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Abstract 
 
To interact with real-world objects, any effective visual system must jointly code the 
unique features defining each object. Despite decades of neuroscience research, we 
still lack a firm grasp on how the primate brain binds visual features. Here we apply a 
novel network-based stimulus-rich representational similarity approach to study color 
and shape binding in five convolutional neural networks (CNNs) with varying 
architecture, depth, and presence/absence of recurrent processing. All CNNs showed 
near-orthogonal color and shape processing in early layers, but increasingly interactive 
feature coding in higher layers, with this effect being much stronger for networks trained 
for object classification than untrained networks. These results characterize for the first 
time how multiple visual features are coded together in CNNs. The approach developed 
here can be easily implemented to characterize whether a similar coding scheme may 
serve as a viable solution to the binding problem in the primate brain. 
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Introduction 

 

Natural visual experience comprises a juxtaposition of different visual features, 
such as an object’s shape, color, position, size, and orientation. To recognize an object 
under different viewing conditions, our visual system must successively reformat and 
“untangle” the different features to make object identity information explicitly available to 
a linear readout process in a manner that is tolerant to variations in other features, an 
ability that has been hailed as the hallmark of primate high-level vision (DiCarlo & Cox, 
2007; Hong et al., 2016).  

Meanwhile, our interaction with the world often involves objects with uniquely 
defined features, such as grabbing the blue pen on the desk. How would an object 
representation that sheds all its identity-irrelevant features support our ability to interact 
with specific objects? One possibility is that different visual features are initially 
processed separately and are bound together via attention (i.e., Feature Integration 
Theory, Treisman & Gelade, 1980). Despite decades of neuroscience research, the 
coding mechanism for such a binding process remains unknown, with existing 
proposals facing various challenges. For example, Singer (1999) proposed that neurons 
coding for different features of the same object could engage in synchronous 
oscillations, serving as a binding signal, but it is unclear how such a signal would be 
generated and read out (Shadlen & Movshon, 1999). Alternatively, there might exist 
neurons that encode particular feature conjunctions; however, this view collides with the 
problem of “combinatorial explosion”: there are more possible feature conjunctions than 
neurons in the brain. The space of possible mechanisms requires further exploration. 

Recently, convolutional neural networks (CNNs) have achieved human-level 
object recognition performance (Kriegeskorte, 2015; Yamins & Dicarlo, 2016; 
Rajalingham, et al., 2018; Serre, 2019). Specifically, these CNNs have been trained to 
disregard identity-irrelevant object features to correctly identify objects across different 
viewing conditions, thereby forming transformation-tolerant visual object representations 
much like those in high-level primate vision. However, despite their success in object 
recognition, CNNs largely remain “black boxes”, with details of their internal processing 
poorly understood (e.g., Serre, 2019). Several studies have examined how individual 
features are encoded in CNNs, with some finding that coding for object identity-
irrelevant features increases in higher CNN layers (Hong et al., 2016), and others 
reporting the color encoding characteristics of CNN units (Flachot & Gegenfurtner, 
2018; Rafegas & Vanrell, 2018). However, to our knowledge no study has examined 
how CNNs encode combinations of features during the course of information 
processing. Because CNNs are not trained to interact with specific objects but simply to 
produce the correct object labels at the end of its processing, it is possible that different 
features are initially encoded in an entangled, intermingled fashion, and are gradually 
separated, with object identity information made explicit over the course of processing 
(DiCarlo & Cox, 2007). Alternatively, CNN architecture and training for object 
recognition may automatically give rise to interactive coding of object features in later 
stages of processing, without needing a separate binding operation. This could 
constitute a novel binding mechanism that has not been considered before in 
neuroscience research. Thus, studying how CNNs jointly encode different object 
features during the course of visual information processing is not only timely in its own 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246223doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246223
http://creativecommons.org/licenses/by/4.0/


 4 

right, but also provides us with a unique opportunity to gain insight into the potential 
computational algorithm that a successful object recognition system may use to code 
different object features together. Equally importantly, given that the internal 
representations of CNNs are fully image computable and freely inspectable, CNNs 
provide ideal testing grounds for developing analysis methods to study feature coding 
across an entire processing hierarchy and with a large number of objects, and 
generating hypotheses that can be tested in biological visual systems. 

