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46 Abstract 

47 The application of graph theory in structural biology offers an alternative means of studying 3D 

48 models of large macromolecules, such as proteins. However, basic structural parameters still play 

49 an important role in the description of macromolecules. For example, the radius of gyration, which 

50 scales with exponent ~0.4, provides quantitative information about the compactness of the protein 

51 structure. In this study, we combine two proven methods, the graph-theoretical and the fundamental 

52 scaling laws, to study 3D protein models.

53 This study shows that the mean node degree of the protein graphs, which scales with exponent 

54 0.038, is scale-invariant. In addition, proteins that differ in size have a highly similar node degree 

55 distribution, which peaks at node degree 7, and additionally conforms to the same statistical 

56 properties at any scale. Linear regression analysis showed that the graph parameters (radius, 

57 diameter and mean eccentricity) can explain up to 90% of the total radius of gyration variance. 

58 Thus, the graph parameters of radius, diameter and mean eccentricity scale with the same exponent 

59 as the radius of gyration. The main advantage of graph eccentricity compared to the radius of 

60 gyration is that it can be used to analyse the distribution of the central and peripheral amino 

61 acids/nodes of the macromolecular structure. The central nodes are hydrophobic amino acids (Val, 

62 Leu, Ile, Phe), which tend to be buried, while the peripheral nodes are more hydrophilic residues 

63 (Asp, Glu, Lys). Furthermore, it has been shown that the number of central and peripheral nodes is 

64 more related to the fold of the protein than to the protein length.

65

66

67

68

69

70
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72 Introduction

73 Proteins, molecules that serve many critical roles in nature, consist of complex systems of amino 

74 acids that have increasingly been modelled as networks over the last decade (1–3). There are many 

75 ways to abstract the 3D protein structure into a graph. We can consider Cα, Cβ or all heavy atoms 

76 to construct an adjacency matrix. A typical method to abstract the protein model into a graph is to 

77 consider Cα atoms with 7.0 Å cut-off distance (4). We should be aware that some information is 

78 lost when the 3D model is abstracted into the graph, although it still captures relevant biochemical 

79 properties of the "real" 3D protein model. Once the 3D model of the protein is abstracted into a 

80 graph, we have several options to analyse the 3D structure by examining different parameters of the 

81 graph. Residue network models have been used to predict catalytic sites (5–8), to study protein 

82 dynamics (9), to discover node-amino acids that play crucial roles in protein folding (10,11), to 

83 explore allosteric pathways (12–14), and to analyse enzyme domain packing (15). In addition, graph 

84 theory has also been successfully used to validate PDB entries (16), to study local errors in protein 

85 models, and to discriminate decoys from the native structure (17,18). We should emphasize the 

86 importance of validation and quality assessment, since only correct protein structures can answer 

87 relevant biological questions (19–22).

88 However, we cannot expect that all graph parameters used and derived by mathematicians will have 

89 practical implications, for example, when studying specific phenomena in structural biology. 

90 However, we should try to find a connection between theoretical graph parameters and biochemical 

91 phenomena that can lead to deeper insights.

92 Despite the obvious usefulness of graph theory for the analysis of protein structures, basic structural 

93 parameters still serve an important role in the description of macromolecules. For example, a 

94 common parameter used to describe the compactness of protein models is the radius of gyration 

95 (23–25). The radius of gyration of a macromolecule describes the distribution of atoms around the 

96 centre of mass. Since Flory's theory (26), the scaling law between the radius of gyration and the 

97 length of the protein has been studied in detail and used to describe protein folding, and to analyse 
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98 the compactness of protein structures in poor or good solvent conditions. It was found that the 

99 radius of gyration of globular protein structures, including monomers and oligomers, scales with 

100 exponent ~0.4 (27). The radius of gyration can be used as a constraint when building protein models 

101 or performing molecular dynamics simulations. On the other hand, when the 3D model of a protein 

102 is not known, the scaling law provides qualitative information about the dimensions of the 

103 macromolecule.

