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Abstract 

Spectral similarity is used as a proxy for structural similarity in many tandem mass spectrometry               

(MS/MS) based metabolomics analyses such as library matching and molecular networking.           

Although weaknesses in the relationship between spectral similarity scores and the true            

structural similarities have been described, little development of alternative scores has been            

undertaken. Here, we introduce Spec2Vec, a novel spectral similarity score inspired by a natural              

language processing algorithm -- Word2Vec. Spec2Vec learns fragmental relationships within a           

large set of spectral data to derive abstract spectral embeddings that can be used to assess                

spectral similarities. Using data derived from GNPS MS/MS libraries including spectra for nearly             

13,000 unique molecules, we show how Spec2Vec scores correlate better with structural            

similarity than cosine-based scores. We demonstrate the advantages of Spec2Vec in library            

matching and molecular networking. Spec2Vec is computationally more scalable allowing          

structural analogue searches in large databases within seconds. 
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Main text: 

Introduction 

 

In metabolomics the high throughput characterisation of metabolites present in a biological            

sample, is increasingly important across the biomedical and life sciences 1,2. This is largely due               

to the manner in which the metabolome complements the genome, transcriptome and            

proteome as the data type most closely representing phenotype 3, and to the increased             

sensitivity and coverage of modern measurement equipment. 

Of the available measurement platforms, liquid chromatography coupled to mass spectrometry           

(LC/MS) is the most widely used. Modern untargeted LC/MS experiments produce large            

datasets that are challenging to fully analyse and exploit. A main bottleneck is the structural               

annotation and identification of the chemical ions detected by the mass spectrometer,            

primarily because the mass-to-charge ratio (m/z) of an observed ion species is very often              

insufficient to unambiguously assign it to one chemical formula, and certainly insufficient to             

assign it to a specific chemical structure. Building upon the assumption that molecules fragment              

in a manner that is dependent on their structure, fragment data (also known as MS2 or MS/MS)                 

is often used to overcome this bottleneck. Fragmentation spectra can act as an aid to               

annotation via either comparison with databases 4 such as MassBank5, Metlin 6, GNPS 7, etc, or as               

input to in-silico identification algorithms such as SIRIUS/CSI:Finger ID 8 or MS2LDA 9.  
At the heart of much analysis of mass spectrometry fragmentation data is the computation of               

similarity between pairs of MS2 spectra (Fig.1 A,B). For example, when searching an unknown              

spectrum against a database, a similarity score is computed between the query spectrum and              

database spectra. Similarly, when creating molecular networks 10, edges are drawn between            

spectra if their similarity exceeds a user-defined threshold. In all such analyses, spectral             

similarity is being used as a proxy for structural similarity, the real quantity of interest 11.                

Cosine-based scores are the most widely used measures of spectral similarity. Studies            

investigating whether molecules with high structural similarity result in spectra with a high             

spectral cosine similarity score only partly support the assumed relationship between spectral            

and structural similarity 12,13. As a result, various modifications of the cosine similarity score              

have been proposed, including raising the m/z and intensity components to different powers,             

and shifting fragment peaks by the difference in precursor m/z (‘modified cosine score’ 10).              

Cosine-based methods are very good at revealing nearly equal spectra, but by design they are               

not well-suited to handle molecules with multiple local chemical modifications. In addition,            

most cosine scores are computed by aligning the fragment peaks from the two spectra, a               

computationally intensive procedure that makes extensive library searching slow. Despite these           

limitations, thus far no fundamentally different spectral similarity scores have been proposed. 
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Figure 1. (A) MS-MS spectra can be considered as signatures of molecules: spectra are known to contain structural information                   

of the original molecule, but without a straightforward way to translate mass spectral features into structural ones describing                  

the fragmented molecule. (B) Spectra are commonly compared by similarity measures such as cosine or modified cosine scores.                  

While those measures are very good at revealing (nearly-) equal spectra, they often underperform when it comes to spectra of                    

complex molecules with high structural similarity, but which differ in multiple locations (C) Spec2Vec is based on algorithms                  

from natural language processing and learns relationships between peaks based on how frequently they co-occur. (D) Two                 

spectra from different yet similar molecules will hence be represented by similar spectral vectors even if many of their peak                    

positions will differ. 