In this study, we examined how an object’s color and shape may be coded 
together during visual processing in CNNs. We employ a network-based, stimulus-rich 
approach in which we characterize the joint representations of these two features not for 
a few pairs of objects at a few processing stages as is traditionally done in neuroscience 
and vision research, but rather, across a large number of objects and across the entire 
processing hierarchy of a CNN. With this approach, we found that coding for color and 
shape becomes increasingly interactive throughout CNN processing. These results 
characterize for the first time how multiple visual features are coded together in CNNs. 
The approach developed here can be easily implemented to characterize whether the 
primate brain may use a similar coding scheme to solve the binding problem. 
 

Results 

 

 In this study, we examined in detail how color and naturalistic object shape  
features may be represented together in five CNNs trained for object recognition using 
ImageNet (Deng et al., 2009) images. These CNNs, chosen for their high object 
recognition performance, architectural diversity, and prevalence in the literature, 
included AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), VGG19 (Simonyan & 
Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), ResNet-50 (He, Zhang, Ren, & 
Sun, 2015), and CORNet-S (Kubilius et al., 2018). Specifically, AlexNet was included for 
its high object recognition performance, relative simplicity, and prevalence in the 
literature. VGG19, GoogLeNet and ResNet-50 were chosen based on their high object 
recognition performance and architectural diversity. Both AlexNet and VGG19 have a 
shallower network structure, whereas GoogLeNet and ResNet-50 have a deeper 
network structure. CORNet-S is a shallow recurrent CNN designed to approximate the 
structure of the primate ventral visual pathway, and exhibits high correlation with neural 
and behavioral metrics. This CNN has recently been argued to be the current best 
model of the primate ventral visual regions (Kar et al., 2019). We sampled between 6 to 
9 layers in each of these CNNs (Table 1). 

Network 
(Layers Used/Total Layers) Layers Used 

AlexNet (8/25) Conv1, Conv2, Conv3, Conv4, Con5, FC1, FC2, FC3  

CORnet-S (7/42) Conv1, Relu2, Relu5, Relu8, Relu11, AvgPool1, FC1 

GoogLeNet (6/144) Conv1, MaxPool2, MaxPool5, MaxPool11, AvgPool1, FC1 

ResNet-50 (6/177) Conv1, Relu4, Relu8, Relu14, AvgPool1, FC1 

VGG19 (9/47) Conv1, MaxPool1, MaxPool2, MaxPool3, MaxPool4, MaxPool5, FC1, FC2, FC3 

Table 1. The five CNNs included in the present study and the layers sampled in each 
CNN. 
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We used representational similarity analysis (RSA, Kriegeskorte & Kievit, 2013) 
to characterize how color and shape information is represented together in these 
networks. For most analyses, we studied a set of 50 objects (chosen from a set created 
by Brady et al., 2013), each colored in 12 colors calibrated in CIELUV color space 
(Figure 1a). Two versions of each object were shown: a textured version, with internal 
object detail preserved, and a silhouette version, comprising a global shape contour 
without internal details (Figure 1b).  

