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Abstract

Timescales characterize the pace of change for many dynamic processes in nature. Timescales
are usually estimated by fitting the exponential decay of data autocorrelation in the time or
frequency domain. We show that this standard procedure often fails to recover the correct
timescales due to a statistical bias arising from the finite sample size. We develop an alterna-
tive approach to estimating timescales by fitting the sample autocorrelation or power spectrum
with a generative model based on a mixture of Ornstein-Uhlenbeck processes using adaptive
Approximate Bayesian Computations. Our method accounts for finite sample size and noise
in data and returns a posterior distribution of timescales that quantifies the estimation uncer-
tainty and can be used for model selection. We demonstrate the accuracy of our method on
synthetic data and illustrate its application to recordings from the primate cortex. We provide
a customizable Python package implementing our framework with different generative models
suitable for diverse applications.

1 Introduction

Dynamic changes in many stochastic processes occur over typical periods known as timescales.
Timescales of different processes in nature range broadly from milliseconds in protein fold-
ing [1, 2] and neural signalling [3–5], to minutes in gene splicing [6–8] and synaptic plastic-
ity [9–12], to days in spreading of infectious diseases [13–15], to years in demographic changes
of populations [16, 17], and up to millennia in the climate change [18, 19]. Accurate measure-
ments of timescales from experimental data are necessary to uncover mechanisms controlling
the dynamics of underlying processes and reveal their function. The variation of timescales
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across brain areas reflects the functional hierarchy in the neocortex and areal differences in
temporal integration of information [3, 20–22], while aberrant timescales were associated with
autism [23]. Precise estimation methods are necessary to detect changes in timescales during
cognitive processes such as attention [24]. Estimated timescales are also used to determine the
operating regime of the dynamics, e.g., how close the system is to a critical point [25], which
can reveal general principles organizing the collective behavior of complex systems such as the
brain [26–28]. Thus, many problems require estimating timescales from experimental data to
constrain theoretical models and enable accurate predictions in practical applications.

The timescales of a stochastic process are defined by the exponential decay rates of its autocor-
relation function. Accordingly, timescales are usually estimated by fitting the autocorrelation
of a sample time-series with exponential decay functions [3,25,25,29–40] or using the autocor-
relation half-width [20, 23, 41]. Equivalently, timescales can be estimated in frequency domain
by fitting the shape of the sample power spectral density (PSD) with a Lorentzian function
which is the PSD of a process with exponentially decaying autocorrelation [22, 42]. However,
many factors unrelated to the dynamics of the processes under study can alter the shape of
autocorrelations and, according to the Wiener–Khinchin theorem [43], the PSD shape. For
example, autocorrelations of in vivo neural activity can contain components arising from a
specific trial structure of a behavioral task or slow drifts in the average activity. To correct
for these irrelevant factors, several techniques were developed based on data resampling, in
particular, trial shuffling and spike jittering methods [44–47]. These methods remove from the
autocorrelation the average autocorrelation of surrogate data, which are designed to match the
irrelevant factors in the real data but are otherwise random. The success of these methods criti-
cally depends on the ability to construct the appropriate surrogate data that exactly reproduce
the irrelevant factors.

The values of sample autocorrelation computed from a finite time series systematically deviate
from the true autocorrelation [48–53]. The magnitude of the bias mainly depends on the length
of the sample time-series, but also on the value of the true autocorrelation at each time-lag.
The expected value and variance of the autocorrelation bias can be derived analytically in some
simple cases, such as a Markov process with a single timescale [48,51]. However, the analytical
derivation is not tractable for more general processes that involve multiple timescales or have
additional temporal structure. Moreover, since the bias depends on the true autocorrelation
itself, which is unknown, it cannot be corrected by constructing appropriate surrogate data as
in shuffling or jittering methods.

The statistical bias deforms the shape of empirical autocorrelations and PSDs and hence can
affect the timescales estimated by direct fitting of the shapes. Indeed, it was noticed that fitting
the sample autocorrelation of an Ornstein-Uhlenbeck (OU) process with an exponential decay
function results in systematic errors in the estimated timescale and the confidence interval [54].
To avoid these errors, it is possible to fit the time-series directly with an autoregressive model,
without using autocorrelation or PSD [21, 54]. For example, the parameters of an OU process
can be obtained with a maximum-likelihood estimator, which directly fits time-series and thus
evades the autocorrelation bias [54]. However, the advantage of autocorrelation is that irrelevant
factors (e.g., slow activity drifts) can be efficiently removed with resampling methods (e.g., spike
jittering), and any additional dynamics not locked to trial onset (e.g., oscillations) can be easily
incorporated in the autocorrelation shape. In contrast, accounting for irrelevant factors and
dynamics in the raw time-series is generally difficult as it requires adding components to the
autoregressive model matching the temporal structure of these factors on single trials, all of
which need to be fitted to the data. Thus, fitting the summary statistic such as autocorrelation
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or PSD is attractive, but how the statistical bias affects the estimated timescales was not
studied systematically. Moreover, rather than maximum-likelihood estimates, inference of a
full posterior distribution is often necessary, for example, for model selection, which has not
been addressed for complex processes with multiple timescales, additional temporal structure
and noise.

We show that large systematic errors in estimated timescales arise from the statistical bias due
to a finite sample size, which is evident in different processes with various number of timescales
and different trial durations. These estimation errors may result in misleading interpretations
of the underlying biological processes. To correct for the bias, we develop a flexible com-
putational framework based on adaptive Approximate Bayesian Computations (aABC) that
estimates timescales by fitting the autocorrelation or PSD with a generative model. ABC
is a family of likelihood-free inference algorithms for estimating model parameters when the
likelihood function cannot be calculated analytically [55]. The aABC algorithm approximates
the multivariate posterior distribution of parameters of a generative model using population
Monte-Carlo sampling [56]. Our generative model is based on a mixture of Ornstein-Uhlenbeck
processes—one for each estimated timescale—which have exponentially decaying autocorrela-
tions. The generative model can be further augmented with the desired noise model (e.g., a
spike generation process) and additional temporal structure to match the statistics of the data.
Our method accurately recovers the correct timescales from finite data samples for various
synthetic processes with known ground-truth dynamics. The inferred posterior distributions
quantify the uncertainty of estimates and can be used for model selection to compare alternative
hypotheses about the dynamics of the underlying process. To illustrate an application of our
method, we estimate timescales of ongoing spiking activity in the primate visual cortex during a
behavioral task. The computational framework presented here can be adapted to various types
of data and can find broad applications in neuroscience, cellular biology, epidemiology, physics,
and other fields. To allow for an easy adoption and further development of our framework, we
provide a Python package called abcTau that supports different types of data and generative
models, and includes the model comparison functionality and a parallel processing option for
analyzing large-scale datasets.

2 Results

2.1 Bias in timescales estimated by direct fitting

Timescales of a stochastic process A(t′) are defined by the exponential decay rates of its auto-
correlation function. The autocorrelation is the correlation between the values of the process
at two time points separated by a time lag t. For stationary processes, the autocorrelation
function only depends on the time lag:

AC(t) =
E [(A(t′)− µ) (A(t′ + t)− µ)]t′

σ2
. (1)

Here µ and σ2 are, respectively, the mean and variance of the process, which are constant in
time, and E[·]t′ is the expectation over t′. Different normalizations of autocorrelation are used
in literature, but our results do not depend on a specific choice of normalization.

In experiments or simulations, the autocorrelation needs to be estimated from a finite sample of
empirical data. A data sample from the process A(t′) constitutes a finite time-series measured
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at discrete times t′i (i = 1 . . . N , where N is the length of the time-series). For example, the
sample time-series can be spike-counts of a neuron in discrete time bins, or a continuous voltage
signal measured at a specific sampling rate. Accordingly, the sample autocorrelation is defined
for a discrete set of time lags tj. For empirical data, the true values of µ and σ are unknown.
Hence, several estimators of the sample autocorrelation were proposed, which use different
estimators for the sample mean µ̂ and sample variance σ̂2 [48, 49]. One possible choice is:

ÂC(tj) =
1

σ̂2(N − j)

N−j∑
i=1

(A(t′i)− µ̂1(j))
(
A(t′i+j)− µ̂2(j)

)
, (2)

with the sample variance σ̂2 = 1
N−1

∑N
i=1(A(t′i)

2 − 1
N2 (
∑N

i=1A(t′i))
2) and two different sample

means µ̂1(j) = 1
N−j

∑N−j
i=1 A(t′i), µ̂2(j) = 1

N−j
∑N

i=j+1A(t′i). The sample autocorrelation can
also be computed as the inverse Fourier transform of PSD, based on the Wiener–Khinchin the-
orem [43]. However, for any of these methods, the sample autocorrelation is a biased estimator:
for a finite length time-series the values of the sample autocorrelation systematically deviate
from the ground-truth autocorrelation [48–53] (Fig. 1, Supplementary Fig. 1). This statistical
bias deforms the shape of the sample autocorrelation or PSD and therefore may affect the
estimation of timescales by direct fitting of the shape.