 

Within the context of metabolite identification from MS/MS data, much effort has gone into              

the prediction of structural information from spectra. This is because it allows spectra to be               

queried against structural databases that are typically orders of magnitude larger than spectral             

ones. Despite the fact that database searching is still the gold standard for metabolite              

annotation14, methods such as MAGMa15, SIRIUS 16, CSI:FingerID 8, IOKR17, DeepMASS 18, and          

MetDNA19 have been effective at widening the search space and clearly demonstrate that             

useful structural information can be learnt from MS2 spectra. 

Building on that insight, we present a novel spectral similarity score based upon learnt              

embeddings of spectra. Inspired by the success of algorithms from the field of natural language               

processing in accounting for element relatedness for overall similarity assessment of objects,            

we aimed at adapting such tools to mass spectra data. A language-based analogy would be               

words like ‘cookie’ and ‘cake’ which often occur in similar contexts (e.g. together with words               
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like ‘dough’, ‘sweet’, ‘eating’) and are hence assumed by the model to represent related              

entities (Fig.1 C). 

Adapting Word2Vec, a well-established machine learning technique in natural language          

processing20, Spec2Vec learns from co-occurrences across large datasets to represent highly           

related fragments or neutral losses by vectors pointing in similar directions within a continuous              

abstract space. A spectrum can then be represented by a low-dimensional vector calculated as              

the weighted sum of all its fragment (and loss) vectors (Fig.1 D). Instead of relying on only a                  

binary assessment of each fragment (match/no match), Spec2Vec hence takes the relation            

between fragments into account. This can be illustrated by comparing two spectra of molecules              

with multiple (small) chemical modifications that Spec2Vec could relate to each other despite             

the low amount of direct peak matches (Fig. 2). 

In contrast to the database searching methods mentioned above, Spec2Vec is unsupervised and             

can be trained on any collection of spectra. We demonstrate that Spec2Vec similarity scores are               

well suited to identify structural similarities on the basis of given MS/MS spectra. Spec2Vec              

similarity scores are very fast to compute, which -taken together- creates promising use cases              

of Spec2Vec in library matching as well as in molecular networking. 
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Results 

 
Figure 2. In-depth comparison example of two spectra. Since the two molecules differ slightly in three locations, both cosine                   

and modified cosine scores fail to recognize the overall structural similarity and return low spectral similarity scores. Spec2vec                  

for many peaks acknowledges that they often co-occur across the training data, hence showing a high peak context similarity                   
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which overall leads to a high Spec2Vec similarity score. For illustrative purposes, this figure only displays peaks between 400                   

and 1000 Da. 

 

Spectral similarity vs structural similarity 

In order to quantify how well different spectral similarity scores correlate with structural             

similarity, we calculated multiple spectral similarity scores for all possible pairs across a mass              

spectra dataset of representative character, but computationally manageable size. To create           

this dataset, we started with a large collection of mass spectra provided by GNPS (see               

Methods). Library spectra were used to compare spectral similarity scores with scores based on              

(the known) molecular structures. It is important to note, however, that Spec2Vec is an              

unsupervised machine learning technique that can be trained on any collection of spectra,             

independent of whether the chemical structures are known. After filtering, processing, and            

removing all spectra with fewer than 10 fragment peaks (see Methods), the remaining             

AllPositive dataset comprised 95,320 positive ionization mode mass spectra, 77,092 of which            

had InChIKey annotations. Because many similarity scores are computationally expensive, the           

quantitative similarity score assessment was done on a subset of this data, UniqueInchikey,             

consisting of 12,797 spectra with unique InChIKeys (first 14 characters, also termed planar             

InChIKeys, see Methods).  

For the UniqueInchikey data it was possible to compare the different spectra similarity scores              

to the structural similarity, represented by Tanimoto scores. One of our core interests was to               

evaluate to what extent a high spectral similarity score, between a pair of spectra         (s , )g 1 s2      

reflects a high structural similarity score between the respective molecules . For this,      (m , )f 1 m2        

we computed different similarity scores for all possible spectra pairs, hence between all 12,797              

spectra in UniqueInchikey. The vast majority of those spectra pairs correspond to entirely             

unrelated molecules, resulting in a distribution of fingerprint-based structural similarities as           

shown in Fig. 3A. We then selected only the structural similarities that correspond to the               

highest scoring pairs according to each similarity measure (Spec2Vec, Cosine, modified Cosine).            