All of our analyses involved first computing the color space of a given object that 
captures how similarly the different colors of that object are coded at a particular CNN 
layer. Subsequent analyses then involved (1) comparing the color spaces across 
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Figure 1. Stimuli used and example color space 
characterization using RSA and MDS. a. The 50 objects 
included in the main stimulus set, chosen from an initial set of 
500 objects to maximize their mean pairwise pattern similarity 
in AlexNet FC2. b. The 12 isoluminant and iso-saturated 
colors (based on the CIELUV color space) and the two 
versions of the object shapes used in the main analysis. 
Objects appeared either with their original textures preserved, 
or as uniformly shaded “silhouette" stimuli. c. The 12 oriented 
bar stimuli used in a control analysis. d. An illustrative color 
similarity matrix (left) and actual MDS plots showing the 
representational structure of two example objects each in the 
12 colors calibrated in CIELUV color space from Conv1 and 
FC2 of AlexNet (right). Pairwise correlations were first 
obtained from these two objects in the 12 colors (3 colors 
were illustrated here) to construct a color similarity matrix for 
each layer. The first two dimensions of this similarity matrix 
were then projected onto the 2D space using MDS. While the 
similarity spaces of these objects have a similar elliptical 
pattern at the beginning of AlexNet, by the end of processing 
the color spaces of these objects are substantially different. 
e. An illustrative color space similarity matrix (left) and an 
actual MDS plot showing the color spaces of six example 
objects over the course of processing in AlexNet (right). Color 
spaces were computed separately for each of these objects 
in each sampled layer of AlexNet (example color space 
depicted by the small matrix on the left), and the resulting 
color spaces (only three objects and two layers illustrated 
here) were correlated with one another to construct a color 
space similarity matrix (note this is a second order correlation 
matrix, different from the color similarity matrix illustrated in 
d). The first two dimensions of this similarity matrix were then 
projected onto the 2D space using MDS. Each dot in the 
MDS plot represents the color space of a given object at a 
given layer and each trajectory traces the color space of a 
given object. The dot corresponding to the initial layer has a 
black outline, and the dot corresponding to the final layer is 
marked by a picture of the object for that trajectory. While the 
color spaces of different objects are initially very similar, by 
the end of processing they have substantially diverged.
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objects within each layer, to determine whether color and shape are encoded 
independently versus interactively in that layer, and examining how this is affected by 
variations in stimuli, analysis parameters, and network training regime; (2) comparing 
the color space for each object across layers, to determine how color information for 
each object is transformed over the course of processing; (3) examining whether color 
space differences across objects are preserved across layers, and (4) whether the 
shape similarity of two objects predicts their color space similarity. To our knowledge, 
these analyses provide the first in-depth and comprehensive network-based description 
of how colors and shapes are coded together in CNNs.   
 

Visualizing Color Space Representation Across Objects and CNN Layers  

 

As our primary analysis, we applied RSA to examine the extent to which coding 
for color varies across object shapes, and the extent to which the magnitude of this 
variability changes across CNN layers. As an initial exploratory analysis, we visualized 
how the color spaces of two example objects may differ at the beginning and end of 
processing in AlexNet (Figure 1d). Specifically, we extracted the activation patterns for 
the 12 colors of these two objects (textured versions) from the first and the penultimate 
layers of AlexNet (Conv1 and FC2). Within each layer, we performed all pairwise 
Pearson correlation among the 24 patterns to create a representational similarity matrix 
(RSM). Using multidimensional scaling (MDS), we visualized the resulting 
representational similarity space projected onto 2D space, with a closer distance 
between a pair of colored objects indicating more similar representations (Figure 1d). 
For these two objects, color was coded similarly at the beginning of the network, as 
reflected by the similar elliptical shape of the color spaces; by contrast, the color spaces 
of these two objects were substantially different by the end of processing.  

To generalize from these two objects and examine how the color space for 
different objects might diverge over layers, we visualized the evolution of the color 
spaces of six example objects over the course of processing in AlexNet (Figure 1e). To 
do this, for each object (textured versions) and for each sampled layer of AlexNet, we 
first constructed a “color space” RSM by performing all pairwise Pearson correlations of 
the patterns associated with the 12 different colors of that object. We vectorized the off-
diagonal values of this RSM to create a “color space” vector. Next, we performed all 
pairwise correlations of these “color space” vectors across objects and layers to form a 
“color space similarity” RSM that quantifies how similarly color is coded in different 
objects and layers. We then used MDS to visualize the resulting representational 
similarity space (Figure 1e). In these objects, color was initially coded in a very similar 
manner (as reflected by the dense clustering of the bold-outlined dots representing the 
different color spaces in the initial layers of processing), but color coding increasingly 
diverged as processing proceeded in the network (as reflected by the separation of the 
dots at the end of processing, indicated by the object icons next to the dots). 

 
Quantifying Color Space Differences Across Objects within a CNN Layer 
 

To quantify the color space divergence among different objects within a layer and 
over the course of processing, we computed the averaged pairwise color space vector 
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correlations for the 50 objects in each layer of each CNN, and for both the textured and 
silhouette stimuli. We further quantified using regression analysis whether this mean 
between-object color space similarity significantly declines over the course of 
processing, and whether this decline varies significantly between the textured and 
silhouette versions of the stimuli (see Methods for analysis details). For the entire set of 
50 objects, several patterns of results, shown in Figure 2a, could be possible: the color 
spaces of different objects might be highly similar in every layer, they might be highly 
dissimilar in every layer, or they might begin similar to each other, but diverge over the 
course of processing, similar to the pattern of the six example objects in Figure 1e.  

