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Abstract 

Single-cell RNA sequencing (scRNA-seq) revolutionised our understanding of disease biology 

and presented the promise of transforming translational research. We developed Besca, a 

toolkit that streamlines scRNA-seq analyses according to current best practices. A standard 

workflow covers quality control, filtering, and clustering. Two complementary Besca modules, 

utilizing hierarchical cell signatures or supervised machine learning, automate cell annotation 

and provide harmonised nomenclatures across studies. Subsequently, Besca enables 

estimation of cell type proportions in bulk transcriptomics studies. Using multiple heterogeneous 

scRNA-seq datasets we show how Besca aids acceleration, interoperability, reusability, and 

interpretability of scRNA-seq data analysis, crucial aspects in translational research and 

beyond. 
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Introduction 

Major breakthroughs in our understanding of rare cell types, tissue heterogeneity, cell 

differentiation and transcriptional regulation have been enabled by the increased resolution in 

detecting gene expression provided by single-cell RNA-sequencing (scRNA-seq). Encouraged 

by early successes, pharmaceutical research has also embraced the technology, to accelerate 

drug discovery. In this context, scRNA-seq is used to better understand disease phenotypes [1], 

to assess drug targets [2], to characterize microphysiological systems [3] and to measure cell-
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type-specific pharmacology and toxicity of drug candidates [4], among others. In addition, 

scRNA-seq assists characterization of in vitro and in vivo disease and safety models by offering 

insights in cell-to-cell communication [5], cell activation [6] or differentiation trajectories [7]. 

 

Current challenges in the analysis of single-cell transcriptomics data are predominantly related 

to the biological interpretation of the analysis results rather than to the computation thereof [8]. 

Whereas the computational part can be automated, biological interpretation requires manual 

user interaction. By putting our focus on accelerating the cell type annotation process, which is 

currently a bottleneck in scRNA-seq analyses [9], we aim to streamline the analysis process to 

ensure that researchers invest their time where it is most effective and to allow for consistent 

biological investigation. Therefore, we automate and standardize multiple analysis steps as far 

as possible, in line with current best practices in the community [10–12]. An automated and 

standardized solution will allow researchers to take full advantage of the rapidly growing 

amount, size, and scope of single cell data generated [13,14]. 

 

Here, we introduce Besca, a toolkit for the rapid and standardized analysis of scRNA-seq 

experiments and the utilisation thereof for the deconvolution of bulk RNA-seq data (Fig. 1). 

Besca is an open-source Python library that is compatible with and extends Scanpy [15], one of 

the most established and up-to-date single-cell analysis toolkits. Besides functionalities to 

analyse scRNA-data, Besca also provides the Besca proportions estimate (Bescape) module, 

which integrates two cell deconvolution methods: SCDC [16] and MuSiC [17]. Beyond RNA-

focused studies, Besca supports analysis of datasets generated by the recently developed 

CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) [18] method, hence 

accounting for multimodal analysis. 
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Fig. 1 Besca provides streamlined single-cell transcriptomics data analysis modules and 

exchange file formats. a Well-defined interoperable input and output file formats, cluster 

metrics, a quality control report and a signature storage ensure reusability of data. b The 

standard workflow internalizes a raw count matrix and generates a quality control report 

as well as a processed dataset post filtering, normalization, highly variable gene 
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selection, batch correction, and clustering. c,d: Clusters identified from the standard 

workflow are annotated using either signature-based hierarchical cell annotation (Sig-

annot module, c) or a supervised machine learning-based algorithm trained on 

previously annotated datasets (Auto-annot module, d). e The annotated datasets can be 

used to deconvolute bulk RNA-seq data based on gene expression profiles generated 

from annotated single-cell datasets utilizing the Bescape module. 

 

As Besca builds upon and extends concepts and functions from Scanpy, it seamlessly 

integrates with other ecosystem tools for visualisation or specialised analyses tools such as 

scVelo  [19] and CellRank (http://cellrank.org/) for cellular trajectory and fate [20] analysis or 

Scirpy [21] for T-cell receptor analysis. We envision Besca to accelerate translational research 

by providing streamlined analysis workflows, ranging from standardized quality control and 

filtering to harmonised cell annotation.  

 

The Bescape module provides a framework to reuse these cell annotations by exploiting 

scRNA-seq expression profiles for cell deconvolution (Fig. 1e). This adds value to bulk RNA-seq 

studies, especially in larger clinical settings that do not yet have the capacity to perform scRNA-

seq and where signals are often confounded by heterogeneity related to distinct cell type 

composition [22]. The resulting estimated cell compositions can then be used directly as 

biomarkers or as covariates towards getting more robust differential gene expression results for 

understanding disease biology or treatment responses.   

 

In this manuscript, we exemplify how using Besca makes analysis results more comparable 

between studies. We also demonstrate how to transfer learnings from one study to another, for 

instance by reusing cell type annotations, and from one application to another, for instance by 

using single-cell gene expression profiles for cell deconvolution of bulk RNA-seq. To 
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demonstrate how Besca can be applied to a wide variety of biological samples, we reprocessed 

publicly available single-cell data from ten studies (see Table 1 and Methods). We show how 

the Besca toolkit can be used to obtain biological insights quickly and generate reusable results 

from these highly diverse datasets. Further examples can be found in the supplementary 

material, example workbooks on GitHub 

(https://github.com/bedapub/besca_publication_results), and in the tutorials available from the 

documentation (https://bedapub.github.io/besca/). 

 

 

Table 1 Dataset overview, including hematopoietic cells of peripheral blood and bone 

marrow (orange), intestine (blue) and pancreas (green) in health and disease.  