Figure 3B displays the average structural similarity over the highest 0.1% of each respective              

spectra similarity score, with 0.1% corresponding to about 80,000 spectra pairs. This reveals             

that a high Spec2Vec spectrum similarity score correlates stronger with structural similarity            

than the cosine or modified cosine scores (Fig.3). As a consequence, Spec2Vec similarities allow              

retrieving notable larger fractions of spectra pairs above a desired mean structural similarity             

score (see example in Fig.3 B). Cosine scores exist in numerous flavors (e.g. using different peak                

weighting) and can vary largely depending on their key parameters (tolerance and min_match,             

the minimum number of matching peaks). Several different cosine score flavors and parameter             

ranges were tested, without resulting in major improvements regarding figure 3, see also             

supplemental material and figures S2 to S6. 

We observed that the poorer correlation between cosine and modified cosine similarity scores             

and structural similarity can largely be explained by high false positive rates (Fig. S1). This               
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shortcoming can to some extent -- though never fully -- be reduced by using lower peak match                 

tolerances (here: tolerance = 0.005 Da) and ignoring scores based on fewer than min_match              

matching peaks (here: min_match=10, see Fig. S2, S3 for parameter search). 

 

Figure 3. (A) histogram of the structural similarity scores across all possible spectra pairs between the 12,797 spectra in the                    

UniqueInchikey dataset (81,875,206 unique pairs, not including pairs of spectra with themselves). The histogram indicates that                

randomly chosen pairs will most likely show scores between 0 and 0.5. Similarity scores > 0.6 are rare and hence unlikely to                      

achieve by randomly choosing pairs (p=0.0103 of finding a score > 0.6, p=0.0034 for a score > 0.7). (B) Different similarity scores                      

were calculated for the same 81,875,206 spectral pairs. Comparing the highest 0.1% the resulting scores to the structural                  

similarities reveals that Spec2Vec similarities show a notably higher correlation with actual structural similarities. Used               

parameters were 1) Spec2Vec, trained on UniqueInchikey for 50 iterations, 2) Spec2Vec, trained on AllPositive for 15 iterations,                  

3) Modified cosine score with tolerance=0.005 and min_match=10, and 4) Cosine score with tolerance=0.005 and               

min_match=6. 

Library matching. 

Next, we evaluated the potential of Spec2Vec to aid in matching unknown spectra to library               

spectra run on various instruments under different conditions. We worked with the AllPositive             

dataset (95,320 spectra), which we split into a library set (94,320 spectra) and a query set (1000                 

spectra). The query spectra were randomly selected such that they would all have a different               

planar InChIKey and that we had at least 4 spectra with identical InChIKey remaining in the                

library set. Therefore, for each of the 1000 query spectra, multiple positive hits existed in the                

library set. A Spec2Vec model was trained on the library set and Spec2Vec scores were               

compared with cosine similarity scores for library matching (Fig.4). Both Spec2Vec and cosine             

similarity scores were used in the same way: potentially matching spectra were pre-selected             

based on precursor mass matches (tolerance = 1Da) before the highest scoring candidate above              

a similarity threshold was chosen. Gradually lowering this threshold from 0.95 to 0, increases              

both the number of true and false positives per query. While the general trend for both scores                 
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is similar, Spec2Vec resulted in a notably better true/false positive ratio at all thresholds.              

Spec2Vec also allowed to correctly match the query spectra with up to 87% accuracy and               

showed both higher accuracy and retrieval rates when compared to the cosine score based              

library matching (Fig. 4). 