Figure 2b depicts the mean between-object color space correlation within each 
layer as well as how the mean changes across layers. In all CNNs, and in both stimulus 
conditions (textured and silhouette), the mean color space correlations were high in 
lower layers but then significantly decreased from mid to high CNN layers, with an 
overall significantly negative slope across all the layers (see the asterisks marking the 
significance level of the slope at the lower part of each plot). Coding of color thus  
remained relatively similar across objects in lower layers but then became increasingly 
different from mid to high CNN layers, reflecting what is depicted in Figure 1e and 
Figure 2a right panel. Since this increase in interactive tuning occurred even for the 
silhouette stimuli, it did not depend on the internal texture features of the stimuli, and 
can occur with respect to global shape features alone. That being said, for most of the  
networks, the textured stimuli did exhibit a greater drop in their color space similarity 
over the course of processing than the silhouette stimuli, with the exception of 
GoogLeNet, suggesting the existence of greater interactive coding for texture features 
above and beyond global shape features alone.  

To ensure that these results did not arise due to the particular similarity metric 
used in constructing the RSMs (i.e., Pearson correlation), we repeated the same 
analysis using Euclidean Distance as the distance metric (Figure 2c). Additionally, to 
ensure that our results did not depend on the human-based color space we used (i.e., 
CIELUV color space), we repeated the same analysis, but using stimuli where the 
saturation and luminance were equated according to a new color space we constructed, 
“synthetic HSV”, which was not based on human psychophysical measurements (Figure 
2d). For both manipulations, the results remained qualitatively similar: color space 
correlations among different objects began high in early layers, and dropped 
significantly in later layers in all conditions. 

Could these results have arisen due to the objects subtending different areas of 
space? Some stimuli, like the top hat, covered large areas, while other stimuli, like the 
necklace, covered small areas (Figure 1a). This could have activated different numbers 
of kernels in CNN layers and affected how colors are coded for each object. To 
investigate this possibility and to examine whether our results hold for minimally simple 
stimuli, we repeated the same analysis on 12 oriented bars presented in the same 12 
colors equated in CIELUV color space as used earlier (Figure 1c). We found the same 
overall result: as processing proceeds in each network, color coding increasingly differs 
across different shape features (Figure 2e). Thus our results hold for objects equated in 
their spatial coverage. Moreover, results obtained from complex natural objects can be 
generalized to simple shape stimuli. 
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Figure 2. Color space representation across 
objects within a CNN layer. a. A schematic 
illustration of three possible scenarios. In each 
scenario, the left figure illustrates the color 
space transformation of three objects in three 
hypothetical CNN layers, with each colored dot 
depicting a color space structure of an object at 
a CNN layer and each trajectory depicting an 
object. The right figure in each scenario 
illustrates how the mean pairwise correlation of 
all object color spaces for a given layer 
changes across layers. In the first scenario, the 
color spaces of the three objects remain similar 
within each layer throughout processing. In the 
second scenario, they are dissimilar within each 
layer throughout processing. In the third 
scenario, they are similar in the first layer, but 
become dissimilar in the final layer. b. The 
mean pairwise color space similarity for each 
sampled layer of each of the five CNNs, for the 
full set of 50 objects in the 12 colors calibrated 
in CIELUV color space. The color space 
structure of each object is measured with 
Pearson correlation. Results are shown for both 
the textured (in maroon) and the silhouette (in 
pink) versions of the objects. Linear regression 
was used to measure the downward trend of 
the mean correlations across layers for each 
object pair. The mean of the resulting slopes 
(one slope per object pair) were tested against 
zero for each of the two versions of the objects, 
and the difference between the two sets of 
slopes was also tested  (with significance levels 
marked by maroon and pink asterisks, 
respectively, for each of the two versions 
against zero, and by black asterisks for the 
differences between the two versions). In all 
cases, mean pairwise color space similarity 
decreases over the course of processing, with 
this decline being greater for the textured than 
for the uniformly colored objects. c. Same as 
(b), but with color space structure of each 
object measured with Euclidean distance 
instead of Pearson correlation. Results remain 
qualitatively similar as those in (b). d. Same as 
(b), but using colors calibrated in an artificial 
HSV color space that is not based on human 
psychophysical judgments. Results again 
remain qualitatively similar as those in (b). e. 
Mean color space similarity across the 12 
oriented bar stimuli in the 12 colors calibrated in 
CIELUV color space. Even in these minimally 
simple shape stimuli, mean pairwise color 
space similarity decreases over the course of 
processing. f. Mean color space similarity 
across the 50 objects in the 12 colors calibrated 
in CIELUV color space in CNNs with different 
training regimes. Comparisons are made 
among ResNet-50 trained with the original 
ImageNet images, trained with stylized 
ImageNet images, and with 100 random-weight 
initializations of the network. Comparisons are 
also made between AlexNet trained with the 
original ImageNet images, and with 100 
random-weight initializations of the network. 
Averaged results are shown from the 100 
random-weight initializations of each network. 
The untrained networks exhibit a much smaller 
decline in their mean pairwise colorspace 
correlation across objects than the trained 
networks. † p<.1, * p<.05 , ** p<.01 , *** p<.001.
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Overall, across all conditions we examined, we found a consistent pattern: all 
CNNs showed near-orthogonal color and shape processing in early layers, but 
increasingly interactive feature coding in higher layers.  
 