To investigate how the autocorrelation bias affects the timescales estimated by direct exponen-
tial fitting, we tested how accurately this procedure recovers the correct timescales on synthetic
data with a known ground truth. We generated synthetic data from several stochastic processes
for which the autocorrelation function can be computed analytically. The exponential decay
rates of the analytical autocorrelation provide the ground-truth timescales. Each synthetic
dataset consisted of 500 independent realizations of the process (i.e. trials) with fixed duration.
Such trial-based data are typical in neuroscience but usually with a smaller number of trials.
We computed the sample autocorrelation for each trial using Eq. 2, averaged them to reduce the
noise, and then fitted the average autocorrelation with the correct analytical functional form
to estimate the timescale parameters. We repeated the entire procedure 500 times to obtain a
distribution of estimated timescales for multiple independent realizations of the data.

We considered three ground-truth processes which differed in the number of timescales, ad-
ditional temporal structure and noise. First, we used an Ornstein–Uhlenbeck (OU) process
(Fig. 1A):

ȦOU(t′) = −AOU(t′)

τ
+
√

2Dξ(t′), (3)

where ξ(t′) is a Gaussian white noise with zero mean, and the diffusion parameter D sets the
variance Var[AOU(t′)] = Dτ [57, 58]. The autocorrelation of the OU process is an exponential
decay function [59]

ACOU(t) = e−t/τ . (4)

Accordingly, the parameter τ provides the ground-truth timescale.

Second, we used a linear mixture of an OU process and an additional oscillatory component
(Fig. 1B):

A(t′) =
√

(1− c1)AOU(t′) +
√

2c1 sin (φ+ 2πft′). (5)

Here the coefficient c1 ∈ [0, 1] sets the relative weights of two components without changing
the total variance of the process, and the phase φ is drawn on each trial from a uniform
distribution on [0, 2π]. This process resembles the firing rate of a neuron modulated by a slow

4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2020.08.11.245944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245944
http://creativecommons.org/licenses/by/4.0/


0 200 400
0.0

0.5

1.0
A
C

A

0 50 100

−2

0

lo
g(
A
C
)

Ground truth
T=1s
T=2s

T=4s
T=8s

0 20 40 60
−2

−1

0

lo
g(
A
C
)

Data
Ground truth
Direct fit

16 17 18 19 200.0

0.5

1.0

Pr
ob

ab
ilit

y 
de

ns
ity Ground truth

Direct fit

0 200 400 600

0.0

0.5

1.0

A
C

B

0 100
−2

0

lo
g(
A
C
)

0 50 100 150−2

−1

0

lo
g(
A
C
)

40 50 600.00

0.15

0.30

Pr
ob

ab
ilit

y 
de

ns
ity

0 200 400
Time lag, t (ms)

0.0

0.5

1.0

A
C

C

0 200

−2

0

lo
g(
A
C
)

0 50 100 150
Time lag, t (ms)

−2

−1

0

lo
g(
A
C
)

0 20 40 60 80
Timescale, τ  (ms)

0.0

0.5

1.0

Pr
ob

ab
ilit

y 
de

ns
ity τ1

τ2

Fig. 1. Bias in sample autocorrelations and timescales estimated by direct exponential
fitting. (A) Data are generated from an OU process with the timescale τ = 20 ms. Left: Sample
autocorrelation (colored dots) systematically deviates from the ground-truth autocorrelation (gray
line). The shape of sample autocorrelation depends on the time-series duration (T ) approaching
the ground truth with increasing T (inset: close up in logarithmic-linear scale). Middle: Direct
fitting of the analytical autocorrelation function (cyan) to sample autocorrelation (brown, T = 1 s)
does not recover the ground-truth autocorrelation shape (gray). Right: The ground-truth timescales
largely deviate from the distribution of timescales estimated by direct exponential fitting across 500
independent realizations of the same process. (B) Same as A for data from a linear mixture of an
OU process with the timescale τ = 60 ms and an oscillation with frequency f = 2 Hz (Eq. 5). (C)
Same as A for data from an inhomogeneous Poisson process with the instantaneous rate generated
from a linear mixture of two OU processes with timescales τ1 = 5 ms and τ2 = 80 ms. All simulation
parameters are provided in Methods 4.5.

oscillation [60,61]. The autocorrelation of this process is given by

AC(t) = (1− c1)e−t/τ + c1 cos (2πft), (6)

hence, the ground-truth timescale is defined by the OU parameter τ .

Finally, we used an inhomogeneous Poisson process with the instantaneous rate modeled as
a linear mixture of two OU processes with different timescales (Eq. 13, Fig. 1C). The OU
mixture was shifted, scaled and rectified to produce the Poisson rate with the desired mean and
variance (Eq. 17). Similar doubly-stochastic processes are often used to model spiking activity of
neurons [62]. The total variance of this process consists of two contributions: the rate variance
and the Poisson process variance (Eq. 19) [63]. We simulated this process in discrete time
bins t′i by sampling event-counts from a Poisson distribution with the given instantaneous rate
(Methods 4.1.3). The autocorrelation at all lags tj(j > 0) arises only from the autocorrelation
of the rate, since the Poisson process has no temporal correlations. The drop of autocorrelation
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between t0 and t1 mainly reflects the Poisson-process variance, and for all non-zero lags tj(j > 0)
the autocorrelation is given by

AC(tj) =
σ2 − µ
σ2

(
c1e
−tj/τ1 + (1− c1)e−tj/τ2

)
. (7)

Here τ1 and τ2 are the ground-truth timescales defined by the parameters of two OU processes,
c1 is the mixing coefficient, and µ and σ2 are the mean and variance of the event-counts,
respectively.

For all three processes, the sample autocorrelation exhibits a negative bias: the values of
the sample autocorrelation are systematically below the ground-truth autocorrelation function
(Fig. 1, left). This bias is clearly visible in the logarithmic-linear scale, where the ground-
truth exponential decay turns into a straight line. The sample autocorrelation deviates from
the straight line and even becomes systematically negative at intermediate lags (hence not
visible in logarithmic scale) for processes with a strictly positive ground-truth autocorrelation
(Fig. 1A,C). The deviations from the ground truth are larger when the timescales are longer or
when multiple timescales are involved. The negative bias decreases for longer trial durations
(Fig. 1, left inset), but it is still substantial for realistic trial durations such as in neuroscience
data.

Due to the negative bias, a direct fit of the sample autocorrelation with the correct analytical
function cannot recover the ground-truth timescales (Fig. 1, middle, right). When increasing the
duration of each trial, the timescales obtained from the direct fits become closer to the ground-
truth values (Supplementary Fig. 2). This observation indicates that timescales estimated
from datasets with different trial durations cannot be directly compared, as differences in
the estimation bias may result in misleading interpretations. Thus, direct fitting of a sample
autocorrelation, even when a correct analytical form of autocorrelation is known, is not a
reliable method for measuring timescales in experimental data.