 
Figure 4. Spec2Vec similarity scores deliver improved true-to-false-positive ratios during library matching. 1000 randomly              

selected spectra, all with at least 5 identical InChIKeys in the entire dataset, were removed from a AllPositive and then                    

matched to the remaining spectra. Matching was done by pre-selecting spectra with the same parent mass (tolerance = 1Da)                   

and then choosing the candidate with the highest spectral similarity score if this score was larger than a set threshold. The left                      

plot shows the true-vs-false ratio per query when using Spec2Vec (red) or Cosine scores (black). Labels near the dots report the                     

used similarity score thresholds. The plot on the right displays the resulting accuracy and retrieval rates for the same                   

parameters. Using Spec2Vec, library matching could be done with notably higher accuracy across all tested retrieval rates. 

 

In practice, we expect that actual library matching can be improved further via stricter parent               

mass matching (lower tolerance) or by consulting both Spec2Vec and Cosine similarity scores,             

which can potentially make use of the apparent complementarity of the methods which is              

described in the next section.  

Unknown compound matching 

Once the embedding has been trained, Spec2Vec similarity scores are computationally more            

efficient to calculate than cosine-based scores, allowing brute-force all-vs-all comparisons of           

query spectra against large datasets. Although computation times for the different similarity            

scores will depend upon multiple factors such as the chosen spectra preprocessing steps (key              

variable: resulting number of peaks), and implementation or hardware details, we generally            

found Spec2Vec similarities to be about 2 orders of magnitude faster to calculate when using a                

pre-trained model, and about 1 order of magnitude faster when training a new model from               

scratch. Training a model on the UniqueInchikey dataset takes about 30 minutes on a Intel               

i7-8550U CPU. The main performance gain results from the fact that Spec2Vec embedding             

vectors are fixed length vectors, comparison of which is straightforward. Conversely,           
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cosine-based methods, despite their name, do not tend to operate on fixed lengths vectors as               

this would require a binning step. Instead, they rely on a costly alignment step in which all pairs                  

of fragment ions with matching m/z (within some tolerance) are extracted. In addition,             

Spec2Vec similarity correlates more closely with structural similarity (Fig.3) which makes it            

better suited for identifying relationships between spectra of different yet chemically related            

molecules. Taken together, this makes it possible to use Spec2Vec similarity for rapidly querying              

spectra of unknown molecules against all spectra in a large database (Fig.5).  

To test whether Spec2Vec similarity scores can be used to help detect highly related molecules,               

we moved all spectra belonging to 200 randomly chosen InChIKey (1030 spectra in total) from               

the AllPositive dataset to a query dataset. To make sure that there is no overlap regarding                

molecules between training and query data, we also removed all spectra without InChIKey             

annotation. A separate Word2Vec model was trained on the remaining data of 76,062 spectra,              

and therefore the model did not see any spectra of the selected 200 molecules. Finally, each of                 

the 1030 query spectra was compared to all remaining spectra. The ten highest scoring matches               

for each query were selected and the quality of this selection was assessed by computing the                

structural similarities between all found matches and the query molecules (Fig.5). For 3 out of 5                

queries, the resulting top-10 list would contain suggested molecules with a structural similarity             

score of > 0.6 (p=0.0103, see Fig. 3A for the histogram of scores and calculation of the                 

percentage). In particular for molecules with parent masses larger than 200 Da, Spec2Vec was              

often able to detect highly related molecules for unknown queries. For query spectra of larger               

molecules (>400 Da), Spec2Vec similarities were very likely to point to chemically related library              

molecules with an average Tanimoto similarity for the best suggestions above 0.8 (Fig.5 B). 

This experiment purposely considered Spec2Vec as the only means to find related matches to              

best illustrate its ability to quickly find related molecules in a large library dataset. Querying               

1030 spectra against 76,062 spectra took 110s on a Intel i7-8550U CPU, or 0.1s per query                

spectrum. This makes Spec2Vec similarity scores a powerful selection tool. With a total of              

similarity scores to calculate, we estimate the same operation using, 30 6, 62 ≈ 78 01 0 · 7 0 · 1 6           

cosine or modified cosine would take about 4-8 hours, which is the time it took to compute the                 

similarity scores for the benchmarking comparison (Fig. 3). The high computational82 0 · 1 6            

cost of the cosine and modified cosine scores is also the reason why potential matches are                

often pre-selected, for instance by comparing the parent masses. Spec2Vec in contrast, easily             

allows to compare large numbers of spectra purely based on their spectral similarity. In              

addition to the 2 orders of magnitude gain in computation time, our results also suggest that                

Spec2Vec is a better suited similarity score for detecting related yet different molecules. This              

can be seen in the considerably lower correlation between high spectral similarity and             

molecular similarity for the cosine and modified cosine score (Fig.3), as well as the observed               

high fraction of false positives (Figure S1). 

