancer behavior at 
the clonal, subclonal, and transcriptomic levels. Despite using a metastatically competent genetic model, we 
found that most clones do not metastasize, supporting the importance of transcriptional and non-genetic 
processes in metastasis1. While non-aggressive clones occupy similar transcriptional space, many aggressive 
clones conversely have distinct transcriptional identities, which they retain even upon dissemination to distant 
metastatic sites. Among aggressive clones, we found that a single dominant clone drives the overwhelming 
majority of metastasis across all sites, without apparent organotropism. As these findings are remarkably 
consistent across both mice — which faithfully recapitulated the kinetics of cancer morbidity following 
orthotopic PDAC transplant17 — we suspect the emergence of rare dominant clones from many non-
metastatic clones may be a conserved feature of metastasis in this model. 
 
Highlighting the limitations of static barcoding approaches in isolation, extensive clonal bottlenecking 
obscured lineage information at critical points in vivo. To address such challenges, macsGESTALT pairs static 
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barcodes for clonal reconstruction with inducible evolving barcodes for subclonal reconstruction. In this 
study, evolving barcodes revealed that growth and dissemination of the dominant clone are driven by rare 
highly aggressive subclones that associate with specific EMT transcriptional states. While a wide-range of 
EMT states exist — from highly epithelial to highly mesenchymal — aggressive subclones exhibit primarily 
late-hybrid EMT states. These late-hybrid subclones appear to undergo continuous and aggressive 
evolutionary selection from a background of predominantly epithelial states. While this process enables rapid 
proliferation and metastasis, it necessitates extensive population bottlenecking, presenting a potentially 
vulnerable or exploitable feature of PDAC metastasis. Further highlighting the therapeutic relevance of these 
findings, late-hybrid EMT states correspond with worse overall survival in human PDAC, while epithelial, 
early-hybrid, or highly mesenchymal states do not, thereby mirroring the rise and fall of metastatic capability 
across pseudoEMT in our model. As such, we characterized the EMT spectrum in depth, finding numerous 
enriched signaling, metabolic, and regulatory features throughout. Amongst these, in late-hybrid EMT states, 
we observed increased MYC activity and proliferation, as well as potential metabolic rewiring from OXPHOS 
to glycolysis, which has been implicated in both tumor invasiveness49,50 and EMT51,52.  
 
By exploring the dynamics of a dominant clone driving metastasis in a mouse model of PDAC, we 
characterized a detailed molecular roadmap of EMT in vivo and highlight one potential path to aggressive 
metastasis. As cancers are notoriously heterogeneous, we anticipate that many different paths to aggressive 
dissemination likely exist — but promisingly, we find that the late-hybrid EMT states uncovered here also 
predict worse survival in a large human patient cohort, suggesting they may be a conserved mechanism. As 
PDAC has the lowest survival rate of any major cancer13, largely due to aggressive, early metastasis present 
at diagnosis, we hope that our approach will enable future studies to reveal additional processes underlying 
the highly metastatic nature of PDAC. 
 
Our insights derive from a global, unbiased assessment of metastatic phylogeny and transcription at the 
single cell level. macsGESTALT enables such investigations by combining static and evolving lineage tracing 
and achieving high barcode recovery and editing rates, producing rich lineage trees densely annotated with 
transcriptional information. Furthermore, the inducibility of macsGESTALT allows lineage tracing to initiate at 
the optimal experimental time, here after tumor engraftment. However, a future application could be to couple 
initiation of macsGESTALT with a specific intervention to study its effects on population structure, such as 
administration of a therapy or an injury model. As macsGESTALT only requires integration of three 
components and is readily coupled with single-cell sequencing, we hope that it will be rapidly adopted to 
address questions in cancer and stem cell biology at previously inaccessible levels of resolution and scale.  
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Methods 
Plasmid design and construction 
All Gibson assemblies were performed using NEBuilder HiFi DNA Assembly Master Mix (NEB #E2621) and 
were assembled at 50 ℃ for 60 min at appropriate molar ratios. For cloning, all PCRs were performed using 
HotStart ReadyMix (Kapa Biosystems #KK2601). Restriction enzymes, instead of PCR, were used to linearize 
vector backbones to prevent backbone mutations. All bacterial transformations were performed with NEB 
Stable Competent E. coli (NEB #3040H) and cells were grown at 30 ℃ for 24 h, unless otherwise noted. Final 
plasmid preps were performed with Zymopure II Plasmid Kits (Zymo Research #D4202). All regulatory, 
coding, and editing-related regions in final assembly products were validated by Sanger sequencing. All gene 
block sequences were ordered from IDT. Full, annotated sequences are available via Benchling for all 
plasmids generated or used for editing experiments; macsGESTALT plasmids will be deposited in Addgene. 
 
V7 and V8 barcoding lentiviral transfer plasmids used for guide RNA array screening were constructed in 2-
part Gibson assemblies using pLJM1-EGFP (Addgene #19319)53 backbone digested with EcoRI + gene 
blocks for V7 or V8 barcodes to make pLJM1-EGFP-V7 and pLJM1-EGFP-V8.  
 
pUltra-U6-crRNAs-U6-tracr was constructed in a 3-part Gibson assembly using PacI linearized pUltra 
(Addgene #24129)54 backbone, a U6-driven array of 10 V8 targeting crisprRNAs (crRNAs) interspersed by 
tRNAs ordered as a gene block (pUltra5-U6crRNA-GA1), and another gene block encoding a U6-driven 
tracrRNA (GA1-U6-tracr-pUltra3). 
 