104 This study links two well-established approaches, the graph-theoretical and the fundamental scaling 

105 laws, to study 3D protein models. In this paper, the PDB is surveyed to study scaling laws of 3D 

106 protein structures using a graph-theoretical approach. This research has demonstrated that the mean 

107 node degree of the protein graph is nearly scale-invariant. Additionally, the comparison of the node 

108 degree distributions of proteins of different sizes exhibits marginal differences. Furthermore, this 

109 study shows that the compactness of the protein, which is conventionally calculated by the radius of 

110 gyration, can be estimated using graph eccentricity, which also provides insights into central 

111 (buried) and peripheral (non-buried) amino acids.

112

113 Methods

114 Dataset

115 The Protein Sequence Culling Server (28) was used to obtain the PDB id list for protein structures 

116 with the following characteristics: maximum mutual sequence identity of 80%, X-ray resolution 

117 cut-off of 3.0 Å and minimum (maximum) chain length of 40 (10,000) residues. The PDB id list 

118 was then used to retrieve 31,571 Biological Assemblies from the Protein Data Bank.

119

120 Graph Construction

121 From each of the 31,571 3D Biological Assemblies, the graph was constructed and analysed. Cα 

122 atoms were considered as nodes, and edges between nodes were constructed if the Cα–Cα distance 
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123 between a pair of residues was less than (or equal to) 7 Å. It follows that the number of nodes was 

124 equal to the number of residues (Cα atoms) in the protein. Ligands, water molecules, and other 

125 hetero-compounds were discarded during graph construction. Thus, if a protein has n residues, then 

126 a protein graph G = G(V, E) consists of a set of vertices (nodes) V = v1 v2, … vn and a set of edges 

127 E = e1, e2, … em. 

128

129 Graph parameters

130 The mean node degree (MND) of a graph G is expressed with the ratio

131 𝑑(𝐺) =
2𝑒(𝐺)
𝑁(𝐺)

132 where e(G) represents the total number of edges in a graph G, and N(G) is the number of nodes in a 

133 graph G.

134 The eccentricity is a node centrality index defined as the maximum distance between a vertex to all 

135 other vertices. Thus, the vertex's eccentricity is the maximal shortest path between the vertex and all 

136 other vertices. Mean eccentricity is expressed as an average value of eccentricities of all vertices of 

137 G. The radius of the graph is defined as a minimum eccentricity among all vertices in the graph. 

138 Meanwhile, the diameter is defined as maximum eccentricity among all vertices in the graph. The 

139 center of a graph or central node has eccentricity equal to the radius. A vertex is said to be a 

140 peripheral node if its eccentricity is equal to the diameter. 

141 Next, R script (igraph package) was used to calculate mean node degree, eccentricity, mean 

142 eccentricity, radius and diameter:

143 MND <- mean(degree(G)) # mean node degree of graph G

144 EC <- eccentricity(G) # eccentricity of graph G

145 MEC <- mean(EC) # mean eccentricity of graph G

146 R <- min(EC) # radius of graph G, or min eccentricity of graph G

147 D <- max(EC) # diameter of graph G, or max eccentricity of graph G
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148

149 Radius of gyration

150 Considering atoms as points in a three-dimensional space, the radius of gyration is defined as

151 Rgyr = ∑ miri
2

M

152 where M is the total mass of the molecule, and mi is the mass of the i-th atom with distance ri from 

153 the centre of mass. Radius of gyration was calculated using the rgyr function, which is part of the 

154 Bio3D R package (29). 

155

156 Solvent accessibility of residues

157 Secondary structure (total solvent-accessible area of proteins) was assigned according to the method 

158 of Kabsch and Sander (30,31). The solvent accessible area data for protein residues were taken from 

159 the work of Tien and co-workers (32).