Unlike in our controlled experiments, we will in practice generally not know if our library               

contains exact compound matches for our query spectra. We could expect the most reliable              

library search results when combining different measures. Thus, in the future, we could imagine              
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that Spec2Vec similarity scores together with parent mass matching are very suitable methods             

for pre-selecting promising candidates for library matching. In a second step, computationally            

more expensive similarity measures, including cosine and modified cosine scores, but also            

scores such as those derived from SIRIUS/CSI:Finger ID 8 could then be added to the Spec2Vec               

similarity measure to facilitate a well-informed decision. For instance, high Spec2Vec similarity            

combined with low cosine score could be used as a signature of a chemically related yet distinct                 

compound. Having both a high Spec2vec and cosine score together with a parent mass match               

would then suggest an exact match.  
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Figure 5. Matching of unknown molecules (not part of library) using Spec2vecs similarities. All spectra of 200 randomly selected                   

InChIkeys (1030 spectra) were removed from the AllPositive dataset. Using a word2vec model that was trained on the                  

remaining dataset, also excluding non-annotated spectra (76,062 spectra), each removed “query” spectrum was compared to               

the dataset by only using the Spec2Vec similarity score. (A) shows a histogram of the best structural similarity score out of the                      

found top-10 Spec2Vec similarities for each query. For nearly 6 out of 10 queries, Spec2Vec finds a match with a structural                     

similarity score > 0.6 reflecting high molecular similarity. (B) The quality of the suggested matches is highly dependent on the                    

mass of the query compound. In particular for larger molecules (> 400 Da), Spec2Vec similarities allow finding highly similar                   

molecules. (C+D) Examples of unknown molecules (not part of library) that are compared to all library spectra to find most                    
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similar matches using Spec2Vec. In both cases the algorithm is able to return highly related molecules to the query molecules                    

that could be used to help with annotating the query spectra or to infer its chemical class.  
 

Network analysis. 

 
Figure 6. The better correlation between Spec2Vec spectral similarity with the actual structural similarity also translates into a                  

more coherent clustering ability. Clustering is done here by creating edges between spectra (=nodes) for similarities above a                  

certain cutoff (max. 10 links per node). To make the resulting clustering more robust and better comparable across different                   

scores, we used the Louvain algorithm to break up the large clusters. Cluster quality here is assessed by measuring the average                     

structural similarity across all linked pairs within each cluster. Setting a structural similarity threshold of 0.5 (see fig. 3A) allows                    

to compare the fraction of spectra that ends up in chemically homogenous clusters (red) with those in more heterogeneous                   

clusters (green) and the fraction of spectra that is not clustered at all (those with no links above set threshold). Dashed squares                      

mark regions of relatively high retrieval (high fraction of clusters with high structural similarity) and high accuracy (large                  

discrepancy between fraction of high structural similarity and low structural similarity clusters). Overall, Spec2Vec allows to                

cluster higher fractions of spectra into high structural similarity clusters (> 35% of all spectra are in high similarity clusters for a                      

Spec2Vec similarity threshold of 0.7).  

 

Based on the finding that Spec2Vec similarity correlates well with structural similarity (Fig.3),             

we investigated how Spec2Vec could be applied to molecular networking which is becoming an              

increasingly popular tool for exploring metabolomic datasets 7. Molecular networking refers to            

representing spectra as a network in which spectra are nodes connected by edges based upon a                

user defined cutoff for the similarity score (along with some heuristic pruning). Current             

molecular networking relies on the modified cosine score 7,10. 

Such networks are frequently used to define clusters (or communities) which are termed             

molecular families. Detecting clusters in complex networks without ground truth is generally            

regarded as an ill-defined problem 21, which makes absolute quantitative comparisons difficult.            