 

Tissue

Area of interest Healthy
Mixed-phenotype 

acute leukemia

Vaccine 

responsivenes
Ulcerative colitis Crohn's disease Mouse Colorectal cancer Type II Diabetes

Pancreatic ductal 

adenocarcinoma
Healthy

Dataset PBMC3k Granja2019 Kotliarov2020 Smillie2019 Martin2019 Haber2017 Lee2020 Segerstolpe2016 Peng2019 Baron2016

Original data 

accession
10xgenomics.com GSE139369

10.35092/yhjc.c.47

53772
SCP259 GSE134809 GSE92332 GSE132465 E-MTAB-5061 PRJCA001063 GSE84133

Processed data 

DOI

10.5281/zenodo.3

948150

10.5281/zenodo.3

944753

10.5281/zenodo.3

938290

10.5281/zenodo.3

960617

10.5281/zenodo.3

862132

10.5281/zenodo.3

935782

10.5281/zenodo.3

967538

10.5281/zenodo.3

928276

10.5281/zenodo.3

969339

10.5281/zenodo.3

968315

CITE-seq No Yes Yes No No No No No No No

Standard

workflow
S, N N N N N N N N N N

Sig-annot, 

signature-based 

cell annotation

N M
2
, N M

3
, N N N N S, N N S, N N

Auto-annot, 

supervised cell 

annotation
M4, S, N M4, S, N M4, S, N M5, S, N M5, S, N M5, S, N - S, N S, N S, N

Bescape,  bulk 

RNA-seq 

deconvolution

- - M6, R - - - - M6, R - -

Intestine PancreasBone marrow and peripheral blood

M = Main manuscript; S = Supplementary material; N = Notebook on GitHub (https://github.com/bedapub/besca_publication_results); R = R Markdown on GitHub (https://github.com/bedapub/bescape)
2Fig.2; 3Fig. 3; 4Fig. 4; 5Fig. 5; 6Fig. 6
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Results 

A standard workflow streamlining scRNA-seq and CITE-seq 

analyses 

The Besca standard workflow offers a standardized series of steps, starting from a gene-by-cell 

count matrix and ending with cell clustering (Fig.1b). Based on Scanpy [15], the workflow 

provides standard processes to treat single-cell transcriptomics data in a reproducible and 

comparable manner. Good practices and FAIR (findability, accessibility, interoperability, 

reusability) principles [23] enable comparisons between all datasets analysed with Besca 

improving translational research. The steps of single-cell analysis are described at length by 

Luecken and Theis [11]. Besca’s standard workflow detailed in the Methods follows these steps 

and in addition allows for the processing of CITE-seq [18] data. 

 

The standard workflow generates a quality control (QC) report and a log file which summarize 

the performed analysis (Fig. 1a). For future reuse, all of the analysis results are written to files in 

interoperable data formats (see Methods) including output files of precomputed metrics, such as 

average gene expression or marker gene rankings (Fig. 1a). Additional downstream analyses 

such as automated cell type annotation can be run directly on the output of the standard 

workflow. The cell type annotation of the clusters can be performed using the Sig-annot (Fig. 1c) 

or Auto-annot (Fig. 1d) methods described thereafter and a re-clustering framework is available 

to decipher cell populations with higher resolution. In addition, functions for recurrent 

visualizations are implemented to illustrate gene expression variation under certain conditions 

(e.g. treatment effect) or to show the cell type composition found in the analysed dataset. The 
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standard workflow and subsequent manual cell type annotation are exemplified in 

Supplementary Figure S1 utilizing the PBMC3k dataset.  

A gene signature management system  

The integration of multiple scRNA-seq datasets allows for the accumulation of knowledge and 

insights about biological tissues, cells, cell states, and diseases. As the development of suitable 

scRNA-seq integration data increases, a key challenge in single-cell data analysis workflows is 

the accurate dissemination of this knowledge and the appropriate reuse of the information 

gathered. In particular, it is of utmost importance to be able to re-apply gene signatures 

extracted from individual studies across studies and within analyses. To this end, we connected 

Besca to the Geneset Management System (GeMS) (https://github.com/bedapub/GeMS). 

GeMS is a light web-based platform that enables the centralized management of genesets 

using structured formats and a local application programming interface for geneset information 

retrieval and organization. The application is built on top of the Flask micro-framework 

(https://flask.palletsprojects.com) using MongoDB (http://www.monogdb.com), an open-source, 

document-based database as its backend. 

 

Once GeMS is deployed, Besca allows the export of gene signatures to the GeMS database (for 

example a geneset of marker genes from distinct populations) and the retrieval of user-defined 

signatures (Fig. 1a). It is also possible to check for geneset similarity to avoid redundancy within 

the database and check for signature specificity. GeMS is distributed with initial public genesets 

extracted from Reactome [24], CREEDS [25], CellMarker [26] and MSigDB [27,28] and can be 

filled with new genesets. Besca allows for direct usage of these genesets for signature 

enrichment analysis and can compute bi-directional scores combining up and down-regulated 

genes into one metric. Besca is distributed with signatures related to different tissue types 
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including hematopoietic, intestinal and pancreatic cell types as well as an extended list of 

immune-related signatures. 

Automated and harmonized cell type annotation 

Cell type identification in scRNA-seq poses great challenges, mainly related to the lack of a 

biological consensus of what a cell type actually represents and a patchy overview of existing 

cell types and their identity footprints on the transcriptomic level [29,8]. During recent years, a 

large number of approaches and computational methods have been developed to address the 

attribution of cells to discrete types, however a one-fit-for-all approach is still lacking [30]. At the 

most basic level, cell types are attributed iteratively to individual clusters after manual inspection 

of the expression of a handful of markers according to expert biological knowledge of the 

studied system. Importantly, the vast majority of scRNA-seq-based publications have taken this 

approach in the past (see e.g. [31–39]). However, such an approach is limited by the availability 

of expert knowledge, does not scale to processing a large number of samples, and is poorly 

reproducible across individual studies. 

 

In order to standardize this process, while maintaining the flexibility of adjusting marker genes 

and expression cut-offs across studies according to prior knowledge, we developed Sig-annot  

(Fig. 1c), a Besca module that provides a hierarchical signature-enrichment approach for cell 

type annotation (see next paragraph). To guarantee consistency across studies and 

communities, beyond scRNA-seq, the proposed cell type annotation schemas are based on the 

Cell Ontology [40], which is accessible via the Experimental Factor Ontology [41]. The 

controlled vocabularies at different cell type hierarchies are summarized in an annotation sheet 

(Supplementary Table S1) and can be easily extended with further cell types. Newly generated 

cell type annotations in this manuscript provide the most fine-grained annotation as DBlabel 
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assignment, which follows the Cell Ontology whenever possible, as well as higher level 

annotations according to the annotation sheet. 

Sig-annot, Besca’s signature-based hierarchical cell annotation 

schema 

Sig-annot is Besca's streamlined version of the manual process of cluster attribution based on 

marker gene enrichment including ready-to-go annotation schemas for a broad range of cell 

types, with a particular focus on immune cells. The flexible, multi-level identification schemas 

are based on a configuration file containing the cell types and their relations as well as the 

corresponding cell type signatures (see Methods). Default configuration files for human and 

mouse are provided, covering a large range of tissues and cell types (human: Supplementary 

Table S2, mouse: Supplementary Table S3). These files are easily customisable and users are 

free to provide additional schemas or annotations. The corresponding cell type signatures 

provided with Besca (Supplementary Table S4) are derived and adapted from various scRNA-

seq experiments and publications, with subsequent manual curation. As demonstrated here, 

they can be applied across tissues and potentially even species (with some dataset-specific 

adjustments) and represent a fast and consistent way of determining the most likely cell type 

composition in complex, large-scale scRNA-seq experiments.  