The dox-inducible crRNA array plasmid, pBS31-GFP-V8crRNAs-U6-tracr-Ub-M2rtTA, was constructed in a 
3-part Gibson assembly using EcoRI linearized pBS31, a gene block containing 10 V8 targeting crRNAs 
interspersed by tRNAs in the 3' of a GFP opening reading frame (ORF) (TP-gB-1), and a gene block 
containing U6-driven tracrRNA followed by Ubc promoter-driven M2-rtTA with a V8 barcode of 10 targets in 
the 3' UTR (TP-gB-2). The barcode was excised for transient transfection gRNA screening experiments by 
digesting with NsiI and religating the backbone. 
 
p5xU6_5sgRNA-Hsp70-Cas9GFP-pA that had V7 gRNAs 5-9 each with a separate U6 promoter was a gift 
from J. Gagnon6. 
 
pCFDg1-5 gRNA-tRNA array was constructed stepwise as previously described using pCFD5 (Addgene 
#73914)11 as a template and V8 targeting gRNAs. 
 
pUltra-U6-gRNAs1-5 lentiviral transfer plasmid, which was used to make macsGESTALT PDAC cells, was 
generated in a 3-part Gibson assembly using pUltra backbone linearized with PacI, a gene block with U6 
promoter and gRNA 1 (pUltra5-U6-gRNA1), and a PCR-amplicon, amplified from pCFDg1-5, containing 
gRNA-tRNAs 2-5 (gRNAs1-5-pUltra3), thereby producing a constitutively-expressed five gRNA-tRNA array 
and a constitutive GFP selection marker. 
 
PB-EF1α-Puro-V8.2 library cloning was performed as a 3-part Gibson assembly: 1) PB-CMV-MCS-EF1α-Puro 
(Systems Biosciences PB-510B-1) was digested with SpeI and HpaI to excise its cargo and create a linear 
backbone. 2) EF1α promoter and puro resistance gene were amplified from lentiGuide-Puro (Addgene 
#52963). 3) The V8.2 target array was ordered as a gene block. This assembly produced the PB-EF1α-Puro-
V8.2 vector. Then, the barcode library was generated via a 2-part Gibson assembly using EcoRI linearized 
PB-EF1α-Puro-V8.2 and a random 10 bp containing staticID (static barcode) fragment, which was made by 
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annealing and extending a pair of oligos (targetbarcode-r: 
TTTGTCCAATTATGCTCGAGGTCGAGAATTNNNNNNNNNNCGTTGATCGCACGCCA, targetbarcode-f2: 
TAGTTGGTTCCTACTGGCGTGCGATCAACG). The library was transformed into NEB 10-beta 
Electrocompetent E. coli (NEB #3020K), and the entire transformation was grown as a midi culture and 
prepped with Chargeswitch Pro Filter Midi Kit (Thermofisher #CS31104).  
 
Cell lines 
Lentiviruses were packaged in HEK 293T cells using psPAX2 (Addgene #12260) and pMD2.G (Addgene 
#12259) second generation packaging and envelope plasmids. Viral supernatants were collected 2-4 d post-
transfection and filtered through 0.45 µm filters. Filtered supernatants were either stored at -80 ℃ (never 
refrozen) or used fresh to infect cells. Barcoded 293T cells for the gRNA screen were produced by infecting 
with pLJM1-EGFP-V7 or pLJM1-EGFP-V8 lentivirus at low MOI (MOI < 0.2) and sorted by fluorescence-
activated cell sorting (FACS) for GFP using a BD FACSAria II (BD Biosciences).  
 
For the PDAC cells used to generate macsGESTALT PDAC cells, we selected the most metastically 
aggressive cell line (6419c5) from a published library of clonal PDAC lines16, which were each derived from 
harvested KPCY tumors. While this cell line originated from a single cell bottleneck during derivation, it had 
since been passaged ~15x, thereby overtime in culture, becoming effectively polyclonal at the point of 
macsGESTALT barcode delivery.  
 
macsGESTALT components were introduced into PDAC cells in 3 steps: First, dox-inducible Cas9 was 
integrated with Lenti-iCas9-neo (Addgene #22667)12, and infected cells were selected for neomycin resistance 
via G418 for 7 d. Second, the cells were infected with pUltra-U6-gRNAs1-5 at high MOI (MOI > 0.8), and the 
top 50% of GFP positive cells were sorted by FACS using a BD FACSAria II. This step was repeated once to 
produce cells with high gRNA array expression to ensure a high editing rate. This can be decreased to slow 
and spread the editing rate over time. Third, cells from the previous steps were barcoded by cotransfecting 
PB-EF1α-Puro-V8.2 library and Super PiggyBac Transposase plasmid (SBI #PB210PA-1) at a 1:10 molar ratio 
using Lipofectamine 3000 (Thermofisher). Barcoded cells were puromycin-selected for 7 d. To maintain 
diversity and limit leaky editing, cells were expanded after withdrawal of purmycin and frozen down with 
minimal time in culture (< 7 d). For lineage tracing experiments, cells were only expanded after thawing for 2-4 
d as needed prior to orthotopic injection or experiment start. 
 
Guide RNA array editing screen 
293T cells were cultured in culture media (DMEM, 10% FBS, 1% glutamine with penicillin and 
streptomycin).  293T cells barcoded with pLJM1-EGFP-V7 or pLJM1-EGFP-V8 lentivirus were transiently 
transfected with different combinations of plasmids to test gRNA array editing efficacy. Barcoded cells plated 
at 250,000 cells per well of 6-well plates, and transfected the following day with Lipofectamine 2000 
(Thermofisher #11668030). 1.5 µg of px330 was used in each well (except no-transfection and pUltra-only 
control wells). All wells receiving a gRNA array plasmid were also transfected with a 1:1 molar amount of the 
appropriate gRNA plasmid compared to px330. Dox was initiated where appropriate the day after 
transfection. Additionally, as a positive control, one well received px330 and in vitro transcribed (IVT) gRNAs. 
Guide templates matching the V8 target sites were constructed and transcribed using GeneArt Precision 
gRNA Synthesis Kit (Thermofisher #A29377); gRNA 6 and 7 IVT reactions failed and these guides were 
excluded from further steps. IVT gRNAs were transfected using Lipofectamine CRISPRMax (Thermofisher 
#CMAX00001) 24 h after px330 was transfected. Expression of plasmids containing fluorescent markers was 
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confirmed by microscopy. Cells were then allowed to expand and edit for one week and then harvested for 
library preparation and sequencing. 
 