In the present case, clusters depend strongly on the chosen parameters (e.g. similarity cutoff)              

and algorithm (processing, cleaning and trimming of the network). To better isolate the effect              
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of different similarity scores we have chosen a simple workflow. For each spectrum (=node) the               

up to 10 highest-scoring links (=edges) to other spectra are added if those links have similarity                

scores above a given threshold. To improve the overall quality of the clustering, but also to                

make the results more robust we further apply the Louvain algorithm to split up large, poorly                

connected clusters 21,22. Graphs in figure 6 were generated using different similarity thresholds             

and the resulting clusters were quantified by counting them as well-clustered if the mean              

structural similarity within all cluster edges was ≥ 0.5, and poorly-clustered if it was < 0.5. The                 

rationale behind setting the cutoff to 0.5 was the low probability of finding scores above 0.5 by                 

chance as observed in the histogram of all possible structural similarity scores within the              

UniqueInchikey dataset (Fig. 3A). The results in fig. 6 show that Spec2Vec is able to cluster                

higher fractions of spectra into high structural similarity clusters when compared to the             

modified cosine. In terms of computation time, the presented molecular networking procedure            

requires to calculate the spectral similarities between all possible spectra pairs (≈82⋅106 unique             

pairs), which is the same as the before described benchmarking. Spec2Vec similarity scores             

here reduced the computation time by about 2 orders of magnitude. Finally, we expect that               

Spec2Vec similarity scores bring new options for further improving molecular networking. A            

simple first proof-of-principle test on combining Spec2Vec similarity and modified cosines           

scores reveals that combined scores will likely be able to further increase clustering accuracy              

(see fig. S9). More extensive future work will be necessary to systematically explore the full               

potential of such score combinations. 

 

Discussion 

In conclusion, here we introduce a spectral similarity score with advantageous properties over             

the currently widely used cosine similarity score (and its popular variant, modified cosine).             

Inspired by natural language processing, much like topic modelling enabled substructure finding            

in metabolomics data 23, we here show how a popular text mining algorithm (Word2Vec20) can              

be adapted to learn meaningful relations between mass fragments and neutral losses in mass              

fragmentation spectra. We demonstrate how the Spec2Vec score better resembles the           

structural similarity of fragmented molecules and outperforms the cosine score in key tasks             

underpinning metabolomics analyses including library matching. Being a machine learning          

algorithm, one limitation of Spec2Vec as compared to cosine scores is that it needs training               

data to learn the fragment peak relationships; however, since this not necessarily needs to be               

library spectra and in light of the enormous increase in publicly available metabolomics data,              

we do not see this as a major bottleneck. Our use of library data in this study was purely so that                     

spectral similarities could be compared with the similarities of the known structures. Training             

time is not a limitation: training the embedding on 95,320 spectra took 40 minutes (when               

training for 15 iterations). 
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Spec2Vec is not meant to be the endpoint but rather a start of a new direction in spectral                  

similarity scores. The low computational costs of Spec2Vec similarity scores make it possible to              

run extensive searches on very large library datasets. This makes it particularly suited to act as a                 

pre-selection funnel that can easily be extended with a set of computationally more expensive              

similarity measures in the future. One could think of adding relevant mass differences as input               

to train the model, for example following the approach of Kreitzberg et al.24.  

Finally, metabolomics is increasingly used as a tool to understand metabolic profiles and to              

perform integrative systems biology; furthermore, the use of MS/MS data has been promoted             

by community based platforms such as MassBank 5, MS2LDA 23 and GNPS7. We would like the              

community to use our novel score and therefore we created the modular matchms25 and              

Spec2Vec26 packages that can easily be incorporated in pipelines such as GNPS. It could also be                

used in other systems that rely upon spectral similarity. For example, SIRIUS and IOKR both use                

kernel matrices that are constructed from spectral similarities and whether Spec2Vec           

similarities could improve these pipelines is clearly worth investigation. In the present work, we              

have only demonstrated performance on LC-MS data. A very promising avenue will hence be to               

assess the utility of Spec2Vec for GC-MS data. When measuring molecules with GC-MS,             

precursor m/z values are usually not measured. This means that the initial precursor filtering to               

reduce the number of similarity calculations that can be done for LC-MS is not possible               

suggesting that the time savings available with Spec2Vec would be particularly desirable. Our             

work represents the first machine learning inspired spectral similarity score and, given its             

central place in metabolomics analyses, we believe Spec2Vec opens up new possibilities that             

will impact metabolomics analyses across all disciplines including clinical, food, and microbial            

metabolomics as well as biomarker and natural products discovery by improving identification,            

annotation, and networking. 