 

For convenience, we have implemented various functions to guide the annotation based on the 

Sig-annot framework, and also provide visualisation at individual steps. For instance, one can 

visualise the relation between the individual cell types as a graph (Fig. 2a), plot the enrichment 

of individual signatures across all clusters in the dataset as a heatmap (Fig. 2b), directly 

generate annotations at distinct levels in the cell hierarchy and add these in bulk to the AnnData 

(https://anndata.readthedocs.io) metadata.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.11.245795doi: bioRxiv preprint 

https://anndata.readthedocs.io/en/latest/
https://doi.org/10.1101/2020.08.11.245795
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Fig. 2 Besca’s Sig-annot module applied. a Overview of the cell type hierarchy provided 

with Besca’s Sig-annot module and employed for annotating the datasets in the current 

manuscript. b-e: Granja2019 data containing hematopoietic cells of multiple healthy 

donors from blood and bone marrow, probed by CITE-seq. b Hierarchically clustered 
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heatmap showing enrichment of main signatures employed in the annotation across 

Leiden clusters, facilitating the evaluation of cluster attribution. c Overview of clustering 

in 2D UMAP space. d Overview of one of the signatures employed in cell annotation; 

neutrophils are typically rare in scRNA-seq experiments because of their sensitivity to 

cell isolation protocols, but can be clearly detected in the Granja2019 dataset based on 

the Besca included signature. e Sig-annot cell type attribution at level 1, consisting of 

major cell types such as T cells and myeloid cells. All detected populations are broadly 

consistent with the original annotation (g). f Sig-annot cell type attribution at level 3, the 

highest resolution provided in Besca's cell annotation schema. The detected populations 

are consistent with the original Granja annotation (g), cover T cell subsets with higher 

granularity and attribute the previously unknown ("14_Unk" and "26_Unk") clusters as 

well. g Original cell type attribution as obtained from Granja et al. Annotated cell 

populations are highly consistent with clusters obtained from the reanalysis of the 

original data following the Besca standard workflow. 

 

To exemplify this approach and its utility across samples of various origin and characteristics, 

we apply it to recent publicly available datasets covering most known hematopoietic cell types 

[42] and show that we are able to reproduce and enhance the original expert-driven annotations 

[31,32] (Fig. 2 and 3). As one of the datasets also contains information on the expression of a 

large number of surface protein markers, we can confirm that our cell type attribution is in line 

with our current protein-level understanding of hematopoietic cell biology (Fig. 3b and d, 

Supplementary Figure S2).  
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Fig. 3 Sig-annot applied to Kotliarov2020 data containing hematopoietic cells of multiple 

healthy donors from blood, probed by CITE-seq. a RNA signature-based cell type 

attribution at level 2, consisting of cell subtypes such as CD4+ T cells and classical 

monocytes. b Protein-marker based annotation using a gating method of classical FACS 

markers at a similar hierarchical depth as described in (a). Cell attribution is highly 

consistent with the automated RNA based results. c,d RNA signature-based (c) and 

protein-based (d) cell type attribution at the most fine-grained level 3. Even immune cell 

subtypes such as memory versus naive B cells or rare populations such as regulatory T 

cells and plasmacytoid dendritic cells are correctly attributed.  
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We note that in our annotations, we employed the same set of signatures and configuration 

files, successfully obtaining consistent annotations of hematopoietic cells derived from 

independent experiments, each with distinct levels of resolution and cell type frequency and 

representation, covering human blood and bone marrow. Importantly, our approach is 

automated, in the sense that only minimal changes (if any) are required for re-annotating each 

dataset should e.g. filtering/clustering be modified. It is also fully reproducible if the signature 

matrix and configuration files are stored for each annotation event. The distinct levels provide 

flexibility in terms of the annotation depth - one can easily choose to inspect differences 

between myeloid cells and T cells, or alternatively examine myeloid cell subsets, as each cell is 

attributed all hierarchical annotation levels present in the configuration file. Finally, we 

demonstrate that our approach is also applicable to more complex settings such as 

heterogeneous tumor samples, as exemplified by the annotation of publicly available colorectal 

cancer and pancreatic cancer data (see Supplementary Figures S3 and S4). 

Auto-annot, Besca’s supervised machine learning module for cell 

type annotation 

In addition to the signature-based annotation approach, Besca provides the Auto-annot module 

(Fig. 1d), a supervised machine learning workflow for automated cell type annotation based on 

well annotated training datasets. Recently, supervised machine learning has become a popular 

alternative to signature-based cell type annotation [43–46]. Benchmarking studies of such 

methods revealed that tailored single-cell classifiers or deep learning algorithms do not perform 

significantly better than conventional general purpose machine-learning methods [30,47]. 

Therefore, we implemented methods for supervised machine learning based on support vector 

machines (SVMs) or logistic regression. One or multiple annotated reference datasets can be 
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used to train a classifier for the annotation of a test dataset. Further details of the 

implementation are described in the Methods. 

 

We demonstrate the application of Auto-annot on scRNA-seq data from healthy PBMCs. The 

datasets Kotliarov2020 and Granja2019 (Table 1, [31,32]) were used to train a logistic 

regression model, which was then tested on the PBMC3k dataset (Table 1, 

https://www.10xgenomics.com/). The training data includes far more cells and is annotated 

more fine-grained, a scenario we expect when training on deeply annotated datasets derived 

from cell atlases and predicting cell identities in smaller newly sequenced datasets. 

 

The resulting automated annotation (Fig. 4b) broadly reproduces the reference annotation (Fig. 

4a,f), and also highly overlaps with the unsupervised Leiden clustering from Besca’s standard 

workflow (Fig. 4c). For B cells, it provides even higher resolution than the reference annotation 

correctly separating them into memory and naive B cells (Fig. 4b,f), as independently confirmed 

by the according signatures (Fig. 4d,e). The automated annotation for T cells shows some 

ambiguity, which reveals the limitations of the method (Fig. 4a,f). Still, the specific IL7R-max 

CD8 T cells were correctly identified (Fig. 4f) showing that accurate subdivisions within T cells 

are possible. In order to avoid false positive annotations it is possible to set a threshold for cells 

with low annotation scores. The threshold approach labels most of the ambiguous T cells as 

unknowns (Fig. 4g and Supplementary Figure S5), removing almost all misclassifications at the 

cost of some cell types. As a result, central memory CD4 T cells remain virtually undetected. 