160

161 Table 1: Solvent accessibility of residues

Residue
Solvent

accessible
area (Å2)

Alanine 121
Arginine 265

Asparagine 187
Aspartate 187
Cysteine 148

Glutamate 214
Glutamine 214

Glycine 97
Histidine 216
Isoleucine 195
Leucine 191
Lysine 230

Methionine 203
Phenylalanine 228

Proline 154
Serine 143

Threonine 163
Tryptophan 264
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Tyrosine 255
Valine 165

Average 192
162

163

164 Results and Discussion

165

166 Node degree-nearly scale-invariant

167 One of the fundamental global graph parameters in graph theory is the mean node degree (MND). 

168 The mean node degree shows how many edges each node has on average. In previous work, 

169 Pražnikar and co-workers (33) have shown that protein models that deviate from the expected MND 

170 by approximately two standard deviations or more are likely to be incorrect. Furthermore, the 

171 scaling exponent calculated in the mentioned study is close to zero and indicates that the mean node 

172 degree is nearly scale-invariant.

173 In this study, a large non-redundant database of biological units (31,571) was used, rather than 

174 crystal asymmetric units. We can see in Figure 1A that MND is not strongly dependent on protein 

175 size and that the distribution is rather narrow. Upon closer examination, however, the value 

176 determined in our study (0.038) differs slightly from the value (0.024) determined in previous 

177 study. The reason for the different scaling exponents is probably that the datasets are not the same. 

178 An analysis performed on two large but different datasets shows that MND is nearly scale-invariant, 

179 i.e., the scaling exponent is close to zero (0.024 and 0.038). Thus, MND is not strongly dependent 

180 on protein length, and it can be concluded that the number of edges in the protein graph is linearly 

181 related to the number of nodes (amino acids).

182

183 Fig 1. (A) Scaling exponent of mean node degree of protein graphs versus the number of residues. 

184 (B) Probability of node degree of protein graphs for three size bins. The first size bin (black line) 
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185 encompasses protein structures with length between 100 and 200 residues, the second size bin (blue 

186 line) encompasses protein structures with length between 500 and 600 residues, and the third size 

187 bin encompasses structures with length between 900 and 1000 residues.

188

189 We could expect that larger proteins would have a higher average node degree because of a higher 

190 number of core residues and a relatively lower number of surface residues, which are supposed to 

191 have lower numbers of edges. Thus, to further analyse the node degree of protein nodes-residues, 

192 we calculated the node degree distribution for three different size bins. The first size bin contains all 

193 protein structures from the database, which have lengths between 100 and 200 residues, in the 

194 second size bin are proteins with lengths between 500 and 600 residues, and in the third size bin are 

195 structures with lengths between 900 and 1,000 residues. Figure 1B shows that all three distributions 

196 are very similar and that there is a peak at 7 node degrees. The comparison of all three peak values 

197 shows that the first size bin, which contains the smallest proteins, has the highest probability density 

198 value. The lowest probability density value at 7 node degree is seen for the third size bin, which 

199 contains the largest proteins among all three selected size bins. A closer look at the left (degree 2) 

200 and right (degree 14) tail of the distributions shows high similarity for all three distributions. The 

201 visual comparison shows the most significant differences on the left and right sides of the peak. The 

202 differences can be observed at values of approximately 5 to 9 node degrees. It can be seen that the 

203 first size bin has a higher probability at 3 to 6 node degrees as compared to size bins two and three. 

204 The order is somehow reversed on the right side of the displayed distribution. For node degrees 8, 9 

205 and 10, size bin three exhibits higher values compared with size bins two and three.

206 This analysis shows that despite the different sizes of the proteins, they have a very similar node 

207 degree distribution, which peaks at node degree 7. A simple way to explain the presented results is 

208 that buried residues in small or large proteins form approximately the same number of links. This is 

209 a direct consequence of the fact that the amino acids are physical objects and cannot be arbitrarily 
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210 close to each other. The marginal difference in node degree distributions, a slight shift to higher 

211 node degrees, explains the low positive scaling exponent (0.038), which is nearly scale-invariant.