 

Methods 

Data preparation 

The current study was done using a large LC-MS dataset provided on GNPS containing 154,820               

spectra ( https://gnps-external.ucsd.edu/gnpslibrary/ALL_GNPS.json from 2020-05-11, the raw      

data can be now be found on https://doi.org/10.5281/zenodo.3979010). The provided          

metadata was cleaned and corrected using matchms25 resulting in 94,121 spectra with InChIKey             

annotations. Using key metadata information such as compound names, chemical formulas and            

parent masses, an extensive automated lookup search was run against PubChem 27 (via            

pubchempy28). As a result, 128,042 out of 154,820 spectra could be linked to an InChIKey               

(14,978 unique InChIKeys in the first 14 characters).  

The here used AllPositive subset contains all spectra with positive ionization mode containing             

112,956 spectra, out of which 92,954 with InChIKey (13,505 spectra with unique planar             

InChIKeys in first 14 characters before Spec2Vec related filtering). 
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We also worked with the considerably smaller subset UniqueInchiKeys which was reduced on             

purpose to be accessible for extensive benchmarking. It contains only one spectrum for every              

unique InChIKey from the AllPositive dataset (see supplemental or notebooks for details on the              

selection procedure). 

In a next step we removed all peaks with m/z ratios outside the range [0, 1000] and discarded                  

all spectra with less than 10 peaks. This left us with 95,320 spectra (out of which 77,092 with                  

InChIKey) for the AllPositive dataset, and 12,797 spectra (all with InChIKey) for the             

UniqueInchiKeys dataset. 

Since Spec2Vec similarity scores are conceptually very different from cosine-like similarity           

scores we decided to use two different peak filtering procedures for the two methods. For both                

the cosine and modified cosine score calculations we ignored all peaks with relative intensities              

<0.01 compared to the highest intensity peak. This is both to remove potential noise, but also                

to reduce the computational costs for the classical similarity scores.  

Spec2Vec is comparing spectrum documents using language model analogies. For the           

underlying Word2Vec models we hence aimed at training on documents of comparable size             

which is achieved by removing excessive amounts of low intensity peaks. Since we expect that               

larger molecules on average will produce a higher number of meaningful fragmentation peaks,             

the maximum number of kept peaks per spectrum was set to scale linearly with the parent                

mass:  

.ax(n ) 0.5 parentmassm peaks =  ·   

To assess if this procedure of having different peak filtering for the different similarity scores               

was indeed doing justice to the cosine and modified cosine score, we also repeated the library                

matching with cosine scores computed based on the Spec2Vec-processed data. This resulted in             

a slightly lower overall performance of the cosine score based library matching.  

 

From spectrum to document 

After processing, spectra are converted to documents. For this, every peak is represented by a               

word that contains its position up to a defined decimal precision (“peak@xxx.xx”). For all              

presented results, a binning of two decimals was used, so that a peak at m/z 200.445 translates                 

into the word “peak@200.45”. In addition to all peaks of a spectrum, neutral losses between               

5.0 and 200.0 Da were added as “loss@xxx.xx”. Neutral losses are calculated as             

. A list of all created peak and loss words is what we here refer to as arecursor peakp m/z −  m/z                   

document. 

A Word2Vec20 model is trained on all documents of a chosen dataset using gensim 29. However,               

Spec2Vec in several aspects differs significantly from typical NLP applications so that some key              

parameters of the model also differ notably from the default settings. First of all, peaks in the                 

mass spectra have no particular order that is comparable to the word order in a document. We                 

hence set the window-size to 500, which in our case means that the entire spectrum (i.e. the                 
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entire document) counts as context. The two key types of word2vec models are skip gram and                

CBOW, the latter was generally observed to perform better in our case.  