However, little changes occur when it comes to other cell types, including IL7R-max CD8 T 

cells, suggesting that this approach indeed only flags out ambiguous attributions. 
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Fig. 4 Auto-annot applied to PBMCs using a logistic regression model trained on the 

Kotliarov2020 and Granja2019 datasets and tested in the PBMC3k dataset. a Overview 

of DBlabel annotations in 2D UMAP space for the PBMC3k test dataset. b Auto-annot 

largely recovers the original cell types. Finer divisions are uncovered in B cells, but 
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resolution is lost for some T cell subtypes. c Overview of Leiden clustering in 2D UMAP 

space shows high overlap with predictions and illustrates the difficulty of finding 

subclusters in overlapping T cell communities. d The memory B cell signature supports 

the separation of the B cell cluster in (b). e Idem for the naive B cell signature. f The 

confusion matrix shows that misclassifications, if they do occur, generally misannotate 

very similar cell types. g Overview of Auto-annot labels with threshold. Ambiguity in 

some T cell subtypes leads to classification as unknown, all other cell types remain 

identified. The corresponding confusion matrix can be found in Supplementary Figure 

S5. 

 

It is notable how accurate the supervised approach works with a fine-grained training 

annotation. Still, an automated annotation based on less fine-grained cell types leads to even 

clearer results in the sense that multiple different cell types being co-located in the same broad 

cell type class from the reference annotation does not occur when we applied it to broader cell 

types (see Optimised Classes in the Supplementary Material and Supplementary Figure S6). 

 

We performed additional cross-validation of the supervised Auto-annot approach on 

hematopoietic cells using the Granja2019 and Kotliarov2020 datasets on their own (see 

Supplementary Figures S7 and S8) and on pancreatic cells utilizing the Segerstolpe2016, 

Peng2019, and Baron2016 annotations in three different combinations (see Supplementary 

Figures S9, S10 and S11). Together, our results show that the approach works best when the 

training set contains all cell types present in the test set, and when transcriptional differences 

between cell types are large and stable.  
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Cross-validation of newly identified intestinal cell types as an 

application of Auto-annot 

Recent studies revealed the intestinal cell type composition utilizing single-cell transcriptomics 

of intestinal biopsies taken from inflammatory bowel disease (IBD) patients (including ulcerative 

colitis and Crohn’s disease), healthy donors, or mice, as reviewed recently in [48]. However, the 

utilized cell type nomenclatures are inconsistent between these studies and various novel cell 

types were discovered. Here we show how to use Besca’s supervised machine learning method 

Auto-annot to cross-validate these disparate cell type annotations. We focus on two major 

studies: Smillie2019 (human colon epithelium and lamina propria during ulcerative colitis) [33] 

and Martin2019 (human ileum lamina propria during Crohn’s disease) [34]. In addition, we 

perform cell type annotation across species using the Haber2017 dataset (mouse small 

intestine epithelium) [35]. 

 

Firstly, we use the Smillie2019 and Martin2019 datasets to train a model with one dataset and 

apply it to the other, respectively. Both datasets were processed with Besca’s standard workflow 

and cell type annotations were adopted from the respective publications. Both studies provide a 

coarse cell type annotation (Fig. 5a left) as well as a fine grained cell type annotation (see 

Supplementary Figure S12 and for Smillie2019 fine-grained fibroblasts Fig. 5d left). Epithelial 

cell annotations are missing from the Martin2019 author’s annotation, because those cells were 

excluded in the original study. Therefore, they are labelled as “unknown” in our comparison. The 

Auto-annot module identifies the corresponding cell types in the unseen dataset, respectively 

(Fig. 5a,b,c and Supplementary Figure S12). Still, there remains some ambiguity mainly within 

lymphocytes. 
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Fig. 5 Supervised machine learning to compare intestinal cell type annotations in 

scRNA-seq data. a UMAP representations of the coarse-grained cell types annotated in 

the Smillie2019 and Martin2019 datasets based on author’s annotations (left) and 

predictions based on Besca’s Auto-annot module (right). b,c Confusion matrices 

comparing the true labels from the author’s annotation and the cell types predicted in the 

Smillie2019 dataset from the Martin2019 annotation (b) and in the Martin2019 dataset 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.11.245795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245795
http://creativecommons.org/licenses/by-nd/4.0/


predicted from Smillie2019 (c). d Discovery of inflammatory or activated fibroblasts point 

to the same cell community in both studies as exemplified in the Smillie2019 dataset by 

the author’s annotation (left) and prediction from Martin2019 (right). e UMAP 

representations of the mouse small intestinal epithelial cells from Haber2017 showing 

the reference DBlabel cell type annotation (left) and cell types predicted from 

Smillie2019 human colon (right), and f the corresponding confusion matrix. 

 

In both studies a new type of disease-relevant fibroblasts was discovered and named 

inflammatory fibroblasts in ulcerative colitis [33] or activated fibroblasts in Crohn’s disease [34]. 

Here, we show how our machine learning approach could clearly confirm that these two 

fibroblast communities belong to the same cell type (Fig. 5d and Supplementary Figure S12). 

The comparison revealed further differences in the cell type annotation for the enteric nervous 

systems and B cells, which could be driven by biological differences, experimental differences, 

or simply different cell type nomenclatures used (Supplementary Figure S12). The results show 

that our approach can be used to match cell type identities across studies and obtain a more 

cohesive picture of a tissue’s cell type composition. 