212

213 Protein graph eccentricity: an alternative method for analysis of 

214 radius of gyration

215 It is easy to ask a question: radius of gyration and radius as a graph parameter have a common 

216 name, but do they follow the same power law? To answer this question, linear regression analysis 

217 and scaling exponent were calculated for three graph parameters: radius, diameter and mean 

218 eccentricity. The radius-graph parameter is defined as minimum eccentricity, whereas the 

219 eccentricity of the graph is defined as the maximum distance between one node and all other nodes. 

220 Notice that the diameter is defined as maximum eccentricity.

221 Figure 2A shows the scaling exponent of a radius of gyration for 31,571 selected protein structures. 

222 The non-linear fitting function can be written as

223 Rgyr=R0N, 

224 where Rgyr is the radius of gyration, R0 is the pre-factor and  is a scaling exponent. The pre-factor 

225 R0 can be obtained experimentally and used as a restrained value during non-linear fitting (34–36). 

226 Thus, when restrained fitting was performed, the pre-factor (R0=2 Å) was fixed. We can see that in 

227 the case of restrained fitting, the scaling exponent is 0.405, which is consistent with other studies. 

228 When fitted without restraint, the exponent is lower (0.351). Both values are within the range 

229 reported by other studies (25,27,34,37–39).

230

231 Fig 2. Log-log plots of the radius of gyration (A), radius (B), diameter (C), and mean eccentricity 

232 (D) versus the number of residues. The solid red line is generated by fitting without restraint; the 

233 blue line is produced by restrained fitting. The legend shows unrestrained scaling factors in red. The 

234 restrained scaling factors and corresponding pre-factors are in blue.

235
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236 Figure 2B, C, and D show radius, diameter, and mean eccentricity plotted against protein length. 

237 Similar to the analysis of the radius of gyration, the power exponent was fitted with and without 

238 restraint. The pre-factor for restrained fitting was derived from linear regression analysis, as shown 

239 in Figure 3. The linear regression analysis between the radius of gyration and graph parameters 

240 reveals that R2 is close to 0.90 for all three cases (Fig. 3). The highest R2 (0.91) is observed between 

241 mean eccentricity and radius of gyration (Fig. 3C). The reason for this is probably that the values of 

242 radius and diameter are discrete, while mean eccentricity values are not discrete. For example, the 

243 radius can be 7 or 8, but cannot be a real number between 7 and 8. Mean eccentricity is just a mean 

244 value of all shortest paths to any nodes. It is seen that the distribution of mean eccentricity is 

245 smoother in comparison to the discrete values of radius and diameter on the y-axis. 

246

247 Fig 3. Scatter plot of graph parameters: radius (A), diameter (B), and mean eccentricity (C) versus 

248 radius of gyration. The legend shows the regression coefficient, R-squared value, and p-value.

249

250 If we use pre-factor R0 of a radius of gyration, which was obtained from experimental data, then we 

251 can calculate the pre-factors for radius, diameter, and mean eccentricity using the slope k from a 

252 regression analysis. The steepness of the linear regression model between Rgyr and radius was 0.42 

253 Å-1, 0.77 Å-1 between Rgyr and diameter, and 0.59 Å-1 between Rgyr and mean eccentricity (see Fig. 

254 3A, B and C). Using pre-factor R0 and the steepness of linear fit k, the pre-factors for radius, 

255 diameter and mean eccentricity can be calculated using the next expression:

256 𝑅𝑥 = 𝑅𝑂𝑘,                                                                                                                               (1)

257 where Rx is a new calculated pre-factor, R0 is the pre-factor of radius of gyration and k is the 

258 steepness of the linear fit. In Figure 2B, C and D are shown calculated pre-factors for radius (2.0 Å 

259 0.42 Å-1 = 0.84), diameter (2.0 Å 0.77 Å-1 = 1.54) and mean eccentricity (2.0 Å 0.59 Å-1 = 1.18). 