Alternatively, we can estimate the timescales by fitting the PSD shape in the frequency domain.
In this approach, the PSD is fitted with a Lorentzian function [22,42] which is the ground-truth
PSD for a stochastic process with an exponentially decaying autocorrelation (e.g., OU process)

PSDOU(f) =
c

f 2 + f 2
k

. (8)

Here f is the frequency and c = f 2
k/π is the normalization constant. From the knee frequency

fk, we can estimate the timescale as τ = (2πfk)
−1. Comparison of the ground-truth PSD

with the sample PSD of an OU process with a finite duration reveals that a statistical bias
observed in the time domain also persists in the frequency domain (Supplementary Fig. 3A).
Due to this bias, the estimated knee frequency deviates from the ground-truth knee frequency
depending on the fitted frequency range, which results in biased estimation of the timescale.
Although careful choice of the fitted frequency range can improve the accuracy of estimates
(Supplementary Fig. 3B), without knowing the ground-truth timescale, there is no principled
way to choose the correct frequency range that will work in all cases. Slightly changing the
fitted frequency range can produce large errors in estimated timescale, especially in the presence
of additional noise e.g., in spiking activity.
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Fig. 2. Estimation of timescales with adaptive Approximate Bayesian Computations.
aABC estimates timescales by fitting the sample autocorrelation of observed data with a generative
model. At the first iteration of the algorithm, parameters of the generative model are drawn from the
multivariate prior distribution, e.g., a uniform distribution (upper left). Synthetic data are generated
from the generative model with these parameters. If the distance d between the autocorrelations of
synthetic and observed data is smaller than a specific error threshold ε, these parameters are added
to the multivariate posterior distribution (lower right). In the subsequent iterations, new parameters
are drawn from a proposal distribution which is computed based on the posterior distribution of the
previous iteration and the initial prior distribution (upper right, see Methods 4.2 and 4.3).

2.2 Estimating timescales by fitting generative models with Approx-
imate Bayesian Computations

Since direct fitting of the sample autocorrelation (or PSD) cannot estimate timescales reliably,
we developed an alternative computational framework based on fitting the sample autocorre-
lation (or PSD) with a generative model. Using a generative model with known ground-truth
timescales, we can generate synthetic data matching the essential statistics of the observed
data, i.e. with the same duration and number of trials, mean and variance. Hence the sample
autocorrelations (or PSDs) of the synthetic and observed data will be affected by a similar
statistical bias when their shapes match. As a generative model, we chose a linear mixture of
OU processes—one for each estimated timescale—which if necessary can be augmented with
additional temporal structure (e.g., oscillations) and noise. The advantage of using a mixture
of OU processes for modelling the observed data is that the analytical autocorrelation function
of this mixture explicitly defines the timescales. We set the number of components in the gen-
erative model in accordance with our hypothesis about the shape of the autocorrelation in the
data, e.g., the number of timescales, additional temporal structure and noise (Methods 4.1).
Then, we optimize parameters of the generative model to match the shape of the autocorre-
lation (or PSD) between the synthetic and observed data. The timescales of the optimized
generative model provide an approximation for the timescales in the observed data, without
the bias corruption.

For complex generative models, calculating the likelihood can be computationally expensive
or even intractable. Therefore, we optimize the generative model parameters using adaptive
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Fig. 3. The aABC algorithm accurately recovers the ground-truth timescales and quan-
tifies the estimation uncertainty. The same synthetic data as in Fig. 1 for T = 1 s. (A) Data are
generated from an OU process with the timescale τ = 20 ms. Left: The shape of the data autocorre-
lation (brown) is accurately reproduced by the autocorrelation of synthetic data from the generative
model with the MAP estimate parameters (orange, τMAP = 20.2 ms), but it cannot be captured by
the direct exponential fit (cyan). Middle: The marginal posterior distributions (histograms overlaid
with Gaussian kernel smoothing) include the ground-truth timescales, while direct exponential fits
(cyan) underestimate the ground-truth timescales. The width of the posteriors indicates the estima-
tion uncertainty. Right: The convergence of the aABC algorithm is defined based on the acceptance
rate accR (purple), which decreases together with the error threshold ε (green) over the iterations of
the algorithm. Data are plotted from the second iteration. Initial error threshold for all fits was set
to 1. (B) Same as A for data from a linear mixture of an OU process with the timescale τ = 20 ms
and an oscillation with frequency f = 2 Hz (Eq. 5). τMAP = 60.5 ms, (C) Same as A for data from
an inhomogeneous Poisson process with two timescales τ1 = 5 ms and τ2 = 80 ms. τ1,MAP = 4.7 ms,
τ2,MAP = 80 ms. See Methods 4.5 for other parameters.

Approximate Bayesian Computations (aABC) [56] (Fig. 2). aABC is an iterative algorithm
that minimizes the distance between the summary statistic of synthetic and observed data.
Depending on the application, we can choose a different summary statistic in time or frequency
domain. For example, we can use autocorrelations as the summary statistic and define the
suitable distance d between the autocorrelations of synthetic and observed data, e.g., as

d(tm) =
1

m

m∑
j=0

(ACobserved(tj)− ACsynthetic(tj))
2 , (9)

where tm is the maximum time-lag considered in computing the distance. Alternatively, we can
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compute distances between the PSDs of synthetic and observed data:

d(fn, fn+m) =
1

m

n+m∑
j=n

(PSDobserved(fj)− PSDsynthetic(fj))
2 , (10)

where fn and fn+m define the frequency range for computing the distance.

Due to stochasticity of the observed data, point estimates (i.e. assigning a single value to a
timescale) are not reliable as different realizations of the same stochastic process lead to slightly
different autocorrelation shapes (Supplementary Fig. 4). aABC overcomes this problem by
estimating the joint posterior distribution of the generative model parameters, which quantifies
the estimation uncertainty.

The aABC algorithm operates iteratively (Fig. 2). First, we choose a multivariate prior dis-
tribution over the parameters of the generative model and set an initial error threshold ε at a
rather large value. On each iteration, we draw a sample of the parameter-vector θ. On the first
iteration, θ is drawn directly from the prior distribution. On subsequent iterations, θ is drawn
from a proposal distribution defined based on the prior distribution and the parameter samples
accepted on the previous iteration. We use the generative model with the sample parameters
θ to generate synthetic data. If the distance d between the summary statistic (autocorrelation
or PSD) of the observed and synthetic data (Eq. 9, 10) is smaller than the error threshold, the
sample θ is accepted. We then repeatedly draw new parameter samples and evaluate d until a
fixed number of parameter samples are accepted. For each iteration, the fraction of accepted
samples out of all drawn parameter samples is recorded as the acceptance rate accR. Next, the
proposal distribution is updated using the samples accepted on the current iteration, and the
new error threshold is set at the first quartile of the distance d for the accepted samples. The
iterations continue until the acceptance rate reaches a specified value. The last set of accepted
parameter samples is treated as an approximation for the posterior distribution (Methods 4.2).
We implemented this algorithm in the abcTau Python package, which includes different types
of summary statistics and generative models that can be flexibly adjusted to account for various
types of dynamics and noise in the biological data (Methods 4.3). To visualize the posterior dis-
tribution of a parameter (e.g., a timescale), we marginalize the obtained multivariate posterior
distribution over all other parameters of the generative model.

We tested our method on the same synthetic data from the processes with known ground-truth
timescales that we used to demonstrate the bias of direct fitting (Fig. 3 cf. Fig. 1). In these
examples, we use the autocorrelation as the summary statistic and compute distances in linear
scale. For all three processes, the shape of the sample autocorrelation of the observed data is
accurately reproduced by the autocorrelation of synthetic data generated using the maximum
a posteriori (MAP) estimate of parameters from the multivariate posterior distribution (Fig. 3,
left). The posterior distributions inferred by the aABC algorithm include the ground-truth
timescales (Fig. 3, middle). The variance of posterior distributions quantifies the uncertainty
of estimates. In our simulations, the number of trials controls the signal to noise ratio in sam-
ple autocorrelation, and consequently the width of the posterior distributions (Supplementary
Fig. 5).

Our method can also estimate timescales by fitting the sample PSD in the frequency domain.
The aABC method recovers the ground-truth timescales by fitting the whole shape of the PSD
without the need to tune the fitted frequency range, even in the presence of multiple timescales
and additional noise (e.g., spiking noise) (Supplementary Fig. 6). Moreover, aABC method
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Fig. 4. The aABC inference with a generative model based on the OU process recovers
the ground-truth timescale of activity in a branching network. (A) A schematic of a fully
connected branching network with binary neurons. Branching parameter (m = 0.96) and number of
neurons (k = 104) define the probability of activity propagation. Each neuron receives an external
input with probability h = 10−3. (B) The shape of the sample autocorrelation of simulated activity in
the branching network (brown) deviates from the ground truth (gray), but is accurately reproduced
by the autocorrelation of synthetic data generated from a one-timescale OU process with the MAP
estimate timescale from the aABC method. τMAP = 24.9. The data contained 100 trials of 500 time-
steps. (C) The aABC posterior distribution includes the ground-truth timescale. τground truth = 24.5,
τaABC = 24.9± 0.9 (mean ± std). Fitting parameters are provided in Methods 4.5.

can uncover slow oscillations in signals that do not exhibit clear peaks in PSD due to the short
duration of time-series and the low frequency resolution. The aABC method can be used in
combination with any method for computing the PSD (e.g., any window functions for removing
the spectral leakage), since the exact same method applied to synthetic data would alter its
sample PSD in the same way.