 

Finally, we performed a cross-species comparison. The Haber2017 small intestine mouse 

dataset includes only epithelial cells and was used as a test dataset. As the training dataset we 

chose the Smillie2019 human colon dataset and trained the machine learning model on the 

epithelial cells only. This approach clearly identified enterocytes, enteroendocrine cells, goblet 

cells and brush (tuft) cells (Fig. 5e,f). The overall gradient from stem and transit amplifying cells 

to precursor and fully differentiated cells was mainly reproduced, but with less accuracy than the 

aforementioned discrete cell types (Fig. 5e,f). Paneth cells led to confusion in this scenario, 

because they are highly abundant in the mouse small intestine [35], but mainly absent in colon 

and not annotated in the human colon training data [33]. Similar results were achieved by using 
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the fine-grained annotation from Smillie2019 and by the reverse prediction from mouse to 

human (see Supplementary Figure S13). The results show that a cross-species prediction is 

generally possible and can provide important insights for translational research. 

scRNA-seq-informed cell deconvolution through Bescape 

Cell deconvolution aims to estimate cell type proportions from bulk sample transcriptomic data 

based on cell type specific gene expression profiles (GEPs). Derivation of GEPs relevant for 

different bulk RNA-seq experiments has remained a challenge. As scRNA-seq data is being 

collected and annotated at an unprecedented rate, this offers the potential to leverage on the 

newly gathered knowledge [49]. Besca’s deconvolution framework Bescape facilitates the usage 

of established deconvolution methods directly on any scRNA-seq data of choice (Fig. 1e).  

 

Most available tools do not offer the flexibility to introduce user defined cell specific GEPs, 

instead relying solely on the authors’ carefully curated ones. The application and performance of 

the cell deconvolution results are then limited to the scope of the tissue and cell types 

embedded in the curated set. For example, GEPs derived from microarray data from 

haematological malignancies will have a limited scope of application in deconvoluting cell 

proportions from bulk RNA-seq sequenced from solid tumour biopsies. In other words, the 

performance of the results cannot be disentangled between the algorithm itself and the cell type 

specific gene expression embedded in different tools.  

 

The Bescape module aims to leverage on the data collected from the ongoing effort in the 

understanding of scRNA-seq signals as basis vectors to estimate the cell composition in 

heterogeneous bulk RNA-seq readouts. As the deconvolution algorithms have made significant 

progress over the past years [50,51], the focus is now being placed on the specificity of the 
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GEPs that are used as basis vectors to estimate the cell composition addressing platform, 

tissue and indication variability [52]. This is where Besca’s standard workflow and automated 

cell type annotations from scRNA-seq have a direct impact. 

 

In order to allow for simple incorporation of reference scRNA-seq datasets to generate GEPs for 

cell types of interest and addressing challenges such as collinearity of closely related cell types, 

Bescape includes two recent cell deconvolution tools, SCDC [16] and MuSiC [17] (see 

Methods). Furthermore, as most deconvolution methods are implemented in R (https://www.r-

project.org/) packages, several steps are needed to run the deconvolution module seamlessly in 

the background. In short, Bescape provides a containerized environment to run the different 

tools (see also Supplementary Figure S14). More specifically, it first provides a notebook with 

the combination of Python and R scripts for the conversion of an AnnData h5ad file 

(https://anndata.readthedocs.io) to an eSet object 

(https://www.rdocumentation.org/packages/Biobase/topics/eSet) needed to run the 

deconvolution algorithm in R. In addition, Bescape provides a notebook in Python to run the 

deconvolution in a Docker image (https://docs.docker.com/) based on a user specified reference 

eSet scRNA-seq and a bulk RNAseq dataset. 

 

To extract the information from a reference scRNA-seq dataset, two sets of GEPs are 

generated from the Besca workflow immediately following the cell type annotation step: (1) 

GEPs can either be generated using all genes from the scRNA-seq reference dataset without 

performing any feature selection, these are extracted from the functionality provided by SCDC 

and MuSiC or (2) based on a subset of highly variable gene expressions defined in the standard 

workflow. The first set of GEPs is extracted and suitable for use by MuSiC and SCDC where 

subsequent weighing of the different genes is performed. The second set of GEPs can be used 

as input basis matrix for a multitude of cell deconvolution tools such as EPIC [53] and 
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CIBERSORT [51]. The resulting GEPs derived from the Segerstolpe2016 and Kotliarov2020 

datasets (Table 1, [32,37]) utilizing both strategies are shown for comparison in Supplementary 

Figures S15-S18. 

 

Here, we focus on the first strategy, applied to both datasets, utilizing SCDC by example, as it 

shows how to leverage scRNA-seq data to demonstrate Bescape’s functionality best. Bulk RNA-

seq was simulated from the pancreatic islets [37] and hematopoietic CITE-seq [32] datasets 

using the GEPs across all genes from the raw count. The use of simulated bulk RNA-seq, 

where the ground truth of the in-silico ad-mixture is known, allows validation of the estimated 

cell proportions (see Methods). The estimated proportions from these simulated data using 

SCDC correlate highly with the ground truth across samples for both datasets (Fig. 6a,b).The 

estimated proportions show high Pearson correlation with the ground truth, and corresponding 

low root mean square deviation (RMSD) and mean absolute deviation (mAD), in both tissues for 

all the cell types that were annotated from the Besca workflow (Tables 2 and 3). There are a few 

exceptions where the cell type GEPs are less well defined (see Supplementary Figures S15 and 

S17).  
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Fig. 6 Cell deconvolution using Bescape. a Measured versus predicted cell proportions 

in pancreatic islets bulk RNA-seq simulated from Segerstolpe2016. b Measured versus 

predicted cell proportions in hematopoietic bulk RNA-seq simulated from Kotliarov2020. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.11.245795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245795
http://creativecommons.org/licenses/by-nd/4.0/


c Estimated cell proportions for real pancreatic islets bulk RNA-seq between type 2 

diabetes patients and healthy controls. d Estimated pancreatic beta cells proportions for 

real pancreatic islets bulk RNA-seq between type 2 diabetes patients and healthy 

controls. 

 

Cell type Pearson correlation RMSD mAD 

blood vessel endothelial cell 0.68 0.017 0.010 

enteroendocrine cell 0.52 0.064 0.047 

fibroblast 0.87 0.020 0.017 

macrophage 0.98 0.004 0.002 

pancreatic A cell 0.97 0.043 0.033 

pancreatic acinar cell 0.99 0.049 0.024 

pancreatic D cell 0.88 0.023 0.018 

pancreatic ductal cell 0.83 0.075 0.043 

PP cell 0.87 0.041 0.033 

type B pancreatic cell 0.94 0.055 0.040 

Table 2 SCDC deconvolution results based on simulated bulk RNA-seq from SCDC 

GEPs on pancreatic islets reference scRNA-seq from Segerstolpe2016. 