The Effect of Training on CNN Color Space Representation 

 
The ImageNet images used to train the CNNs studied so far contain real-world 

objects with natural color-shape covariation (e.g., bananas are yellow). Could the 
interactive color and shape coding observed so far in CNNs be driven by such 
covariation in the training images? To address this question, we compared results from 
the version of ResNet-50 trained on the original ImageNet images and the version 
trained on stylized ImageNet images in which the original texture and color of every 
single image was replaced by the style of a randomly chosen painting, removing the 
real-world color-shape covariation in the natural objects (Geirhos et al., 2019). 
Interestingly, the version of ResNet-50 trained on stylized images still exhibited a 
significant, steep decrease in their color space correlation over the course of processing 
(Figure 2f), almost as steep as that observed in the version of ResNet-50 trained on the 
original ImageNet images. This suggests that the interactive color and shape coding 
observed in CNNs does not rely on the presence of consistent color and shape pairing 
naturally occurring in the training images. That said, the slopes were slightly, though 
significantly, steeper for the version of ResNet-50 trained on the original than the styled 
images of ImageNet in both stimulus conditions (ts > 2.89, ps < .004). Thus training on 
naturalistic images does appear to increase the degree of interactive color and shape 
coding in this CNN, although the effect is fairly small.  

To understand the extent to which the effects we observe may arise due to the 
intrinsic architecture of the networks versus being a result of object classification 
training, we examined 100 random-weight initializations of AlexNet and 100 random-
weight initializations of ResNet-50, and compared the results with those from the 
ImageNet image-trained AlexNet and ResNet-50 and the stylized ImageNet image-
trained ResNet-50. Results for the 100 random initializations of each network were 
computed independently, and then averaged together. As shown in Figure 2f, while the 
random networks still exhibited a significant decline in their mean pairwise colorspace 
correlation across objects, this decline was small, and much smaller than in the 
corresponding trained version of each network (matched-pairs t-tests; ps < .001).  

Overall, these results show that the intrinsic CNN architecture is not sufficient to 
give rise to the large interactive color and shape coding observed so far. Training on the 
object classification task, even with inconsistent pairings of color and shape in the 
object stimuli, appear to play a significant role in creating such coding.  