260 We can see that the restrained scaling exponent is higher than the non-restrained scaling exponent 

261 for all three cases. Furthermore, it is observed that restrained graph parameters all have very similar 
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262 scaling exponents (~0.395) which are very close to the scaling exponent of the radius of gyration 

263 (0.405).

264 Thus, this study shows that the radius of gyration, which is calculated from the atomic coordinates 

265 and radius of graph follow the same scaling exponent. From this we can conclude that when 

266 analysing 3D models of macromolecules using a graph-theoretical theory approach, the eccentricity 

267 of the graph can be used to estimate the radius of gyration. Thus, graph parameter eccentricity 

268 allows us to investigate whether the 3D protein model deviates from the expected value of the 

269 radius of gyration and to obtain information about the compactness of the structure. Furthermore, 

270 when a scientist builds a model, and the model is still in an early phase, e.g., as an alanine chain, 

271 then the Cα only model, which can be represented as a graph, contains enough information to 

272 estimate the radius of gyration.

273

274 Central and peripheral nodes

275 In the previous section, the relation between the radius of gyration and graph eccentricity was 

276 introduced. When exploring graph eccentricity, it is ubiquitous to examine which nodes-amino 

277 acids are central (close to every other node) and peripheral (distant from every other node). This 

278 kind of analysis has some common points with analysis of solvent-exposed residues, which is 

279 directly related to the arrangement of residues in 3D space. Buried residues constitute the core of 

280 the protein; meanwhile, residues exposed to the solvent represent the outer part of the protein in 3D 

281 space (40). The molecular mass of a protein is related with the total solvent exposed surface using 

282 the next expression:

283 𝐴𝑚𝑜𝑛𝑜𝑚𝑒𝑟 = 4.44𝑀0.770,                                                                                                               (2)

284 where M is the molecular mass of the protein (41). Similarly, we can introduce the relation between 

285 protein length and total solvent-exposed surface. Given that the average amino acid has a total 

286 solvent exposed area of 192Å2 (32), we can use this value as a restraint during data fitting. Figure 4 

287 shows the protein length against the total exposed area. The scaling exponent of the fitted curve is 
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288 0.772, almost the same as the exponent in equation 2. This result was somehow expected because 

289 molecular mass correlates with sequence length. 

290

291 Fig 4. Dependence of total solvent accessible area on the number of residues in proteins. The legend 

292 shows the scaling exponent and pre-factor (A0), which was used during restrained fitting.

293

294 However, a closer examination of the relationship between the number of central (peripheral) nodes 

295 and protein length demonstrated that the numbers of central and peripheral residues are not related 

296 to the protein size (Figure 5A, B). To further support this finding, the comparison between the 

297 radius of gyration, mean eccentricity, and numbers of central and peripheral residues for nine 

298 different size bins was made. We can see (Figure 6) that the mean eccentricity and radius of 

299 gyration increase according to the length of the protein. Note that the scaling exponent for both 

300 mentioned parameters is approximately 0.4 (Figure 2). On the other hand, central and peripheral 

301 box plots do not show such a positive trend (Figure 6C, D). It follows that the numbers of 

302 peripheral and central residues are not related to the protein size. 

303

304 Fig 5. Distribution of central/peripheral residues against the size of proteins (number of residues).

305

306 Fig 6. Boxplot of the radius of gyration (A), mean eccentricity (B), number of peripheral nodes (C), 

307 and number of central nodes (D) for ten different size bins. 