 

Cell type Pearson correlation RMSD mAD 

B cells 0.98 0.009 0.007 

CD4 T cells 0.79 0.075 0.062 

CD8 T cells 0.90 0.021 0.016 
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classical monocytes 0.99 0.014 0.011 

DN T cells 0.13 0.078 0.058 

ILCs 0.81 0.031 0.024 

mDCs 0.75 0.009 0.008 

non-classical monocytes 0.81 0.009 0.007 

not determined 0.56 0.033 0.026 

pDCs 0.61 0.003 0.002 

Table 3 SCDC deconvolution results based on simulated bulk RNA-seq from SCDC 

GEPs on hematopoietic reference CITE-seq data from Kotliarov2020. 

 

Following the SCDC manuscript [16], we utilized the study of type 2 diabetes [54] for which the 

difference in the estimated beta pancreatic cell proportions between type 2 diabetic patients and 

healthy controls provides a measure for validation of the deconvolution results. Estimated 

proportions obtained from the real bulk RNA-seq for all 10 cell types using Besca cell annotation 

is shown in Fig. 6c. The estimated pancreatic beta cells are tested and do show the expected 

lower cell proportions in the type 2 diabetes patients as compared to healthy subjects as shown 

in Fig. 6d. 

 

It is important to note that the success of cell deconvolution can be measured based on two 

merits. First, on the accuracy to known proportions estimated based on a known or proxy 

ground truth either on simulated bulk RNA-seq data or from matched samples measured with 

more traditional single-cell means (e.g. immunohistochemistry or flow cytometry). Although this 

is the preferred measure of success, validating the results compared to a ground truth obtained 

using known cell types can be difficult as these more traditional methods for studying cell 

heterogeneity rely on a limited repertoire of markers of known cell types. Secondly, the success 
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can also be measured based on the results obtained from embedding estimated cell proportions 

as covariates in prognostic and predictive models. Indication of success here is harder to 

determine a priori and would need to be carefully investigated to avoid overfitting. 

Discussion 

No two cells are identical; neither are two scRNA-seq experiments. Cells are extracted from 

different tissues, treated according to lab-specific protocols, and sequenced with a variety of 

technologies. Still, the vast amount of available scRNA-seq studies provokes the ambition to 

reuse the valuable experimental data and to re-assess them by comparing between studies. 

Streamlined and standardized workflows, such as those presented here, strive to find balance 

between automation and flexibility, which brings efficiency, reusability, and reproducibility of 

data processing. The loss in flexibility is compensated by bringing scRNA-seq results to a level 

that allows for cross-study comparisons and finally integration into larger cell atlases. 

 

Besca’s Sig-annot module implements such a process by automatizing cell type annotation 

through an unsupervised clustering approach followed by signature-based hierarchical cell type 

identification. It mirrors the manual annotation approach, but enforces a harmonized annotation 

schema and hence guarantees comparability between studies. It also captures knowledge of 

cell type markers that is gained in this process in explicit gene signatures that can be easily 

shared, re-assessed and improved across different conditions, studies, and technologies. This 

signature-based approach is valuable for specific tissues and disease phenotypes as an 

approach to harmonize annotations across various cell atlases, which is critical for holistic 

disease understanding (see e.g. [1,48,55]). Still, each tissue and fine-grained cell type needs to 

be incorporated and optimized for in the annotation schema.  
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In contrast, supervised approaches overcome certain challenges faced by unsupervised 

clustering [56] and therefore generalize better. Importantly, they allow for the utilization of 

curated high-quality annotations by transferring them to new studies efficiently. Such 

approaches not only allow for the comparison of cell annotations between studies, but even 

across species. They depend on well annotated reference datasets containing harmonized cell 

type annotations. We expect cell atlas projects (see e.g. [55,57–61]) to provide such 

annotations in the near future for all major tissues, which would allow for a wide applicability of 

supervised approaches. Furthermore, the cell type annotation can also be resolved with 

correlation-based approaches such as singleR [62], scMCA [63], or SCMAP [64]. 

 

Various examples in this manuscript and previous studies show that the automation of cell type 

annotation is feasible to a certain extent and technically not too complex. As cells can be 

grouped by multiple orthogonal criteria such as surface markers, functions, cell cycle states, 

differentiation stages, or activation levels, a clear definition of concrete cell types remains 

controversial and a more general concept of cell types will be needed in the future [29]. Setting 

aside the controversy in cell type definition, our work already provides tools and best practices 

to achieve better reference cell annotations and to share the gene signatures that capture the 

knowledge about how they were derived. Like the human reference genome (which does not 

ultimately reflect a human genome consensus [65] and still serves many practical purposes) 

accelerated genomic research, such reference cell type annotations will accelerate our 

understanding of biological systems even though they reflect only a subset of a cell’s 

characteristics. 

 

Finally, these cell type definitions help investigate changes in cell composition and differentially 

expressed genes within certain cell types, which are often postulated as indications of disease 

progression or response to stimulation and perturbation [66]. While scRNA-seq offers the 
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possibility to investigate these hypotheses, the current cost as well as the technical and 

logistical challenges associated with the technology are preventing large scale studies [67], 

particularly in a clinical trial setting. Although this is likely to improve over time as the technology 

matures, large numbers of biological replicates are currently measured using bulk RNA-seq. In 

these samples, heterogeneity resulting from the distinct cell type composition of the probed 

material can often confound the signals, making it difficult to interpret results. By leveraging 

annotated reference scRNAseq datasets in combination with cell deconvolution methods, the 

cell composition of bulk RNA-seq samples can be robustly estimated. This information can then 

either be used directly as biomarkers or as covariates towards inferring more robust differential 

gene expression results.  

Conclusions 

In sum, the core benefits of adopting Besca for scRNA-seq data analysis are automation, 

standardization, and reusability. This is achieved (1) by a generalized standard workflow, 

including CITE-seq data processing, (2) by the automation of the cell type annotation process 

with two complementary approaches, (3) by managing knowledge about cell type marker gene 

signatures in GeMS, (4) by informing deconvolution algorithms to make better use of bulk 

transcriptional data, and (5) by building upon the widely used Scanpy toolkit. We expect that 

Besca, published as an open-source software contribution to the community, will promote 

interoperability, reusability, and interpretability of scRNA-seq data. Finally, Besca will be part of 

the many components that pave the way for a reference catalogue of cell types and their 

reactions to various perturbations. This catalogue will allow a deeper understanding of human 

diseases and their interventions. 
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Methods 

Example data 

The following publicly available single-cell datasets from ten studies were reprocessed (see also 

Table 1). Three datasets cover blood- and bone-marrow-derived hematopoietic cells:  

● PBMC3k (https://doi.org/10.5281/zenodo.3948150) includes healthy peripheral blood 

mononuclear cell (PBMC) samples from one donor, a reference dataset often used in 

single-cell tutorials based on 10X Genomics data (https://www.10xgenomics.com/). 