PDAC dox-induced in vitro editing experiments 
PDAC cells were cultured in complete media (DMEM, 10% FBS, 1% glutamine with penicillin and 
streptomycin). Dox-induced editing checks of macsGESTALT PDAC cells were performed in two separate 
experiments: In the first experiment, cells were plated and started on dox at 3 doses, 0, 0.1, or 2 µg/mL, with 
media change every other day. Cells were collected at 2 timepoints — after 1 and 2 weeks of dox exposure 
— and harvested for library preparation and sequencing. In the second experiment, cells were kept on 6 
different dosages of dox, 0, 10, 50, 100, 500, or 1,000 ng/mL, for 2 weeks and harvested for library 
preparation and sequencing. 
 
Bulk genomic DNA barcode library prep, sequencing, and analysis 
For all bulk DNA editing experiments, approximately one million cells were harvested per condition, washed, 
pelleted, and genomic DNA extracted with the NucleoSpin DNA RapidLyse Kit (Macherey-Nagel #740100.50). 
Genomic DNA was normalized to 30-50 ng/µL for each sample. All PCR reactions were performed using 
SYBR-containing master mix from the KAPA Real-Time Library Amplification Kit (Kapa Biosystems #KK2702) 
and terminated in the mid-exponential phase to limit over-amplification. AMPure beads (Agencourt Beads, 
Beckman Coulter #A63880) were used at a ratio of 1.5x to purify products after all PCR reactions. Barcodes 
were amplified from genomic DNA in a nested approach and sequencing adaptors, sample indices, and flow 
cell adaptors were added by a series of subsequent PCRs. For 293T samples containing pLJM1-EGFP-V7 or 
pLJM1-EGFP-V8, barcodes were amplified and adaptors added in a series of 3 PCRs. For PDAC samples 
containing PB-EF1α-Puro-V8.2, barcodes were amplified and adaptors added in a series of 4 PCRs. Primer 
sequence, purpose, and annealing temperature for all PCRs in both of these library preparations are included 
in Supplementary Table 3. In all cases, 250 ng of genomic DNA was loaded into a 50 µL PCR. Sample 
indices were added using NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set – New England 
Biolabs). The concentration of final amplicons was measured by Qubit and the length validated by 
TapeStation HSD1000 prior to sequencing using Illumina MiSeq 600-cycle v3 Reagent Kits with the following 
run parameters: Read 1 - 301 cycles, i7 index - 8 cycles, i5 index - 8 cycles, Read 2 - 301 cycles. Bulk 
sequencing data for all samples was processed as previously reported4 and available on Github 
(https://github.com/mckennalab/SingleCellLineage/), with the UMI option set to FALSE (no UMI used). Output 
files were used for generating visualizations using the R programming language. 
 
Limiting dilution PDAC experiments and 10x Chromium loading 
macsGESTALT PDAC cells were plated in a limiting dilution of ~5 or ~100 cells per well in a 48-well plate. 
Single cells gave rise to colonies and expanded. Cells were all allowed to expand without split for 2 weeks. 
The 100-cell wells were confluent and overgrown after 1 week in culture. The 5-cell wells were approximately 
80-90% confluent at 2 weeks. At 2 weeks, a healthy, representative well from each condition was selected 
and passaged at a 1:2 split into a well of a 6-well plate. After 3 d, cells were harvested and dissociated using 
500 µL TrypLE (Thermofisher #12605010) for 3-5 min. Reactions were neutralized with 3 mL culture media. 
Cell clumps were further dissociated by gently pipetting up and down 10x with a p1000, and then cells were 
centrifuged at 250g for 5 min. Cells were gently resuspended with a p1000 in 1 mL culture media, filtered 
through a 30 µm strainer, ensured to be in a single cell suspension under a light microscope, and counted 
with a hemocytometer. Cells were washed twice with 1 mL cold HBSS with 0.04% BSA (centrifuged at 150g 
for 3 min each time). Cells were filtered again through a 30 µm strainer and resuspended in cold HBSS with 
0.04% BSA at a concentration of 700 cells/µL. Cells were counted again with a hemocytometer to ensure 
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accurate concentration. For the 5-cell dilution sample, 8,000 cells were loaded on 10x (Chromium Single Cell 
3’ Reagent Kits v3) targeting 5,000 cell recovery; for the 100-cell dilution sample, 16,000 cells were loaded 
targeting 10,000 cell recovery. 
 
Mice and orthotopic injection metastasis model 
macsGESTALT PDAC cells were thawed and expanded for 2-4 d prior to dissociation and orthotopic injection 
into 10 week old NOD/SCID male mice (Jackson Laboratory). Approximately 30,000 PDAC cells were injected 
into the surgically-exposed tail of the pancreas, as previously described in detail17. Cells were allowed to 
engraft; then doxycycline was initiated 1 week post-injection and given continuously in the drinking water at 1 
mg/mL. Mice were harvested at approximately 5 weeks post injection, once reaching morbidity. Primary 
tumor (PT), liver, lung, peritoneal macrometastases, and surgical-site lesions were sorted for both mice. Due 
to a more productive blood-draw, circulating tumor cells (CTCs) were captured for M1 but not M2. 
Additionally, the surgical-site lesion, which is similar in size and location to other peritoneal macrometastases, 
was processed separately in M1 but not M2. All mice were maintained in a specific pathogen-free 
environment at the University of Pennsylvania Animal Care Facilities. All experimental protocols were 
approved by and performed in accordance with the relevant guidelines and regulations of the Institutional 
Animal Care and Use Committee of the University of Pennsylvania. 
 