308

309 Next, we examine the case with different central to peripheral node ratio, which is shown as a graph 

310 and ribbon representation of two protein structures (Figure 7 A, B, D, and C). The PDB id: 1pq7 

311 structure has a low number of central nodes (4), but a high number of peripheral nodes (47): see 

312 Figures 7A and B. The situation is somehow reversed for the PDB id: 3wvj structure, which has a 

313 higher number of central nodes (34) and lower number of peripheral nodes (2): see Figure 7D, E. 
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314 This case shows that the numbers of central and peripheral nodes depend on the protein fold rather 

315 than on the length of the protein chain. Furthermore, we can draw parallels between almost-

316 peripheral (42), self-centred (43), and protein graphs. Figure 7E shows the wheel, a graph that is 

317 almost-peripheral, containing only one central node and 6 peripheral nodes. Meanwhile, the graph 

318 shown in Figure 7F is an almost self-centred graph that contains 5 central nodes and 2 peripheral 

319 nodes. We could say that the graph abstracted from the PDB id: 3wvj structure is centred, while 

320 peripheral nodes-amino acids dominate the PDB id: 1pq7 structure.

321

322 Fig 7. Examples of central and peripheral protein graphs. (A) Graph and (B) ribbon presentation of 

323 Biological Assembly 1 of PDB entry 1pq7. (D) Graph and (C) ribbon presentation of Biological 

324 Assembly 1 of PDB entry 3wvj. (E) Presents an almost peripheral graph, while (F) represents an 

325 almost self-centred graph.

326

327 Further analysis shows the frequency distribution of central and peripheral amino acids (Figure 8), 

328 which are subdivided into three groups: (i) charged, (ii) polar, and (iii) non-polar side chains. It can 

329 be seen that amino acids histidine, cysteine, methionine, and tryptophan have the lowest probability 

330 values; it follows that they are neither central nor peripheral nodes. Further, we can see that central 

331 nodes are hydrophobic amino acids (Val, Leu, Ile, Phe), which tend to be buried, while peripheral 

332 nodes are more likely hydrophilic residues (Asp, Glu, Lys) which form hydrogen bonds with 

333 solvent. 

334

335 Fig 8. Probability density of central and peripheral nodes for different types of amino acids.

336

337 Thus, when the 3D protein structure is analysed using graph theory, the eccentricity of the graph 

338 can be very strong for evaluating the radius of gyration when studying central nodes, which tend to 

339 be hydrophobic amino acids, and peripheral nodes, which tend to be hydrophilic amino acids. It is 
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340 remarkable that this graph parameter (eccentricity) allowed us to study the compactness (Rgyr) of the 

341 protein and the arrangement of the residues (buried/not buried), making it versatile and useful for 

342 the analysis of 3D macromolecules.

343

344 Conclusion

345 This study showed that the mean node degree of the protein graph is nearly scale-invariant. In other 

346 words, a small scaling exponent (0.038) indicates that the mean node degree is scale-free. Scale 

347 invariance was further supported by the analysis of node degree distribution, which showed very 

348 similar node degree distributions for proteins that differ according to size. This scale invariably 

349 offers a valuable tool for validating structures by simply counting the number of edges. 

350 Furthermore, an additional comparison between the expected node degree and node degree of a 

351 candidate could be used to explore and interpret large deviations. For example, intrinsically 

352 disordered proteins are expected to have a considerably lower mean node degree than globular 

353 proteins of the same size.

354 The comparison between the mean eccentricity of the graph and radius of gyration revealed a high 

355 R2. In other words, the mean eccentricity and radius of gyration follow the same scaling exponent 

356 (~0.4). The eccentricity of the graph, in addition to the estimation of the radius of gyration, also 

357 allows us to study the distribution of central (buried) and peripheral amino acids (non-buried). We 

358 should be aware that the mean eccentricity alone (or radius of gyration), which is used as a 

359 constraint when running molecular dynamics simulations or manually building a model, does not 

360 provide the correctness of the protein model. It is also crucial to determine how the amino acids are 

361 distributed in real space, and this can be elucidated by studying peripheral and central nodes. Thus, 

362 a single graph parameter (eccentricity) can be used to control the compactness of the 

363 macromolecule and the distribution of amino acids in 3D space, which makes it a valuable tool for 

364 analysing protein models.

365
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