● Granja2019 (https://doi.org/10.5281/zenodo.3944753) includes bone marrow 

mononuclear cell (BMMCs) and PBMC samples from healthy donors [31]. In addition to 

scRNA-seq, several protein markers were also probed by CITE-seq. 

● Kotliarov2020 (https://doi.org/10.5281/zenodo.3938290) includes baseline PBMC 

samples from healthy donors, who were high and low responders to influenza vaccines 

[32]. In addition to scRNA-seq, a high number of protein markers were also probed by 

CITE-seq. 

Four datasets reveal the intestinal cell composition: 

● Smillie2019 (https://doi.org/10.5281/zenodo.3960617) includes colon epithelium and 

lamina propria samples from healthy donors and ulcerative colitis patients [33]. 

● Martin2019 (https://doi.org/10.5281/zenodo.3862132) includes ileal lamina propria 

samples from Crohn’s disease patients [34]. 

● Haber2017 (https://doi.org/10.5281/zenodo.3935782) includes murine small intestine 

samples [35]. 

● Lee2020 (https://doi.org/10.5281/zenodo.3967538) includes tumor and non-malignant 

colon samples from colorectal cancer (CRC) patients [36]. 
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Three datasets are pancreas-derived: 

● Segerstolpe2016 (https://doi.org/10.5281/zenodo.3928276) includes pancreatic islet 

cells from healthy donors and type 2 diabetic patients [37]. 

● Peng2019 (https://doi.org/10.5281/zenodo.3969339) includes tumor and non-malignant 

pancreatic samples from pancreatic ductal adenocarcinoma (PDAC) and non-pancreatic 

tumor patients [38]. 

● Baron2016 (https://doi.org/10.5281/zenodo.3968315) includes pancreatic samples from 

healthy donors [39]. 

Besca’s standard workflow 

Besca’s standard workflow starts with loading the count matrix obtained from a preprocessing 

pipeline (demultiplexing, read alignment, feature counting), and the annotation of the matrix, 

including barcodes, genes and, if available metadata associated to the datasets, including 

biological (e.g. donor, experimental condition) and technical (e.g. batches, protocols differences) 

variables. Before proceeding with analysis, quality control (QC) is performed. This includes 

visualizing drop-outs and sequencing saturation as well as performing cell and gene filtering. 

During cell filtering all barcodes that do not correspond to viable cells are removed. Cell filtering 

is performed on the basis of three QC covariates: the number of counts per barcode, the 

number of genes per barcode, and the contribution from mitochondrial genes per barcode. Each 

of the covariates are examined for outliers by thresholding as described in [11]. During gene 

filtering, transcripts which are only expressed in a few cells are removed to reduce dataset 

dimensionality. As recommended by Luecken and Theis [11], the filtering threshold for genes 

should be set to the minimum cell cluster size that is of interest. As QC filtering is highly 

dependent on the dataset the filtering thresholds need to be defined by the user before running 
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the workflow. Correctly chosen thresholds are verified through knee-plot graphics within the 

pipeline.  

 

After QC, the expression values are normalized. Normalization is performed using count depth 

scaling and count values are log(x+1)-transformed. To reduce dataset dimensionality before 

clustering, the highly variable genes within the dataset are selected. By default, genes are 

defined as being highly variable when they have a minimum mean expression of 0.0125, a 

maximum mean expression of 3 and a minimum dispersion of 0.5. Technical variance is 

removed by regressing out the effects of count depth and mitochondrial gene content and the 

gene expression values are scaled to a mean of 0 and variance of 1 with a maximum value of 

10. It needs to be mentioned here that correction of mitochondrial gene content might not be 

considered a technical variance correction but removal of biological variability. If this correction 

is not desired, the threshold for mitochondrial gene content correction can be set to 1. Based on 

the best practices suggested by Luecken and Theis, technical variance should be corrected 

before selection of highly variable genes. In Besca’s standard workflow though this order is 

reversed, due to regress-out being a very time-consuming computational process which can be 

significantly sped up by only calculating corrected values for the previously selected highly 

variable genes. For larger datasets it is absolutely essential to reduce dimensionality 

beforehand for regress-out to even complete.  

 

Finally, dimensionality reduction and clustering is performed. The first 50 principle components 

are calculated and used as input for calculation of the 10 nearest neighbours. The 

neighbourhood graph is then embedded into two-dimensional space using the UMAP (Uniform 

Manifold Approximation and Projection) algorithm [68]. Cell communities are detected using the 

Leiden algorithm [69] at a resolution of 1 by default.  
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For CITE-seq data, the protein marker abundance values are loaded separately to the gene 

expression values and stored in its own data object. Previously determined cell barcode filtering 

to identify viable cells on the basis of gene expression values is applied to the CITE-seq data. 

Unlike gene expression counts, protein marker counts are normalized using centred log ratios. If 

less than 50 markers were measured the entire count matrix is used as input for the nearest 

neighbour calculation otherwise, as in the gene expression data, the first 50 principal 

components are calculated. The rest of the CITE-seq pipeline is analogous to the gene 

expression pipeline. At the end of the workflow the results are homogenized into one data object 

which contains clustering and visualization results of both gene expression and protein 

abundance from CITE-seq data. 

 

Analysis results are exported into interoperable file formats to allow FAIR data management of 

analysis results. This includes the Matrix Market exchange format 

(https://math.nist.gov/MatrixMarket/formats.html) for sparse count matrices, GCT 

(https://software.broadinstitute.org/software/igv/GCT) for dense count matrices, and simple tab-

separated or comma-separated values formats for metadata and as interface for the cell 

deconvolution package Bescape, respectively. Clustering results or cell type labelling can be 

exported including pre-computed average expression and ranked marker gene lists per cluster 

or cell type.  

Annotation of cell types based on CITE-seq data 

A fine-grained annotation of the cells contained within the Kotliarov2020 dataset [32] was 

generated on the basis of the labelled protein antibody counts from CITE-seq. The normalized 

protein counts were exported to FCS files using the R package flowCore [70,71] (R package 

version 2.0.1) and loaded into FlowJo™ Software (FlowJo™ Software Mac Version 10.6.2. 
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Ashland, OR: Becton, Dickinson and Company; 2019). The gating strategy used to identify 

individual cell populations is outlined in Supplementary Figure S2. Gating of individual cell 

populations was based on the gating strategy utilized in [72]. Barcodes from identified cell 

populations were exported from FlowJo™ Software to csv files and loaded into Besca for 

visualization. 