Blood harvest and preparation 
When harvesting tissues, blood was extracted first via cardiac puncture using a 25 gauge 5/8 needle with 1 
mL syringe attached. A successful blood draw was 400-700 µL, which was immediately transferred to a FACS 
tube containing 4% sodium-citrate in Milli-Q water. This was pelleted at 500 g for 5 min and red blood cells 
were lysed by resuspension in 2 mL ACK (Ammonium-Chloride-Potassium) buffer and incubation for 5 min at 
room temperature. 3 mL PBS were added and the mix was pelleted at 500 g for 5 min. Red blood cell lysis 
was repeated 2 times. Finally, cells were resuspended in 400 µL of cold FACS buffer (PBS, 2% FBS, 1 mM 
EDTA, 40 ug/mL DNase) with DAPI and strained through a 35 µm filter for FACS. 
 
Primary tumor, peritoneal macrometastases, and surgical-site harvest and dissociation 
Primary tumor and macrometastases (metastases that could be manually handled, including surgical-site 
lesion) were excised from surrounding tissue, removing as much normal surrounding tissue as possible. All 
macrometastases from a mouse were processed as one sample. Samples were then transferred to a 6-well 
plate and washed with cold PBS 3x. Samples were minced, then transferred into 10 mL of DMEM containing 
2 mg/mL collagenase IV plus 40 µg/mL DNase and incubated in a 37 ℃ shaker for 30 min. Cells were 
isolated by physical dissociation, filtered through a 70 µm cell strainer, and neutralized with cold DMEM. 
Samples were centrifuged at 350g for 5 min and resuspended in 500 µL cold FACS buffer (above). Cells were 
centrifuged at 350g for 5 min, resuspended in 1 mL cold FACS buffer with DAPI, pipetted up and down 5x 
gently with p1000, and strained through a 35 µm filter for FACS. Samples and cells were kept on ice 
throughout unless otherwise indicated. 
 
Liver and lung harvest and dissociation 
To minimize blood contamination in the liver and lungs, 25 mL of cold PBS was perfused into the right 
ventricle of the heart (after blood draw from the heart). The entire liver (any macrometastases near the liver 
surface were completely excluded) and lungs were excised and processed identically to PTs, until 
immediately following the 30 min shaking digestion step. Here, samples were filtered through 100 µm cell 
strainers and then neutralized and centrifuged as with PTs, except 250g was used instead of 350g for 
centrifugation steps.  
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Liver samples were resuspended and further digested in 5 mL TrypLE for 5 min at 37 ℃. Digestions were 
neutralized with cold DMEM + 10% FBS, centrifuged at 250g for 5 min, resuspended in 3 mL ACK, and 
incubated for 3 min at RT. Liver reactions were neutralized with cold PBS, centrifuged at 250g for 5 min, 
resuspended in 5 mL cold FACS buffer with DAPI, pipetted up and down 5 times gently with p1000, and 
strained through a 35 µm filter for FACS. 
 
Lung samples were processed identically to liver samples except the order of ACK and TrypLE digestion 
steps was reversed (ACK before TrypLE). Additionally, lung samples were much smaller than liver samples 
and were thus only resuspended in 500 µL of cold FACS buffer with DAPI for FACS. Both liver and lung 
samples were kept on ice throughout unless otherwise indicated. 
 
Cancer FACS sorting and 10x Chromium loading 
Cancer cells were isolated from dissociated tissues via FACS using a BD FACSAria II. After gating for singlets 
and live cells, GFP+ cells were sorted, thereby purifying PDAC cells from normal cells. For samples with a 
high yield of cells (PT, macrometastases, surgical-site), 30-35,000 cells were sorted on the purity setting. For 
each of the lung, liver, and blood samples, the entire sample was sorted on the yield setting to recover as 
many GFP+ cells as possible. The liver for M1 was stopped with 20% of the sample volume remaining due to 
excessively long sorting time. Cell numbers recovered for lung and liver were similar for each mouse (M1 liver: 
22,000 (80% of total), M2 liver: 30,000, M1 lung: 1,000, M2 lung: 1,500). 
 
After sorting, all samples were passed through a 30 µm filter and then centrifuged at 500g for 5 min and 
checked for visible pellets. Supernatant was removed to leave 20-30 µL of solution to not disturb the pellets. 
Remaining volume was measured and raised to 50 µL total by adding a 1:1 mixture of cold FACS buffer 
(without DNase) and nuclease-free water. 46.6 µL of these samples was loaded for 10x (Chromium Single Cell 
3’ Reagent Kits v3), thereby superloading some lanes with up to 25-30,000 cells (macsGESTALT single cell 
barcode sequencing allows explicit detection of doublets, Extended Data Fig. 10c, Methods: Clonal 
reconstruction and multiplet elimination). 
 
scRNA-seq library preparation and sequencing 
Single cell RNA-seq libraries were prepared as in the 10x Chromium Single Cell 3' v3 user guide (Rev A) until 
Step 2.3. After cDNA amplification, the 100 µL cDNA PCR was split 50:50 for separate barcode and 
transcriptome library preparation. Transcriptome library construction continued as in the 10x user guide 
instructions. Indexed and pooled single cell transcriptome libraries for each mouse were sequenced 
separately on the NovaSeq 6000 System with S2 100-cycle kits. 
 
Single cell barcode library preparation and sequencing 
For all single cell barcode PCRs (as for bulk DNA barcode PCRs), SYBR-containing master mix from the 
KAPA Real-Time Library Amplification Kit was used, and PCRs were stopped in mid-exponential phase. All 
primers were used at 10 µM. Primer sequence, purpose, and annealing temperature for all library preparation 
PCRs are included in Supplementary Table 3. 
 