Different summary statistics and fitting ranges may be preferred depending on the application.
For example, autocorrelations allow for using additional correction methods such as jittering
[46], whereas PSD estimation can be improved with filtering or multitapers [64]. Further, select-
ing a smaller tm when fitting autocorrelations prevents overfitting to noise in the autocorrelation
tail. Distances between summary statistics can also be computed on logarithmic scale (e.g.,
log(AC) or log(PSD)). The choice of summary statistic (metric and fitting range) can influence
the shape of the approximated posterior (e.g., posterior width), but the posteriors recover the
ground-truth timescales as long as the same summary statistic is used for observed and syn-
thetic data (Supplementary Fig. 7). Fitting generative models with the aABC method provides
a principled framework for estimating timescales that can be used with different metrics in time
or frequency domain.

2.3 Estimating the timescale of activity in a branching network
model

So far, we demonstrated that our aABC method accurately recovers the ground-truth timescales
within the same model class, i.e. when the generative model and the process that produced
the observed data are the same. However, the timescale inference based on OU processes is
broadly applicable to data outside this model class, i.e. when the mechanism that generated
the exponential decay of autocorrelation in the data is different from an OU process.

We tested our inference method on data from a different model class with known ground-truth
autocorrelation function. Specifically, we applied our method to estimate the timescale of the
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global activity in a branching network model [65–67]. This model is often used to study the
operating regime of dynamics in neuronal networks, e.g., how close the dynamics are to the
critical state. A branching network consists of k interconnected binary neurons, each described
by the state variable xi ∈ {0, 1}, where xi = 1 indicates that neuron i is active, and 0 that it
is silent (Fig. 4A). We considered a fully-connected network. Each active neuron can activate
other neurons with the probability p = m/k and then, if not activated by other neurons, it
becomes inactive again in the next time-step. Additionally, at every time-step, each neuron
can be activated with a probability h by an external input. For a small input strength h, the
state of the network’s dynamics is governed by a branching parameter m (m = 1 corresponds to
the critical state). The autocorrelation function of the global activity A(t′) =

∑
i xi(t

′) in this
network is known analytically AC(tj) = exp(tj ln(m)) [25]. Thus the ground-truth timescale of
this activity is given by τ = −1/ ln(m).

We simulated the binary network model to generate the time-series data of the global activity.
We then used aABC to fit the sample autocorrelation of these data with a one-timescale OU pro-
cess as the generative model. The inferred posterior distribution is centered on the theoretically
predicted timescale of the branching network, and the MAP estimate parameters accurately
reproduce the shape of the sample autocorrelation of the network activity (Fig. 4B,C). These
results show that our framework can be used to estimate timescales in diverse types of data
with different underlying mechanisms.

2.4 Model selection with Approximate Bayesian Computations

For experimental data, the correct generative model is usually unknown. For example, it may
not be obvious a priori how many timescales should the generative model contain. Several
alternative hypotheses may be plausible, and we need a procedure to select which one is more
likely to explain the observed data. Assuming that the autocorrelation function or PSD is a
sufficient summary statistic for estimating timescales, we can use aABC to approximate the
Bayes factor for selecting between alternative models [68–70]. Model selection based on ABC
can produce inconsistent results when the summary statistic is insufficient [71], but whether
this is likely the case can be verified empirically [70]. Specifically, the summary statistic can be
used for model selection with ABC if their mathematical expectation is significantly different
for the two models.

Based on this empirical procedure [70], we developed a method for selecting between two
alternative models M1 and M2 using their aABC fits. Models are compared using a goodness
of fit measure that describes how well each model fits the data. The goodness of fit can
be measured by the distance d between the summary statistic (e.g., autocorrelation or PSD)
of synthetic and observed data (i.e. residual errors, Eq. 9). For fair comparison, the same
summary-statistics and fitting range should be used for fitting both models. Since d is a
noisy measure because of the finite sample size and uncertainty in the model parameters,
we compare the distributions of distances generated by two models with parameters sampled
from their posterior distributions. To approximate the distributions of distances, we generate
multiple samples of synthetic data from each model with parameters drawn from its posterior
distribution and compute the distance d for each sample. If the distributions of distances are
significantly different (i.e. expectations of the summary statistic for two models are significantly
different [70]), then we continue with the model selection, otherwise the summary statistic is
insufficient to distinguish these models.

For selecting between M1 and M2, we use the distributions of distances to estimate the Bayes
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Fig. 5. Model selection with ABC. (A-C) Data are generated from a one-timescale OU process
with τ = 20 ms. (A) The data autocorrelation (brown) is fitted with a one-timescale (olive, M1) and
two-timescale (orange, M2) generative models (sample autocorrelations for MAP estimate parameters
are shown). (B) Marginal posterior distribution of the timescale estimated by the one-timescale
model includes the ground truth and has small variance (left). Marginal posterior distributions of
two timescales estimated by the two-timescale model overlap and have large variance (right). (C)
Cumulative distributions of distances d for two models, CDFMi(ε). Since CDFM2(ε) < CDFM1(ε)
for all ε, the one-timescale model is selected (green box in B). (D-F) Data are generated from an
inhomogeneous Poisson process with two timescales: τ1 = 5 ms, τ2 = 80 ms. (D) Same format as A.
(E) Marginal posterior distributions for two timescales estimated by the two-timescale model include
the ground truth (right). Marginal posterior distributions for the timescale estimated by the one-
timescale model falls in between the ground-truth timescales (left). (F) Cumulative distributions of
distances d for two models. Since CDFM2(ε) > CDFM1(ε) for all ε, the two-timescale model is selected
(green box in E). (G-I) Same as D-F, but for τ1 = 20 ms, τ2 = 80 ms. For all fits, CDFMi(ε) are
computed from 1000 samples. Simulation and fitting parameters are provided in 4.5.

factor, which is the ratio of marginal likelihoods of the two models and accounts for the model
complexity [72]. Assuming both models are a priori equally probable (p(M1) = p(M2)), the
Bayes factor can be approximated using the models’ acceptance rates for a specific error thresh-
old ε [68, 71,73]

B21(ε) =
accRM2(ε)

accRM1(ε)
. (11)

B21(ε) > 1 indicates that the model M2 is more likely to explain the observed data and vice
versa. To eliminate the dependence on a specific error threshold, we compute the acceptance
rates and the Bayes factor with a varying error threshold. For each error threshold ε, the
acceptance rate is given by the cumulative distribution function of the distances CDFMi

(ε) =
pMi

(d < ε) = accRMi
(ε) (i = 1, 2). Hence, the ratio between CDFs of two models gives the

value of the Bayes factor for every error threshold B21(ε) = CDFM2(ε)/CDFM1(ε). We select
the model M2 if B21(ε) > 1, i.e. if CDFM2(ε) > CDFM1(ε) for all ε, and vice versa.
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We evaluated our model selection method using synthetic data from three example processes
with known ground truth, so that the correct number of timescales is known. Specifically,
we used an OU process with a single timescale (Fig. 5A) and two different examples of an
inhomogeneous Poisson process with two timescales. In the first example of an inhomogeneous
Poisson process, the ground-truth timescales were well separated, so that the shape of the data
autocorrelation suggested that the underlying process had multiple timescales (Fig. 5D). In the
second example of an inhomogeneous Poisson process, we chose the ground-truth timescales to
be more similar, so that a simple visual inspection of the data autocorrelation could not clearly
suggest the number of timescales in the underlying process (Fig. 5G). For all three example
processes, we fitted the data with one-timescale (M1) and two-timescale (M2) generative models
using aABC and selected between these models by computing the Bayes factors. The one- and
two-timescale models were based on a single OU process or a linear mixture of two OU processes,
respectively. For the data from inhomogeneous Poisson processes, the generative model also
incorporated an inhomogeneous Poisson noise.