Although it is often considered that longer training will improve the results of a Word2Vec               

model, we found that this does not necessarily hold for our Spec2Vec spectral similarity              

measures. When using negative sampling during the training, model performance was observed            

to decrease for very long training runs. At the same time, however, including negative sampling               

allowed to obtain better overall results. Generally we found that training a model with negative               

sampling (negative=5) and 15 ( AllPositive) up to 50 ( UniqueInchikey) epochs were best suited             

for obtaining close to optimal model performance (see supplemental materials and fig. S4). To              

obtain a stable baseline performance we recommend to also train a model without negative              

sampling which will plateau for very long training runs. 

 

Spec2Vec similarity score 

Spec2Vec similarity scores are derived on the basis of a pre-trained Word2Vec model.             

Word2Vec learns relationships between words (=peaks/losses) from co-occurrences across the          

seen documents. It then allows to represent words by abstract word vectors (so called word               

embeddings) in such a way that words of similar meaning are placed close to each other. With                 

Spec2Vec our main interest lies in comparing entire spectra, which can be described by the sum                

of their words. To account for the dependency between peak relevance and peak intensity we               

calculate a spectrum vector  as a weighted sum:vS  

, vS = ∑
n 

i=1
√wi · vi  

with the intensity (normalized to maximum intensity=1) and the word vector of  peak .wi vi i  

For the similarity between two spectra we then compute the cosine score between two 

spectrum vectors: 

(s , ) cosine(v , v )g 1 s2 =  S1  S2  

In practice we expect that Spec2Vec similarities will be most interesting to use when the 

underlying word2vec was trained on a large reference dataset containing many different 

fragments and losses and their structural relationships. It can also mean that it will be applied 

to spectra that were not part of the training data. In those cases some words (=peaks) of a 

given spectra might be unknown to the model. In those instances we can estimate the impact 

of the missing words by assessing the uncovered weighted part of a spectrum: 

.issing f raction   m = 1 −
∑
n 

i=1
√wi

∑
 

i, w εmodeli
√wi

 

Having few unknown peaks of low intensity in a spectrum will count only little to the missing                 

fraction, whereas high numbers of unknown peaks or few unknown peaks of high intensity will               

result in a high missing fraction. By setting a threshold for the missing fraction (e.g. <0.05),                
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returning Spec2Vec similarity scores for spectra far outside the learned peaks (and losses) can              

be avoided. 

Structural similarity 

Assessing the structural similarity between two molecules remains a complex topic. Finding the             

best measure to define structural similarity between two molecules lies outside the scope of              

this study; most recent studies converge to the Tanimoto similarity as one of the most practical                

and well-performing measures30. Thus, for the presented results, the structural similarity was            

measured by taking the Tanimoto similarity (Jaccard index) based on daylight-like molecular            

fingerprints (rdkit molecular fingerprints, version 2020.03.2, 2048 bits, derived using rdkit 31 via             

matchms25). 
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Code, trained models, and data 

The underlying code was developed into two Python packages to handle and compare mass 

spectra, matchms (https://github.com/matchms/matchms) and spec2vec 

( https://github.com/iomega/spec2vec). Both packages are freely available and can be installed 

via conda 25,26. 

All additional functions to analyse the data and to create the presented plots can be found 

under https://github.com/iomega/spec2vec_gnps_data_analysis. This repository also contains 

extensive Jupyter notebooks to document the entire workflow from raw data to the figures 

presented in this work. The notebooks were tested using matchms 0.6.0 and spec2vec 0.3.1. 

The two most important trained Word2Vec models used in this work can be downloaded from  

https://doi.org/10.5281/zenodo.3978054 (trained on UniqueInchikey dataset) and      

https://doi.org/10.5281/zenodo.3978070 (trained on AllPositive dataset). 

The pre-processed, cleaned dataset with all positive ionization mode spectra can be            

downloaded from https://doi.org/10.5281/zenodo.3978118, the original raw data can be         

accessed from https://doi.org/10.5281/zenodo.3979010 . 
Calculated all-vs-all similarity score matrices for cosine score, modified cosine score, and            

fingerprint-based similarity (Tanimoto) for the UniqueInchikey dataset can be found on           

https://zenodo.org/record/3979074. 
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