The barcode split of the cDNA amplification reaction (from 10x Single Cell 3' v3 Step 2.2) was purified via 1.2x 
SPRI Select (Beckman Coulter #B23317). cDNA products were eluted in 40 µL of EB. Concentrations were 
measured by Qubit, and 2 ng/µL dilutions in EB were created for each sample. Barcode amplification and 
adaptor and sample index addition were performed in 2 sequential PCRs.  
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Barcodes were selectively amplified by PCR1. Here, 50 ng of each purified, diluted cDNA amplification 
sample was used to template a 100 µL PCR. After mixing, the reaction was split into 4 smaller reactions of 25 
µL each for cycling. PCR cycling conditions were 1) 95 ℃ for 3 min, 2) 14-15 cycles of 98 ℃ for 20 s, 65 ℃ 
for 15 s, 72 ℃ for 15 s. Sample reaction splits were re-pooled after cycling, and products were purified with 
0.9x SPRI Select and eluted in 60 µL EB. 
 
Sample indices were added in PCR2. Here, 5-10 µL of the eluted products of PCR1 (1:12 or 1:6 overall 
dilution) were used to template a 100 µL PCR, which was again mixed and split into four smaller reactions of 
25 µL each. PCR cycling conditions were 1) 95 ℃ for 3 min, 2) 6 cycles of 98 ℃ for 20 s, 65 ℃ for 15 s, 72 
℃ for 15 s. Sample reaction splits were re-pooled after cycling. Dual-sided size selection of complete 
barcode amplicons was performed using SPRI Select at an exclusion ratio of 0.5x and a selection ratio of 
0.7x. Amplicons were eluted in 32 µL EB.  
 
Barcode library size and concentration were checked via TapeStation HSD5000 and Qubit, respectively. 
Libraries were sequenced using Illumina MiSeq 600-cycle v3 Reagent Kits with the following run parameters: 
Read 1 - 28 cycles, i7 index - 8 cycles, Read 2 - 500 cycles. M1 was sequenced with 3 kits. Since barcode 
recovery only increased 5-10% with two additional kits for M1, M2 barcode library was sequenced with a 
single kit. Limiting dilution experiment libraries were also sequenced with a single kit. 
 
Single cell transcriptome data processing 
Single cell transcriptome sequencing data was aligned and processed using 10x Cell Ranger v3. Filtered 
matrices from Cell Ranger output were further processed using Seurat 3.0 (https://satijalab.org/seurat/). All 
samples across both mice were merged into a single Seurat object. Low quality cells with ≤1,000 genes or 
≥0.15 mitochondrial gene fraction (mito fraction) were filtered out. Cell cycle score and phase were 
determined for each cell using the CellCycleScoring function 
(https://satijalab.org/seurat/v3.1/cell_cycle_vignette.html).   
 
Variable feature selection, scaling, and normalization were performed using SCTransform, while regressing 
cycle scores and mito fraction. Dimensionality reduction by PCA was performed using the first 15 principal 
components (PCs). Cells were plotted in UMAP space and a clearly-separated, large cancer cell cluster was 
observed, distinct from smaller clusters of contaminating normal cells, mostly derived from samples sorted on 
the FACS yield setting. Contaminating normal cells were filtered out. 10x cell barcodes, here referred to as 
cellIDs, for the cancer cells were then exported and used for initial macsGESTALT barcode data filtering. 
 
Single cell barcode data processing 
Single cell barcode sequencing data was aligned, collapsed by UMI, and processed, as previously reported4 
via a pipeline available on Github (https://github.com/mckennalab/SingleCellLineage/). For each sample, stats 
files, containing aligned and collapsed edited barcode sequence data, were extracted from pipeline output 
and used for clonal and subclonal analysis in R. Sample stats file for different harvest sites from a mouse 
were merged. However, each mouse and limiting dilution experiment was processed separately. 
 
To ensure high-quality barcode data was used for reconstruction, five initial filtering steps were applied:  
First, cellIDs not present in the initial transcriptome cellID list (or v3 10x whitelist for limiting dilution 
experiments without transcriptional data) were filtered. Second, transcripts (UMIs) with incomplete static 
barcode (staticID) sequences were filtered. Third, staticIDs with less than two UMIs per cell were removed. 
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Fourth, staticIDs with less than two UMIs per cell on average were filtered. Fifth, staticIDs found in less than 5 
cells were filtered. Specific thresholds were determined by examining elbow plots of the relevant parameters. 
 
Clonal reconstruction and multiplet elimination 
Next, potential clonal groupings of cells based on staticID content (absence or presence) were identified by 
complete-linkage hierarchical clustering. The staticID content of resulting clusters was examined, and clusters 
were found to be often improperly fractured due to cells with undetected staticIDs. To identify real clones 
defined by sets of staticIDs, clustering results were pruned by excluding clusters of less than five cells and 
staticIDs found in less than 20% of cells for a particular cluster. For clusters of less than 20 cells, staticIDs 
found in less than 35% of cells were further excluded. Then, clusters that were either duplicates or subsets of 
other clusters in terms of their defining staticIDs were collapsed. Finally, remaining staticID cluster sets were 
manually inspected for improperly fractured clusters, and any remaining improper cluster splits were merged 
or collapsed (usually this was either not necessary or was only needed for a few clusters).  
 
After cluster cleanup, staticID sets were extracted and used to assign cells. Cells were matched to clusters 
based on their staticIDs. This process also served to explicitly identify interclonal multiplets, i.e. if a cell 
matched two or more clusters, this cell was removed as a multiplet. This method performed well, as only a 
small fraction of cells, ranging from 0 to 0.54% across experiments, went unmatched. Unmatched cells likely 
belonged to very small clones, only found in in vivo experiments. Furthermore, the percentage between mice 
was strikingly consistent (M1: 0.54% and M2: 0.51%), highlighting the reproducibility of the cancer model 
system and reconstruction approach. Only matched singlets were retained for downstream analysis. 
 
With this orthotopic model, it is possible that some of the cells injected can leak out of the pancreas during 
and after injection and directly colonize the peritoneal cavity (although we sought to minimize this as 
previously described17). To eliminate any such cells from further analysis, we filtered clones that were 
detected in disseminated sites but not in the PT. This resulted in the removal of a small number of cells (M1: 
1.49% and M2: 0%) from a few clones only found in peritoneal macrometases and in the surgical site lesion 
of M1. 
 