 
Transformation of Color Space Representations Across CNN Layers and 

Architectures 

 

 Instead of focusing on color space differences across objects within a layer, here 
we took an orthogonal approach and tested how the color space of a given object may 
change across layers by correlating the color space vector of a given object between 
layers. Color coding for a given object may remain similar across layers, resulting in 
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closely clustered color spaces across layers (Figure 3a, left), or it may transform 
substantially over the course of processing, leading to dispersed color spaces (Figure 
3a, right). To quantify such transformations, for each object, we correlated the color 
space vector from each layer with the color space vector from the first and penultimate 
layers of the network (Figure 3b). We then used regression to examine whether the  
correlation significantly decreases with an increasing number of intervening layers from 
the reference (first or penultimate) layer. Across the main set of 50 objects in 12 colors 
calibrated in CIELUV color space, in all cases, there was a significant and steady 
decrease in correlation with the target layer with increasing number of intervening layers  
(see the asterisks marking the significance level of the slope at the lower part of each 
plot). Even for the first few layers, although color space correlations within a layer were 
fairly high among the different objects (see Figure 2b), the color spaces of each object 
still differed across layers. Overall, color space was successively and substantially 
transformed over the course of processing, with the correlations between the color 
spaces at the beginning and end of processing being quite modest. 

To understand how the color space of an object may be encoded differently 
among the different CNNs, for each of the 50 objects, we also correlated its color space 
vector across all CNNs and layers. We then visualized the results, averaged over all 
objects, using MDS plots. As shown in Figure 3c, across the 5 CNNs, for both the 
textured and silhouette objects, while the color spaces evolved substantially from their 
initial state over the course of processing (consistent with the quantitative analyses 
above), the color representations nonetheless evolved in a relatively similar way across 
networks, with the representations being almost identical in the first layer for all 5 CNNs 
and then gradually fanning out during the course of processing, with GoogLeNet 
showing a greater divergence compared to the other CNNs (see also Supplementary 
Figure 1 for the exact between-network correlation values for both the initial and 
penultimate layers of each network). 

To further understand how training on object classification may affect the color 
space of an object, we repeated the above analysis and correlated the color space 
vector of the same object across the same network under different training regimes: (1) 
across AlexNet trained with ImageNet images and 10 random initializations of AlexNet; 
and (2) across ResNet-50 trained with the original ImageNet images, trained with 
stylized ImageNet images, and 10 random initializations of ResNet-50 (Figure 3c and 
Supplementary Figures 2 and 3). In both cases, while color was initially encoded in a 
similar manner between the random and trained versions of the networks, over the 
course of processing, the color spaces for objects in the trained networks substantially 
diverged from those in the random networks. Interestingly, while the color spaces of the 
different random initializations of AlexNet tended to cluster together over the course of 
processing and did not diverge as the trained network did, those of the different random 
initializations of ResNet-50 diverged substantially but in different directions as those of 
the trained networks. On average, in the penultimate layers, color spaces for the two 
trained versions of ResNet-50 tended to be more correlated with each other than they 
are with the random initialization of the network; this was more so for the textured than 
the silhouette version of the objects. 
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Figure 3. Color space representation across 
different CNN layers and different CNN 
architectures. a. A schematic illustration of two 
possible scenarios of color space correlation 
across layers within a CNN, using the same 
notations as those in Figure 2a. In this analysis, 
within each object, the color space structure from 
the first layer is correlated with each of the other 
layers, as shown on the left of each scenario. The 
averaged correlation overall all objects for each 
layer is plotted in a line graph on the right of each 
scenario. In the first scenario, the color space 
structure within each object differs substantially 
across processing, resulting in a large decrease 
in correlation across layers. In the second 
scenario, the color space structure for each 
object remains relatively stable across 
processing, resulting in a relatively small 
decrease in correlation across layers. b. Mean 
within-object across-layer color space 
correlations for each network for the full set of 50 
objects in the 12 colors calibrated in CIELUV 
color space for both versions of the objects. Top 
row shows the correlations with the first layer of 
each network, bottom row shows correlations with 
the penultimate layer of each network. Linear 
regression was used to measure the downward 
or upward trend of the mean correlations across 
layers for each object. The resulting slopes were 
tested against zero for each of the two versions of 
the objects (with significance levels marked by 
maroon and pink asterisks, respectively). In all 
cases, the color space similarity within an object 
significantly decreases with more intervening 
layers, and correlations between early and late 
layers were fairly modest. c. MDS plots depicting 
color space correlation across different CNN 
layers and architectures. This was done by 
constructing a color space correlation matrix for 
each object, including its color space correlation 
across all sampled layers of all CNNs. The 
resulting correlation matrix was then averaged 
across objects and visualized using MDS. This 
was performed for the five trained networks (left 
column), AlexNet trained with ImageNet images 
and with 10 random-weight initializations (middle 
column), ResNet-50 trained with ImageNet 
images, trained with stylized ImageNet images, 
and with 10 random-weight initializations (right 
column), and for both the textured and silhouette 
images. The hollow dots denote the first layer of 
each network. In the 5 trained CNNs (left 
column), color spaces are almost identical in the 
first layer and then gradually fan out during the 
course of processing. Color spaces in the 
untrained networks, however, differ substantially 
from the trained ones (middle and right columns). 
† p<.1, * p<.05 , ** p<.01, *** p<.001.
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Overall, these results demonstrate that, within a given network, color 
representations for each object transform dynamically over the course of processing. 
Across the different networks, even though all the trained networks succeed at object 
recognition, and even though they all formed increasingly interactive representations of 
shape and color as processing proceeds, the exact manner in which they conjunctively 
coded shape and color varied somewhat from network to network, with some being 
more similar than others. Such transformation of color space was not a mere byproduct 
of a network’s intrinsic architecture, and differed substantially between the trained and 
untrained networks.  
 