For the example OU process with a single timescale, the one- and two-timescale models fitted
the shape of the data autocorrelation almost equally well (Fig. 5A). The marginal posterior
distributions of two timescales estimated by the two-timescale model are not significantly dif-
ferent from each other (Fig. 5B), which indicates that the one-timescale model possibly better
describes the data. To select between two models, we compare the cumulative distributions of
distances CDFMi

(ε) (Fig. 5C). Although the two-timescale model has more parameters, it has
significantly larger distances than the one-timescale model (Wilcoxon rank-sum test, P = 0.002,
mean dM1 = 6 × 10−5, mean dM2 = 8 × 10−5). The two-timescale model has a larger average
distance because its posterior distribution has larger variance (larger uncertainty), which leads
to a higher possibility to sample a combination of parameters with a larger distance. Since
CDFM2(ε) < CDFM1(ε) (i.e. B21(ε) < 1), the one-timescale model is preferred over the two-
timescale model, in agreement with the ground-truth generative process.

For both example inhomogeneous Poisson processes with two timescales, the shape of the data
autocorrelation is better matched by the two-timescale than by the one-timescale model (the
difference is subtle for the second example, Fig. 5D,G). The marginal posterior distributions
of two timescales estimated by the two-timescale model are clearly separated and include the
ground-truth values, whereas the timescale estimated by the one-timescale model is in between
the two ground-truth values (Fig. 5E,H). The two-timescale model has significantly smaller
distances (Wilcoxon rank-sum test, Fig. 5F: P < 10−10, mean dM1 = 6 × 10−4, mean dM2 =
1.5 × 10−5; Fig. 5I: P < 10−10, mean dM1 = 10−6, mean dM2 = 7 × 10−7). Since CDFM2(ε) >
CDFM1(ε) (i.e. B21d(ε) > 1) for all error thresholds, the two-timescale model provides a better
description of the data for both examples, in agreement with the ground truth. Thus, our
method selects the correct generative model even for a challenging case where the shape of the
data autocorrelation does not suggest the existence of multiple timescales.

2.5 Estimating timescales of ongoing neural activity

To illustrate an application of our computational framework to experimental data, we inferred
the timescales of ongoing spiking activity in the primate visual cortex. The spiking activity
was recorded from the visual area V4 with a 16-channels micro-electrode array [74]. During
recordings, a monkey was fixating a central dot on a blank screen for 3 s on each trial. To esti-
mate the timescales, we pooled the spiking activity recorded across all channels and computed
the spike-count autocorrelation of the pooled activity with a bin-size of 1 ms.
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Fig. 6. Estimating timescales of ongoing neural activity and comparing hypotheses about
their number with aABC. (A) Left: The autocorrelation of neural spike-counts (brown) is fitted
with a one-timescale doubly-stochastic model using aABC (olive, sample autocorrelation for MAP
estimate parameters). Right: Posterior distribution of the timescale. τMAP = 58 ms. (B) Left:
Same data as in A is fitted directly with a double exponential function (cyan) and with a two-timescale
doubly-stochastic model using aABC (orange, sample autocorrelation for MAP estimate parameters).
Right: Timescales estimated by the direct exponential fit (τ1 - blue, τ2 -cyan) and marginal posterior
distributions of timescales inferred with aABC (τ1 - red, τ2 - orange). τ1,exp = 5 ms, τ2,exp = 57 ms,
τ1,MAP = 8 ms, τ2,MAP = 70 ms. (C) Cumulative distribution of distances d for one-timescale (M1)
and two-timescale (M2) models. Since CDFM2(ε) > CDFM1(ε) for all ε, the two-timescale model
is selected. (D) Cumulative distributions of distances d between the autocorrelation of neural data
and synthetic data from the two-timescale doubly-stochastic model with parameters either from the
direct fit (cyan) or MAP estimate with aABC (red). The MAP parameters have smaller distances, i.e.
describe the autocorrelation of neural data more accurately than the direct fit. Fitting parameters
are provided in Methods 4.5.

Previously, the autocorrelation of neural activity in several brain regions was modeled as an
exponential decay with a single timescale [3]. To determine whether a single timescale is
sufficient to describe the temporal dynamics of neural activity in our data, we compared the one-
timescale (M1) and two-timescale (M2) models and selected the model that better described the
data. As a generative model for neural spike-counts, we used a doubly-stochastic process [62,63],
where spike-counts are generated from an instantaneous firing rate modelled as one OU process
(M1) or a mixture of two OU processes (M2). To account for the non-Poisson statistics of the
spike-generation process, we sampled spike-counts from a gamma distribution [75] (Methods
4.1.3). We fitted both models with the aABC algorithm and selected between the models using
Bayes factors (Fig. 6A-C). The two-timescale model provided a better description for the data,
since it had smaller distances and CDFM2(ε) > CDFM1(ε) for all error thresholds (Fig. 6C,
Wilcoxon rank-sum test, P < 10−10, mean dM1 = 8× 10−4, mean dM2 = 2× 10−4).

We further compared our method with a direct exponential fit of the sample autocorrelation
which is usually employed to infer the timescales of neural activity [3, 23, 25, 29–31]. We fitted
the sample autocorrelation with a double exponential function

AC(t) = c1e
−t/τ1 + (1− c1)e−t/τ2 (12)
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up to the same tm as in the aABC method and compared the result with the two-timescale
aABC fit (Fig. 6B). Similar to what we observed with synthetic data, the direct exponential fit
produced timescales that were systematically smaller than the MAP estimates with the aABC
fit. Including all the time lags in exponential fitting results in even larger bias. Since the
ground-truth timescales are not available for biological data, we used a sampling procedure to
evaluate whether the data is better described by the timescales from the direct fit or from the
MAP estimates with the aABC fit. We generated multiple samples of synthetic data using the
two-timescale doubly-stochastic generative model with the parameters from either the direct
fit or MAP estimates from aABC. For each sample, we measured the distance d between the
autocorrelation of synthetic and neural data to obtain the distribution of distances for both
types of fits (Fig. 6D). The distances were significantly smaller for synthetic data generated
with the parameters from the MAP estimate with aABC than from the direct exponential fit
(Wilcoxon rank-sum test, P < 10−10, mean distance of MAP parameters 10−4, mean distance
of exponential fit parameters 3×10−4). Our method performs better because it accounts for the
bias in the autocorrelation shape which is ignored by the direct fit. These results suggest that
our method estimates the timescales of neural activity more accurately than a direct exponential
fit and, moreover, allows for comparing alternative hypotheses about the underlying dynamics.

3 Discussion

We demonstrated that direct fitting the shape of sample autocorrelation or PSD often fails to
recover the correct timescales due to a statistical bias arising from finite sample size. Since the
bias depends on the duration of time-series (Fig. 1, left), comparing timescales estimated from
direct fits of autocorrelations or PSDs of experimental data with different duration can lead to
misleading interpretations.

To overcome this problem, we developed a flexible computational framework based on adaptive
Approximate Bayesian Computations that is broadly applicable to different types of data. Our
framework fits the sample autocorrelation or PSD of the data with a generative model which is
based on a mixture of Ornstein-Uhlenbeck processes (one for each estimated timescale) and can
incorporate additional temporal structure and noise. Our method infers a posterior distribution
of timescales consistent with the observed data. The width of the posterior distribution depends
on the noise and amount of data and quantifies the estimation uncertainty, e.g., it provides a
confidence interval for estimated timescales. The posterior distributions can be used for model
selection to compare alternative hypotheses about the dynamics of the underlying process. This
framework is suitable for comparing timescales between datasets with different durations and
between processes that exhibit different temporal dynamics (e.g., oscillations). Our approach
is not sensitive to the specific method for computing autocorrelations or PSDs and does not
require fine-tuning of the fitting ranges, since the same method applies to observed and synthetic
data.

While previous work [54] attributed errors in the estimated timescales to fitting noise in the
tail of autocorrelation, we find that the main reason is the statistical bias in the sample au-
tocorrelation. This bias arises primarily due to the deviation of the sample mean from the
ground-truth mean. If the ground-truth mean of the process is known, then using the true
mean instead of the sample mean for computing the autocorrelation largely eliminates the bias.
In this case, direct fitting can produce satisfactory estimates, but our method additionally pro-
vides the measure of estimation uncertainty. When the true mean is unknown but it is known
that it is the same across all trials, it is beneficial to estimate a single sample mean from the
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whole dataset instead of estimating the mean for trials individually. However, this assumption
does not always hold. For example, the mean of spiking neural activity can change across
trials because of changes in animal’s behavioral state. If the assumption of a constant mean
is violated in the data, estimating the sample mean from the whole dataset leads to strong
distortions of the autocorrelation shape introducing additional slow timescales [76].