In a true singlet, without genomic duplication of a barcode, each cellID-staticID pair should have a single 
mutagenized allele. To detect potential intraclonal multiplets or duplicated barcodes, we calculated the 
number of unique mutagenized evolving barcodes for a cellID-staticID pair, and mutagenized barcodes with 
less than 25% of the UMIs for that cellID-staticID pair were removed as technical noise. 
 
PDAC is known to undergo large-scale copy-number changes via chromosomal instability. We observed this 
in our CNV analysis using InferCNV (Extended Data Fig. 7). While most staticIDs had a median of one 
mutated allele per cell, some had a median of two and a notably higher average. We speculated that these 
might be barcodes that resided in genomic areas that underwent copy number gain at some point after 
barcode integration. StaticID that had an average of 1.3 or greater mutated alleles per cell were considered to 
be potentially duplicated or triplicated. 
 
Per 10x Chromium 3' Single Cell v3 documentation (page 16), our overall expected multiplet rate for in vivo 
experiments with superloading was approximately 12% to 15%. Having explicitly detected and filtered 
interclonal multiplets, we next removed potential intraclonal multiplets. We filtered all cells with an average 
number of unique mutated alleles per staticID greater than 1.25, except for cells containing a potentially 
duplicated staticID; for these cells, the threshold was less stringent, at greater than 3. This resulted in 
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appropriate overall multiplet rates of 12% for M1 and 15.7% for M2. Only true singlets were retained for 
further analysis. 
 
After these filtering steps, clones that were detected in disseminated sites but not in the PT were again 
removed if present, and clones were then numbered by their size in the primary tumor, largest to smallest. 
These rankings are used to refer to clones throughout the paper with the mouse number appended, i.e. M1.1 
or M2.14. These finalized clones were used for calculating clone size and clone fraction for each harvest site. 
These final filtered, clone-assigned singlets were used for further single cell transcriptional analysis.  
 
Clonal aggression scores were estimated by giving points for size and fraction. For each non-PT harvest site 
where a clone was present 0.5 points were awarded. If the clone's fraction was higher at a disseminated site 
than at the PT than it was rewarded an additional 1 point for that site. If a clone made up 5% or more of a 
disseminated site it received an additional 0.5 points for that site and a further 0.5 points if it was 10% or 
more. 
 
For limiting dilution validation experiments, cells were visualized by their static barcode expression using 
tSNE in Seurat. A static barcode (rows) by cells (columns) expression matrix was generated. Just as in a 
regular transcriptome scRNAseq analysis, this matrix was used to generate a SeuratObject, which was then 
processed as a transcriptional dataset, where static barcodes were treated as features. The first 50 
dimensions were used for tSNE plotting. 
 
Single cell transcriptional analysis 
Transcriptional analysis continued using only singlets with quality barcode information (from above section). 
Seurat objects were converted into cell_data_set objects, and Monocle 3 (https://cole-trapnell-
lab.github.io/monocle3) was used for all further transcriptional analysis. Preprocess_cds was run with top 20 
dimensions (PCA) and align_cds was run with batch correction for harvest site and regression for cycle 
scores and mito fraction. Cells were plotted in UMAP space and two clusters of low quality or contaminating 
cells were removed. The first was a cluster of cells distinguished by high ribosomal fraction that was derived 
from cells of many clones and harvest sites. These cells were likely technical artifacts observed from droplet 
library preparation. The second was a cluster of cells with high hepatic gene expression. These cells derived 
from primarily the liver harvest sites and were most likely contaminating tumor-liver multiplets that had 
escaped initial filtrations steps. 
 
Following these filtrations, preprocess_cds and align_cds were run again as before but with the top 25 
dimensions, as determined by examining an elbow plot using plot_pc_variance_explained. Cells were plotted 
in UMAP space and clusters found using cluster_cells. Further transcriptional analyses and visualizations on 
all mouse cancer cells together were performed using Monocle 3 functions and custom R scripts as needed. 
For analyses on individual mice, cells were extracted and reprocessed as above but with the top 20 
dimensions by PCA.  
 
Copy-number variation (CNV) analysis 
InferCNV was used for single cell CNV analysis (https://github.com/broadinstitute/inferCNV/wiki). Default 
settings were used. Cutoff = 0.1 was used, which is recommended by InferCNV for 10x data. Clones were 
treated as cell groups, with cluster_by_groups = T. Clones with >200 cells were downsampled to 200. For 
clones ≤200 cells, all cells were included. 
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PseudoEMT analysis 
PseudoEMT or pseudotime analysis was performed by finding a trajectory in UMAP space using learn_graph 
with default settings. The root (most epithelial region) was placed where epithelial gene expression peaked. 
This additionally led to the most mesenchymal region existing at the end of the trajectory, thus resulting in a 
pseudoEMT spectrum. To find genes whose expression varied significantly along pseudoEMT, graph_test 
was used with the 'principal_graph' parameter selected. The top 3000 genes were retained, all of which had q 
~ 0 and Moran's I > 0.1 (Supplementary Table 1). For the top 3000 genes, kinetic expression curves were 
clustered into groups by ward.D2 clustering using the R Pheatmap package, and the resulting tree was cut 
into six groups, which were named in order from epithelial to hybrid to mesenchymal patterns of expression. 
 
To find enriched transcription factor motifs within the six gene clusters, findMotifs.pl from HOMER was used 
with the provided mouse promoter set. All default parameters were used, except for promoter region (-500, 
50 bp from TSS) and background promoter frequency (derived from all top 3000 pseudoEMT genes). Known 
motifs passing an enrichment cutoff of p < 0.05 were extracted. The target genes of each motif were obtained 
using HOMER’s annotatePeaks.pl. Also for each pseudoEMT gene group, molecular signature database 
(mSigDB) gene set enrichment was determined using the hypergeometric test within HOMER. 
 