Sig-annot, signature-based automated cell type annotation 

The annotation process has three components: 

1. a nomenclature table with long and short names, according to Cell Ontology [40] 

○ see Supplementary Table S1 and 

https://github.com/bedapub/besca/blob/master/besca/datasets/nomenclature/Cell

Types_v1.tsv 

2. a configuration file including all the cell types to be considered, their parent (or "none"), a 

factor to be multiplied with the cut-off for scoring a cluster positive or negative for the 

signature based on the Mann-Whitney test and the order in which to consider the 

signatures (only first positive one matching a cluster will be taken into account). Two 

distinct default configuration files are provided with Besca, covering mouse and humans. 

Users are free to adjust the parameters in the files, and tailor these according to tissues 

or dataset. 

○ Human: Supplementary Table S2 and 

https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNam

es_scseqCMs6_config.tsv 

○ Mouse: Supplementary Table S3 and 

https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNam

es_scseqCMs6_config.mouse.tsv 
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3. a GMT file with the signatures, in line with the nomenclature table. 

○ see Supplementary Table S4 and 

https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNam

es_scseqCMs6_sigs.gmt 

Auto-annot, supervised automated cell type annotation 

Besca’s Auto-annot module, a supervised machine learning workflow, can be run independently 

from the standard workflow and works as follows:  

● Initially the training datasets are merged to form a combined training dataset using 

Scanorama [73], in the case where multiple training datasets are available, and 

complemented with the testing dataset. A parameter specifies if the resulting integrated 

gene expression matrix contains the intersection of all genes, the intersection of 

previously selected highly variable genes, or genes of a previously defined signature. 

● Secondly, the Python package scikit-learn (https://scikit-learn.org) is used to train a 

classifier based on the merged training datasets. Two classification approaches are 

implemented, SVM and logistic regression. For SVM, one can choose between SVM 

with linear kernel (linear); SVM with linear kernel using stochastic gradient descent 

(sgd); SVM with radial basis function kernel (rbf), which should be used on small 

datasets only due to longer runtime. For logistic regression, the options are multinomial 

loss (logistic_regression); logistic regression with one versus rest classification, without 

normalised probability scores (logistic_regression_ovr); logistic regression with elastic 

loss, cross validated among multiple l1 ratio (logistic_regression_elastic). We 

recommend logistic_regression as default option. 

● Finally, the fitted model is used to predict cell types in the test dataset and predictions 

are added to the metadata. A probability threshold can be defined for logistic regression 
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classifiers, to classify only cells reaching the defined threshold. In order to compare the 

predicted cell types to a ground truth already annotated in the test datasets, a report can 

be generated including precision, recall, and F1 metrics as well as confusion matrix and 

automatically annotated UMAP plots. 

Bescape, cell deconvolution 

At the core of the cell deconvolution algorithm is a regression based problem. The concept is 

not novel, it has already been investigated for microarray data [74]. The combination of how 

newly derived cell specific GEP from scRNA-seq data can be used is the key factor that has 

evolved considerably over time. At a broad level, there are two categories of cell deconvolution, 

it is either a full deconvolution where neither the source nor the mixing process is known or a 

partial deconvolution where there is priori knowledge of the sources or the mixing process. 

Although a completely unsupervised approach can be taken, where the non-negative matrix 

factorization is suitable, it has been proven to show low accuracy and difficulty in handling the 

collinearity of the genes [16]. The research focus is placed on partial deconvolution with known 

signatures used as bases to estimate the proportions in the bulk tissue. Such approaches have 

been developed using constrained least squares regression (EPIC) [53] and 𝜈-support vector 

regression (CIBERSORT) [51]. These methods either use microarray or a mixture of bulk RNA 

and scRNA-seq data to build a single GEP as a basis vector. Two distinct sets of cell type 

specific GEPs are generated as part of the toolkit. Equipped with the derived GEPs, the users 

will have the choice to apply the deconvolution algorithm of their choice.   

 

Two recent methods have been included in the cell deconvolution module allowing for direct 

incorporation of reference scRNA-seq datasets and addressing some of the shortcomings of 

previous methods. The first scRNA-seq reference dataset based method is MuSiC [17]. In short, 
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this method uses a constrained least square regression but factors in the weighing of the 

different genes to reduce the impact of the residuals on the fit from genes that are less 

informative in terms of cell types differentiation and thus, eliminates the need for preselection of 

genes. Most importantly, it addresses the hierarchical nature of cell lineages with a recursive 

tree guided search, similar to gating strategy in FACS, by first grouping similar cell types into the 

same cluster and estimating cluster proportions, then recursively repeating the previous step 

within each cluster identified. At each recursion stage, the focus is only on differentially 

expressed genes across cell types within the cluster. Consequently, the residuals are 

determined on only the subset of genes important to differentiate the cells within the cluster as 

opposed to being diluted by genes which share a common profile. 

 

The second method included in the Bescape module is SCDC [16], an ensemble approach 

allowing for multiple scRNA-seq reference datasets. In short, similar to MuSiC, a weighted non-

negative least square regression is adopted but differs slightly on how the weights are assigned 

to the genes. The salient point of the method is an additional layer of abstraction being 

introduced by assigning different weights for each reference scRNA-seq dataset. Higher weights 

are attributed to reference datasets that can fit the gene expression profiles of bulk RNA-seq 

samples better based on defined performance metric. 

Generating simulated bulk  

Simulated bulk RNA-seq was generated to evaluate the estimated proportions of the selected 

cell types with ground truth from a known in-silico mixture. The annotated scRNA-seq data can 

be used directly by SCDC and MuSiC where no user specified feature selection based on 

marker genes is needed, instead a higher weight is assigned to features showing high variability 

across annotated cell types and low variability across samples [16,17]. The simulated bulk is 
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based on linear regressions where the cell fractions (weights) are taken from a uniform 

distribution, thus without factoring in any prior knowledge of the range of cell proportions of the 

different cell types, and scaled for the total to add up to 1. The GEPs of the cell types constitute 

the basis matrix needed to construct the bulk RNA-seq vector. This step is repeated for several 

instances representing different subjects’ bulk RNA-seq data.  

Notes 

This publication is part of the Human Cell Atlas: www.humancellatlas.org/publications. 
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