We validated our method using data from synthetic processes, where the exponential decay rate
of autocorrelation is known analytically by design. We further illustrated the application of our
method to spiking neural activity data, where the underlying ground-truth process is unknown.
In this case, the posterior distributions estimated by our method can be used to approximate
the Bayes factor for selecting between different generative models that represent alternative
hypotheses about neural dynamics. Since the Bayes factor takes the model complexity into
account, it can be used for comparing models with different number of parameters, e.g., to
infer the number of timescales in the data.

Our method reliably estimates correct timescales when the standard direct exponential fitting
fails and allows for Bayesian model comparison. However, the estimation of the full posterior
distribution comes with a price of higher computational costs compared to point estimates.
Thus, the direct exponential fit of sample autocorrelation may be preferred when the model
comparison is not required and long time-series data are available so that statistical bias does
not corrupt the results. To test whether this is the case, a generative model (e.g., based on
a mixture of OU processes) with parameters obtained from the direct exponential fit can be
used to generate multiple samples of synthetic data each with the same amount of data as
in the experiment. For each sample of synthetic data, timescales can be estimated again by
direct exponential fitting and the obtained distribution of timescales can be compared to the
original timescales estimated from the experimental data. If there is no significant difference,
the standard direct exponential fit may be sufficiently accurate. Our Python package supports
this functionality.

The general framework of inferring timescales with aABC based on OU processes can be adapted
to various types of data, different generative models and summary statistics using our Python
package. We implemented a set of generative models, summary statistic computation meth-
ods and distance functions in the abcTau package. Moreover, the modular implementation of
our Python package allows users to easily incorporate additional types of dynamics and non-
stationarities into customized generative models, or use other types of summary statistic which
can be added directly to the package. Thus, the package can be extended to a wide range of ap-
plications in different fields including neuroscience, cellular biology, epidemiology, and physics.
Our framework provides a principled method for estimating timescales using summary statis-
tics in time or frequency domain. This approach is particularly favorable for data organized
in short trials or trials of different durations, when standard direct fitting is unreliable, and it
allows for comparing timescales between datasets with different durations and data amount.

4 Methods

4.1 Generative models

We used several generative models based on a linear mixture of OU processes—one for each esti-
mated timescale—sometimes augmented with additional temporal structure (e.g., oscillations)
and noise.
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4.1.1 Ornstein–Uhlenbeck process with multiple timescales

We define an OU process with multiple timescales A(t′) as a linear mixture of OU processes
Ak(t

′) with timescales τk, k ∈ {1, . . . , n}, zero mean and unit variance:

A(t′) =
n∑
k=1

√
ckAk(t

′),
n∑
k=1

ck = 1, ck ∈ [0, 1]. (13)

Here n is the number of timescales in the mixture and ck are the mixing coefficients. We
simulate each OU process Ak by iterating its time-discrete version using the Euler scheme [59]

Ak(t
′
i+1) =

(
1− ∆t′

τk

)
Ak(t

′
i) +

√
2Dk∆t′ηk(t

′
i), (14)

where ∆t′ = t′i+1 − t′i is the discretization time-step and ηk(t
′
i) is a random number generated

from a normal distribution. We set the unit variance for each OU process Var(Ak) = Dkτk = 1
by fixing Dk = 1/τk. The parameter-vector θ for a linear mixture of n OU processes consists
of 2n− 1 values: n timescales τk and n− 1 coefficients ck (see Eq. 13).

We match the mean and variance of the multi-timescale OU process to the sample mean µ̂ and
sample variance σ̂2 of the observed data using a linear transformation:

Atrans(t
′) = σ̂A(t′) + µ̂. (15)

We use the process Atrans(t
′) as a generative model for data fitting and hypothesis testing

(Methods 4.2).

4.1.2 Multi-timescale Ornstein–Uhlenbeck process with an oscillation

To obtain a generative model with an oscillation, we add to a multi-timescale OU process
(Eq. 13) an oscillatory component with the weight ck+1:

A(t′) =
n∑
k=1

√
ckAk(t

′) +
√

2ck+1 sin (φ+ 2πft′),
n+1∑
k=1

ck = 1, ck ∈ [0, 1]. (16)

Here we assume that the frequency f is known and only fit the weight ck+1. In applications,
the frequency f can also be fitted with aABC as an additional parameter. For each trial,
we draw the phase φ independently from a uniform distribution on [0, 2π]. We use the linear
transformation Eq. 15 to match the mean and variance of this generative process to the observed
data.

4.1.3 Doubly stochastic process with multiple timescales

The doubly stochastic process with multiple timescales is generated in two steps: first generating
time-varying rate and then generating event-counts from this rate. To generate the time-varying
rate, we scale, shift and rectify a multi-timescale OU process (Eq. 13) using the transformation

Atrans(t
′) = max (σ′A(t′) + µ′, 0) . (17)

The resulting rate Atrans(t
′) is non-negative and for µ′ � σ it has the mean E[Atrans(t

′
i)] ≈ µ′

and variance Var[Atrans(t
′
i)] ≈ σ′2. We then draw event-counts s for each time-bin [t′i, t

′
i+1] from

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2020.08.11.245944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245944
http://creativecommons.org/licenses/by/4.0/


an event-count distribution pcount(s|λ(t′i)), where λ(t′i) = Atrans(t
′
i)∆t

′ is the mean event-count
and ∆t′ = t′i+1 − t′i is the bin size (in our simulations ∆t′ = 1 ms). A frequent choice of
pcount(s|λ(t′i)) is a Poisson distribution

pcount(s|λ(t′i)) =
(λ(t′i))

s

s!
e−λ(t

′
i), λ(t′i) = Atrans(t

′
i)∆t

′, (18)

which results in an inhomogeneous Poisson process.

To match the mean and variance of the doubly stochastic process to the observed data, we
need to estimate the mean rate µ′ and both the variance of the rate σ′2 and the variance of
the event-count distribution σ2

s|λ(t′i)
. According to the law of total expectation, the mean rate

µ′ = λ̂/∆t′, where λ̂ is the sample mean of the observed event-counts. According to the law
of total variance [63], the total variance of event-counts σ2 arises from two contributions: the
variance of the rate and the variance of the event-count distribution:

σ2 = Var[λ(t′i)] + E[σ2
s|λ(t′i)

] = (∆t′)2σ′
2

+ E[σ2
s|λ(t′i)

]. (19)

For the Poisson distribution, the variance of the event-count distribution is equal to its mean:
σ2
s|λ(t′i)

= λ(t′i). However, the condition of equal mean and variance does not always hold in

experimental data [75]. Therefore, we also use other event-count distributions, in particular a
Gaussian and gamma distribution. We define α as the variance over mean ratio of the event-
count distribution α = σ2

s|λ(t′i)
/λ(t′i). For the Poisson distribution, α = 1 always holds. For

other distributions, we assume that α is constant (i.e. does not depend on the rate). With this
assumption, the law of total variance Eq. 19 becomes

σ2 = (∆t′)2σ′
2

+ α∆t′µ′, (20)

where µ′ = E[Atrans(t
′
i)] is the mean rate. From Eq. 20 we find the rate variance

σ′
2

=
1

(∆t′)2

(
σ̂2 − αλ̂

)
, (21)

where σ̂2 is the sample variance of event-counts in the observed data. We find that with the
correct values of µ′, σ′2 and α, both the Gaussian and gamma distributions of event-counts
produce comparable estimates of timescales (Supplementary Fig. 8).

To calculate σ′2 with Eq. 21, we first need to estimate α from the observed data. We estimate α
from the drop of autocorrelation of event-counts between the time-lags t0 and t1. Since event-
counts in different time-bins are drawn independently, this drop mainly reflects the difference
between the total variance of event-counts and variance of the rate (Eq. 19, we neglect a small
decrease of the rate autocorrelation between t0 and t1) and does not depend on timescales. Thus,
we find α with a grid search that minimizes the distance between the autocorrelation at t1 of
the observed and synthetic data from the generative model with fixed timescales. Alternatively,
α can be fitted together with all other parameters of the generative model using aABC. We find
that since α is almost independent from other parameters, aABC finds the correct value of α
first and then fits the rest of parameters. The MAP estimate of α converges to the same value as
estimated by the grid search, but aABC requires more iterations to get posterior distributions
for estimated timescales with a similar variance (Supplementary Fig. 9). Therefore, grid-search
method is preferred when moderate errors in α are acceptable and approximate range of ground-
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truth timescales are known, but for more accurate results it is better to fit the α by aABC
together with other parameters.