Subclonal and phylogenetic reconstruction 
Using filtered barcode data (Methods: Clonal reconstruction and multiplet elimination), duplicated 
barcodes were removed entirely (this also removed any cells whose only recovered barcodes were 
duplicated). Cells with greater than one unique mutated allele per staticID were then filtered. For each cell in a 
clone, a barcode-of-barcodes was generated by concatenating all evolving barcode alleles, ordered by 
staticID. If a cell was missing a staticID, 'UNKNOWN_UNKNOWN_UNKNOWN_UNKNOWN_UNKNOWN' was 
concatenated for that staticID to note the missing information for all five target sites. Thereby, for an example 
clone defined by four staticIDs, every cell had four evolving barcodes concatenated in order and 20 target 
sites overall, including any missing information. 
 
Within each clone, cells with identical barcode-of-barcodes were then grouped into subclones of 
indistinguishably closely related cells. To limit computational time required for downstream phylogenetic 
reconstruction of subclonal relationships, we pruned subclones of only a single cell from the largest clones, 
i.e. clones with ≥50 cells. This greatly increased computational efficiency while still retaining meaningful 
subclones. 
 
Separate files were constructed for each clone, containing subclones with associated barcode-of-barcodes 
alleles. Phylogenetic reconstruction of subclonal relationships was performed for each clone barcode-of-
barcodes file separately via TreeUtils (https://github.com/mckennalab/SingleCellLineage/). TreeUtils 
performed reconstruction using Camin-Sokal maximum parsimony via the PHYLIP Mix software package55 as 
previously described in depth4. 
 
Further analysis then resumed in R. Clone Newick files were extracted from TreeUtils output and converted to 
an edgelist dataframe format. Clone edgelists were combined into a single large edgelist with a common root 
node (for each mouse separately). A small fraction of clones that were entirely defined by staticIDs that had 
been genomically duplicated, and were thus left out of phylogenetic analysis, were added back as a single 
node emerging directly from the root. At this point, cellIDs were added as terminal nodes emerging from 
subclone nodes (or directly to clone nodes for clones that were left out of phylogenetic analysis due to 
barcode copy gain). Cell nodes were then annotated with harvest site, transcriptional, and other information 
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as needed. For circle pack or tree visualization, edgelist datafames were converted to igraph graph objects 
(https://igraph.org/r/) and plotted using ggraph (https://github.com/thomasp85/ggraph). 
 
Subclonal dissemination calculation 
Shannon's Equitability (EH) was used as a statistical measure of dissemination across harvest sites. To 
calculate EH, Shannon Diversity (H) was first calculated as follows: 
 

 
 

S is the number of distinct harvest sites analyzed (six for M1, four for M2). p is the sampling normalized 
proportion at which a subclone is recovered from a harvest site, i.e. if a subclone is only found in the PT, pPT = 
1, while p = 0 for all other sites. A subclone's H is then used to calculate its EH as follows: 
 

 
 

EH therefore normalizes H by the number of harvest sites analyzed to exist between 0 and 1, with 1 being 
completely even dissemination and 0 being no dissemination. For example, a subclone found at only one 
harvest site is not metastatically aggressive and has an EH = 0. 
 
PseudoEMT across ancestral relationships 
Comparison of pseudoEMT for root clades, subclones, and cells was performed in R. To determine root clade 
pseudoEMT values, we recursively calculated the weighted mean pseudoEMT value of ancestral nodes 
moving backwards along phylogenetic trees. Root clades were the nodes immediately preceding the 
common root of M1.1. These clades are depicted by the outermost circles in the circle packing visualizations 
of M1.1 (Fig. 4a,b). The density of root nodes, subclones, and cells along the pseudoEMT axis was then 
plotted as a ridge plot for comparison. 
 
PseudoEMT gene cluster TCGA survival analysis 
PseudoEMT genes (n = 3000) were mapped to their human homologs using getLDS() from the biomaRt 
package. All homologous genes were included. Preprocessed transcriptomic data (FPKM abundance after 
upper quantile normalization; FPKMuq) for pancreatic adenocarcinoma patients (n = 173) from the TCGA 
Pancreatic Adenocarcinoma project (TCGA-PAAD; https://www.cancer.gov/tcga) were obtained using the R 
package TCGAbiolinks. Using the singscore56 package, patients' enrichment scores were determined for each 
pseudoEMT gene cluster (E, H1, H2, H3, H4, M). Survival (from the time of pathological diagnosis) was 
obtained from TCGA-PAAD clinical data. Univariate and multivariate Cox regression analysis was performed 
in the R environment (survival, survminer) to determine the hazard associated with each pseudoEMT gene 
signature. Wald test, LLR and Score test were all significant, indicating the regression model was significant 
(p = 0.02). 
 
Pseudobulk and metagene analyses 
The aggregate_gene_expression function from Monocle 3 was used to perform pseudobulk and metagene 
analyses. For testing whether clones retained their transcriptional identity, pseudobulk samples consisting of 
clone and harvest site combinations were generated, and only pseudobulk samples with >20 cells were used 
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for further analysis. The entire transcriptome for each pseudobulk sample was aggregated and used to 
hierarchically cluster samples via the Pheatmap package, with the ward.D2 clustering option. 
 
Data availability 
Single cell lineage tracing data and transcriptional data will be made available online via a data sharing 
platform, such as Dryad, figshare, or Gene Expression Omnibus. Plasmids needed to implement 
macsGESTALT will be deposited in Addgene. 
 