To estimate the timescales of the two-timescale inhomogeneous Poisson process with exponential
fits (Fig. 1C), we assumed that the mean and variance of the event-counts are known and only
estimated τ1, τ2 and the coefficient c1 by fitting Eq. 7 to the sample autocorrelation starting
from the lag t1.

4.2 Optimizing generative model parameters with adaptive Approx-
imate Bayesian Computations

We optimize parameters of generative models with adaptive Approximate Bayesian Compu-
tations (aABC) following the algorithm from Ref. [56]. aABC is an iterative algorithm to
approximate the multivariate posterior distribution of model parameters. It uses population
Monte-Carlo sampling to minimize the distance between the summary statistic of the observed
and synthetic data from the generative model. We use sample autocorrelation or PSD as the
summary statistic and define the distance d as the mean squared deviation between the observed
and synthetic data summary statistics (Eq. 9, Eq. 10).

On the first iteration of the algorithm, the parameters of the generative model θ
(1)
r are drawn

from the prior distribution. We use a multidimensional uniform prior distribution π(θ) over
fitted parameters (e.g., timescales and their weights). The domain of prior distribution for the
timescales is chosen to include a broad range below and above the timescales estimated by the
direct exponential fits of data autocorrelation. For weights of timescales, we use uniform prior
distributions on [0, 1]. The model with parameters θ

(1)
r is used to generate synthetic time-series

A(t′) with the same duration and number of trials as in the observed data. Next, we compute
the distance d between the summary statistics of the synthetic and observed data. If d is
smaller than the error threshold ε (initially set to 1), the parameters are accepted and added
to the multivariate posterior distribution. Each iteration of the algorithm is repeated until 500
parameters samples are accepted.

On subsequent iterations, the same steps are repeated but with parameters drawn from a pro-
posal distribution and with an updated error threshold. On each iteration, the error threshold
is set at the first quartile of the accepted sample distances from the previous iteration. The
proposal distribution is computed for each iteration ξ based on the prior distribution and the
accepted samples from the previous iteration:

π̂ξ(θ
(ξ)) ∝

N∑
r=1

ω(ξ−1)
r Kξ(θ

(ξ)|θ(ξ−1)r ). (22)

Here ω
(ξ−1)
r is the importance weight of the accepted sample θ

(ξ−1)
r from the previous iteration

ω(ξ−1)
r ∝ π(θ

(ξ−1)
r )

π̂(θ
(ξ−1)
r )

. (23)

Kξ is the random walk kernel for the population Monte Carlo algorithm, which is a multivariate

Gaussian with the mean θ
(ξ−1)
r and the covariance equal to twice the covariance of all accepted
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samples from the previous iteration Σ = 2Cov[θ(ξ−1)]:

Kξ(θ
(ξ)|θ(ξ−1)r ) =

1√
2πκ|Σ|

exp

(
−1

2

(
θ(ξ) − θ(ξ−1)r

)T
Σ−1

(
θ(ξ) − θ(ξ−1)r

))
. (24)

Here κ is the number of fitted parameters, and |Σ| is the determinant of Σ.

The convergence of the algorithm is defined based on the acceptance rate accR, which is the
number of accepted samples divided by the total number of drawn samples on each iteration.
The algorithm terminates when the acceptance rate reaches accRmin, which is set to accRmin =
0.003 in our simulations. Smaller accRmin leads to a smaller final error threshold (Fig. 3, right)
and a better approximation of the posterior distributions, but requires longer fitting time. To
find the MAP estimates, we smooth the final joint posterior distribution with a multivariate
Gaussian kernel and find its maximum with a grid search.

4.3 abcTau: A Python package for timescales estimation and model
comparison with aABC

We developed the abcTau Python package implementing our aABC framework for estimation
of timescales from autocorrelations or PSDs of various types of experimental data, and the
Bayesian model comparison between different hypotheses. We also provided tutorials as Jupyter
Notebooks and example Python scripts to make our framework easily accessible for researchers
in different fields.

The minimal requirements for using this package are Python 3.7.1, Numpy 1.15.4 and Scipy
1.1.0. For visualization, Matplotlib >= 3.0.2 and Seaborn >= 0.9.0 are required. The basis of
aABC algorithm in the package is adopted from a previous implementation originally developed
in Python 2 [77]. Since all parameters of our generative models are positive and sometimes
subject to additional conditions (e.g., τ2 > τ1), we introduced constraints on sampling from
proposal distributions. Moreover, we enhanced the algorithm for parallel processing required
for analyzing large datasets.

The abcTau package includes various types of generative models that are relevant for differ-
ent types data and various methods for computing the autocorrelation or PSD. Using this
functionality, users can apply our framework to their time-series data, supplied in a Numpy
array structured as trials times time-points. The object oriented implementation of the package
allows users to easily replace any function, including generative models, summary statistic com-
putations, distance functions, etc., with their customized functions to better describe statistics
of the data. Users can also add their customized generative models directly to the package to
create a larger database of generative models available for different applications.

The package also includes a module for Bayesian model selection. This module computes the
cumulative distribution of distances from estimated posterior distributions (i.e., Bayes factor for
different error thresholds), runs the statistical tests and suggests the best hypothesis describing
the underlying processes in data.

Since Bayesian inference of a full posterior distribution can be computationally expensive, we
implemented a fast pre-processing function that determines whether the direct exponential fit
provides a satisfactory estimate of timescales. This function uses the parameters estimated
by direct exponential fits of data autocorrelation to generate synthetic data with the same
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duration, and then evaluates the deviation of timescales estimated on synthetic data from the
generative parameters.

4.4 Description of neural recordings

Experimental procedures and data pre-processing were described previously [74]. In brief, a
monkey was trained to fixate a central dot on a blank screen for 3 s on each trial. Spiking
activity was recorded with a 16-channel micro-electrode array inserted perpendicularly to the
cortical surface to record from all layers in the visual area V4. For fitting, we used a recording
session with 81 trials. We pooled the activity across all channels and calculated the population
spike-counts in bins of 1 ms. First, we subtracted the trail-averaged activity (PSTH) from
spike-counts to remove the slow trends locked to the trial onset [3]. Then, we computed the
autocorrelation of spike-counts using Eq. 2 for each trial and averaged over trials’ autocorrela-
tions.

4.5 Parameters of simulations and aABC fits in figures

For all fits, the initial error threshold was set to ε = 1. The aABC iterations continued until
accR 6 0.003 was reached. All datasets (except for the branching network) consisted of 500
trials each of 1 s duration. The dataset for the branching network (Fig. 4) consisted of 100
trials with 500 time-steps.

Figures Data parameters
Fig. 3A, Fig. 5A τ = 20, µ = 0 , σ = 1
Fig. 3B τ = 60, f = 2 Hz, µ = 0 , σ = 1
Fig. 3C, Fig. 5D τ1 = 5, τ2 = 80, c1 = 0.4, µ′ = 1, σ′ = 0.5
Fig. 5G τ1 = 20, τ2 = 80, c1 = 0.4, µ′ = 0.3, σ′ = 0.18

Table 1. Simulation parameters for data autocorrelations.

Figures Priors tm
Fig. 3A, 4, Fig. 5B, Fig. τ, τ1, τ2 : U [0, 60] 50
Fig. 3B τ : U [0, 120] 100
Fig. 3C, Fig. 5E (Right) τ1 : U [0, 60], τ2 : U [20, 140] 110
Fig. 5E (Left) τ : U [0, 140] 110
Fig. 5H (Right) τ1 : U [0, 60], τ2 : U [40, 150] 105
Fig. 5H (Left) τ : U [0, 150] 105
Fig. 6B τ1 : U [0, 60], τ2 : U [40, 150] 150
Fig. 6A τ : U [0, 150] 150

Table 2. aABC fit parameters.

Data and Code availability

The abcTau Python package with example data and tutorials are available on GitHub at:
https://github.com/roxana-zeraati/abcTau.
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[33] Joshua H Siegle, Xiaoxuan Jia, Séverine Durand, Sam Gale, Corbett Bennett, Nile Graddis,
Greggory Heller, Tamina K Ramirez, Hannah Choi, Jennifer A Luviano, et al. Survey of
spiking in the mouse visual system reveals functional hierarchy. Nature, 592(7852):86–92,
2021.