Code availability 
Code used for clonal and subclonal reconstruction and related analyses will be made available via GitHub.  
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Extended Data Fig. 1

Extended Figure 1: gRNA array editing screen. Barcoded 
293T cells were transfected with constitutive Cas9 vector 
(px330) and co-transfected with a variety of controls or gRNA 
expression formats. Barcode genomic DNA was collected and 
bulk sequenced one week post-transfection, and for each 
condition, the percent at which each barcode base was deleted 
(red) or adjacent to an insertion (blue) is indicated, along with 
target site spacers (light grey) and PAMs (dark grey). Controls 
included no transfection (only Cas9) negative control (a), GFP-
only negative control (b), IVT gRNAs positive control (c), and 
each gRNA placed (targeting sites 5-9) under its own U6 
promoter (d). e, gRNA-tRNA array (targeting sites 1-5) under a 
U6 promoter (selected for PDAC experiments due to both high 
editing rate and compact size). f, A split gRNA array with a 
crRNA-tRNA portion (targeting sites 2-10) and a tracrRNA 
portion under U6 promoters, where the crRNA portions can 
complex with the tracrRNA portions when expressed. g, The 
same array is in f but with the crRNA-tRNA array in 3'UTR of a 
dox-inducible GFP and cultured in three different doses of dox 
post-transfection for 5 d (this configuration was leaky with no 
change in editing rate with dox administration). 
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Extended Data Fig. 2

Extended Figure 2: Dox-induced macsGESTALT PDAC cells edit evenly across sites and accumulate edits over time. 
macsGESTALT PDAC cells cultured in dox for one (top) or two (bottom) weeks, and barcodes were bulk DNA sequenced. The 
percent at which each barcode base was deleted (red) or adjacent to an insertion (blue) is indicated, along with expected cut sites 
(dotted lines, 3 bp upstream of PAMs). Beneath editing plots, the top 25 most commonly observed alleles are illustrated with the 
number of observations for each on the right. Leakiness was primarily localized to the first target site, while sites 2-5 remain largely 
unmutated until dox administration. 
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Extended Figure 3: Dox-inducible editing initiates and peaks at low doses in macsGESTALT PDACs. Cells were cultured 
under six different dosages of dox for 2 weeks and barcodes were bulk DNA sequenced and editing rates plotted. 
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Extended Data Fig. 4

Extended Figure 4: In vitro validation of clonal reconstruction and single cell readout of macsGESTALT PDAC cells. a, 
macsGESTALT PDAC cells were plated at two limiting dilutions, expanded without splitting (even if confluent), and barcodes 
were scRNA sequenced. b, Potential clones of expanded cells were identified based on static barcode overlap via 
hierarchical clustering. c, Approximately the expected number of clones were identified for the 5-cell dilution, while the 100-
cell dilution retained a smaller fraction of clones likely due to extended culture time under confluence. All cells were 
successfully matched to a clone and multiplets were explicitly identified (Methods: Clonal reconstruction and multiplet 
elimination). d, Cells were plotted in tSNE space based on their static barcode expression. Cells clustered in tSNE space 
consistently with their clonal assignments. e, Two examples illustrating static barcode expression confined to specific clones. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.245787doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245787
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

 

  

3048

4339

3007

1620 Harvest site
CTCs
Liver mets
Lung mets
Peritoneal mets
Primary tumor
Surgical mets

3580

9601

2094

b

Cells passing initial transcriptome filters
Cells with static barcodes
Clones discovered
Total static barcodes
Matched singlets
Unmatched cells
Multiplets
Barcode recovery per cell
Singlets passing final transcriptome filters

Mouse 1
18,988
16,861

29
64

14,452
91 (0.5%)

2018 (12.0%)
3.7/5.9 (62%)

12,657

Mouse 2
25,930
19,899

66
163

16,662
102 (0.5%)

3134 (15.7%)
1.7/2.5 (69%)

15,371

a

Mouse 1 Mouse 2

96

171

472

Extended Data Fig. 5

Extended Figure 5: Summary of barcode, cell, and clone recovery in metastasis experiments. a, Table summary for 
each mouse. b, Number of single cancer cells obtained from each harvest site after filtering. 
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Extended Data Fig. 6

Extended Figure 6: Clones retain transcriptional identity after metastasizing. Cells were analyzed as clone-site 
pseudobulk samples (i.e. cells from each clone and harvest site combination were aggregated and treated as a bulk sample, 
Methods: Pseudobulk and metagene analyses) and each sample was colored by clone. Only pseudobulk samples with >20 
cells were used. Clone-site pseudobulk samples were hierarchically clustered based on whole transcriptome expression. 
Pseudobulk samples displayed preferential clustering by clone rather than harvest site. 
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Extended Data Fig. 7

Extended Figure 7: Genomic copy-number changes among clones. Copy number variation analysis was performed on all 95 
clones. Clones with >200 cells were downsampled to 200 cells to perform CNV analysis with InferCNV. Vertical black lines divide 
clones (many small clones are not visible), and horizontal lines divide chromosomes. Large scale copy number changes are 
visible between and within clones. 
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Extended Data Fig. 8
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Extended Figure 8: Expression of epithelial and mesenchymal genes. Epithelial markers (a), mesenchymal markers, including 
extracellular matrix genes (b), and canonical EMT-TFs (c) expressed in M1 cells. 
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Extended Data Fig. 9
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Extended Figure 9: Fluctuation of genes and cell cycling across pseudoEMT. Epithelial markers (a), extracellular matrix 
mesenchymal genes (b), canonical EMT-TFs (c), and selected genes with unusual kinetics (d) across pseudoEMT. e, Fraction of 
cells cycling, i.e. in S/G2M cell cycle phase, across pseudoEMT. 
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Extended Data Fig. 10
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Extended Figure 10: Editing summary of evolving barcodes in metastasis experiments. a, Summary table of the number of 
barcodes/target sites recovered, and the rate at which they were observed to carry a mutation. Additionally, the number of 
distinct edits, evolving barcodes, and barcode-of-barcodes are displayed. In the last three rows in the last column, the number 
of overlapping edits, evolving barcodes, and barcode-of-barcodes between the mice is indicated in parentheses. b, The 
proportion at which a deletion impacts 1, 2, 3, 4, or 5 target sites. c, Size distribution for insertions, single-target deletions, and 
multi-target deletions. 
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