[34] Valeria Fascianelli, Satoshi Tsujimoto, Encarni Marcos, and Aldo Genovesio. Autocor-
relation structure in the macaque dorsolateral, but not orbital or polar, prefrontal cor-
tex predicts response-coding strength in a visually cued strategy task. Cerebral Cortex,
29(1):230–241, 2019.

[35] Camden J MacDowell and Timothy J Buschman. Low-dimensional spatiotemporal dy-
namics underlie cortex-wide neural activity. Current Biology, 2020.

[36] Robert Kim and Terrence J Sejnowski. Strong inhibitory signaling underlies stable tem-
poral dynamics and working memory in spiking neural networks. Nature Neuroscience,
24(1):129–139, 2021.

[37] Takuya Ito, Luke J Hearne, and Michael W Cole. A cortical hierarchy of localized and
distributed processes revealed via dissociation of task activations, connectivity changes,
and intrinsic timescales. NeuroImage, 221:117141, 2020.

[38] H Strey, M Peterson, and E Sackmann. Measurement of erythrocyte membrane elasticity
by flicker eigenmode decomposition. Biophysical Journal, 69(2):478–488, 1995.

24

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2020.08.11.245944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245944
http://creativecommons.org/licenses/by/4.0/


[39] Aleander Rohrbach, Tim Meyer, Ernst HK Stelzer, and Holger Kress. Measuring step-
wise binding of thermally fluctuating particles to cell membranes without fluorescence.
Biophysical Journal, 2020.

[40] Kai Liu, Brian Chu, Jay Newby, Elizabeth L Read, John Lowengrub, and Jun Allard.
Hydrodynamics of transient cell-cell contact: The role of membrane permeability and
active protrusion length. PLoS Computational Biology, 15(4):e1006352, 2019.

[41] Christian Meisel. Antiepileptic drugs induce subcritical dynamics in human cortical net-
works. Proceedings of the National Academy of Sciences, 117(20):11118–11125, 2020.

[42] Thomas Donoghue, Matar Haller, Erik J Peterson, Paroma Varma, Priyadarshini Sebas-
tian, Richard Gao, Torben Noto, Antonio H Lara, Joni D Wallis, Robert T Knight, et al.
Parameterizing neural power spectra into periodic and aperiodic components. Nature Neu-
roscience, 23(12):1655–1665, 2020.

[43] Alexander Khintchine. Korrelationstheorie der stationären stochastischen prozesse. Math-
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5 Supplementary figures
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Supplementary Fig. 1. Different methods of estimating the sample autocorrelation from
finite data produce biased results. Computing autocorrelations in the time domain (Eq. 2,
blue) or via the inverse Fourier transform of the PSD (orange) both produce biased results. Data is
generated from an OU process with the timescale τ = 100 ms and duration T = 1 s. Autocorrelations
are averaged over 500 trials (realizations). PSDs are computed after applying a Hamming window to
each trial.
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Supplementary Fig. 2. Direct exponential fit produces different estimated timescale for
datasets from the same generative process but with different trial duration. Each dataset
is generated from an OU process with τ = 80 ms and 500 trials each with duration T . Dots - sample
autocorrelation, dashed lines - direct exponential fit, solid line - ground truth.
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Supplementary Fig. 3. Bias in timescales estimated by direct fitting of sample PSD.
(A) The shape of sample PSD (brown) deviates from the ground-truth PSD (gray). Knee frequencies
estimated by directly fitting the sample PSD with a Lorentzian function (pink) or using the FOOOF
toolbox [42] (magenta) are similar and overestimate the ground-truth knee frequency (i.e. underesti-
mate the ground-truth timescale). FOOOF estimates the timescale by fitting the shape of log(PSD(f))
with the function b− log(k+ fχ), where f is the frequency and b, k and χ are free parameters. For an
exponential decay function χ = 2, but FOOOF allows for χ 6= 2. The sample PSD is fitted between
1 Hz and 100 Hz frequencies. (B) Timescales estimated in the frequency domain strongly depend on
the fitted frequency range and can overestimate, underestimate or produce accurate results depending
on the selected frequency range. Distribution of point estimates for the timescales estimated with
the FOOOF fit of PSD for 100 realizations of the OU process. For each realization, we averaged
over the PSD of 500 trials with 1 s duration and the sampling frequency of 1000 Hz. The PSDs are
computed using a Hamming window applied to each trial. FOOOF is fitted on the average PSD of
each realization over the frequency ranges of [1, 100] Hz, [1, 200] Hz and [0, 400] Hz from left to right.

29

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2020.08.11.245944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.245944
http://creativecommons.org/licenses/by/4.0/


0 10 20 30 40 50 60 70
Time lag, t (ms)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

log
(A

C)

Supplementary Fig. 4. The shape of sample autocorrelation is slightly different across
realizations of the same generative process due to noise in the data. Each trace is the
average autocorrelation of 500 trials with T = 1 s generated from an OU process with τ = 20 ms.
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Supplementary Fig. 5. Variance of posterior distributions estimated with aABC captures
the estimation uncertainty and depends on the signal to noise ratio. Increasing the number
of trials in observed data reduces the noise in sample autocorrelation (left) and the estimation uncer-
tainty (narrower posterior distribution) (right). Estimated τ : mean ± std. The data was generated
from an OU process with τ = 20 ms and consisted of trials with T = 1 s.
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Supplementary Fig. 6. Using PSD in the aABC algorithm accurately recovers the ground-
truth parameters. (A) Data are generated from an OU process with the timescale τ = 100 ms.
Left: The shape of the data PSD (brown) is accurately reproduced by the PSD of synthetic data from
the generative model with the MAP estimate parameters (orange). Right: The marginal posterior
distributions (histograms overlaid with Gaussian kernel smoothing) recover the ground-truth param-
eters. (B) Same as A for data from a linear mixture of an OU process with the timescale τ = 100 ms
and an oscillation with frequency f = 10 Hz. (C) Same as B with τ = 100 ms and f = 2 Hz. The slow
oscillation does not manifest in any clear peak in PSD due to short duration of trials (T = 1 s) and
the low frequency resolution. However, aABC algorithm can still uncover the oscillatory component
with the correct parameters. (D) Same as A for data from an inhomogeneous Poisson process with
two timescales τ1 = 5 ms and τ2 = 80 ms.
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Supplementary Fig. 7. Posterior distributions approximated by the aABC method re-
cover the ground-truth timescales independent of the selected summary statistic and
fitting range. Data are generated from an OU process with the timescale τ = 100 ms. (A) The
aABC algorithm fitted the data autocorrelation up to the time-lag tm (indicated in the figure title)
using distances computed in linear (lin) or logarithmic (log) scale. (B) The aABC algorithm fitted
the data PSD from f = 1 Hz up to the frequency fm (indicated in the figure title) using distances
computed in linear (lin) or logarithmic (log) scale.
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Supplementary Fig. 8. Doubly stochastic generative models with the Gaussian and
gamma distributions of event-counts produce similar aABC fits. We fitted the inhomoge-
neous Poisson process example from Fig. 1C using aABC with generative models which had a Gaussian
or gamma event-count distributions with α = 1. Both generative models recover the ground-truth
timescales and produce posterior distributioins that are not significantly different (Wilcoxon rank-sum
test: Pτ1 = 0.23, Pτ2 = 0.37).
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Supplementary Fig. 9. Estimating the parameter α of the doubly stochastic generative
model with aABC and with the grid search. We fitted the neural data autocorrelation in Fig. 6
considering α as an additional parameter of the generative model estimated with aABC (complete
aABC). We compared the results of complete aABC with first estimating α with a grid search and
then fitting the rest of parameters with aABC (grid search + aABC). (A) Starting from the same
error threshold ε = 1, after the same number of iterations (23), the complete aABC has a larger
variance of marginal posterior distributions than the grid search + aABC. This result indicates that
the grid-search method reaches narrower posteriors in fewer iterations. Moreover, for the complete
aABC, the posterior of α is relatively narrow, while posteriors of all other parameters are wider at
iteration 23. This observation shows that the complete aABC fits α first and almost independently
from the other parameters of the generative model. (B) After running both methods until they reach
accR ≤ 0.003, MAP estimates with complete aABC converge toward the estimations from the grid
search + aABC.
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