Transformation of Color Space Similarity Across CNN Layers  
 

To understand how color space similarity may change across objects over 
different CNN layers, instead of testing the color space of a single object, here we 
asked: if two objects have a relatively similar color space at the beginning or end of the 
network, do they also have a relatively similar color space throughout the network 
(Figure 4a left), or do the relative similarity of their color spaces transform throughout  
processing (Figure 4a right)? To test this, for the main set of 50 objects in the 12 colors 
calibrated in CIELUV color space, for each CNN, we took either the first or penultimate 
layer as our target layer and first generated its color space similarity RSM by performing 
all pairwise correlations of color space vectors between objects. We then vectorized the 
off-diagonal elements of this RSM to form a “color space similarity” vector and 
correlated this vector with those from all other layers of the CNN. We found that 
correlations decreased as we moved away from the reference layer, with the first and 
last layers being only moderately correlated. Thus, if two objects had a highly similar 
color space at the beginning of a CNN, they did not necessarily have a highly similar 
color space at the end of the CNN. Color space differences among objects appear to 
dynamically change throughout the course of processing. 
 
The Effect of Object Shape Similarity on Color Space Similarity  

  
 It is possible that color space similarity covaries with object shape similarity, such 
that a small change in shape features leads to a small change in the associated 
representational geometry for color. However, given that each feature can vary 
relatively independently of the other feature, it is also possible that color coding does 
not closely follow shape coding. To arbitrate between these two possibilities, for the 
main set of 50 objects in the 12 colors calibrated in CIELUV color space, for each CNN 
layer, we first performed all possible pairwise correlations of the CNN layer output for 
the grayscale versions of the object shapes to form an object shape similarity RSM and 
vectorized the off-diagonal elements of this RSM to form an object shape similarity 
vector. We then correlated this object shape similarity vector with the color space 
similarity vector from the same CNN layer (Figure 4c). If similar object shapes had 
similar color space structure, we expected to obtain a high correlation between the two. 
As shown in Figure 4d, correlations varied across layers and networks, showing no 
consistent pattern; correlations tended to be higher for the silhouette than for the 
textured stimuli, but tended to be modest, never exceeding a value of r = 0.4. Overall, 
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color space similarity does not closely track object shape similarity, suggesting some 
separation between the two. 
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Figure 4. The evolution of color space similarity 
among objects across CNN layers and the 
dependence of color space similarity on object 
shape similarity. a. A schematic illustration of 
two possible scenarios of the evolution of color 
space similarity among objects across CNN 
layers, using the same notations as those in 
Figure 2a. In this analysis, we examine whether 
or not color space similarity among objects are 
preserved across layers by correlating the color 
space similarity matrix (i.e., the second-order 
RSM quantifying the similarity among the color 
spaces of different objects) from the first layer 
with each of the other layers, as shown on the 
left of each scenario. These correlations are 
then plotted in a line graph on the right of each 
scenario. In the first scenario, the relative color 
space similarity among the different objects is 
preserved in the different CNN layers (i.e., the 
purple dot is closer to the blue than the green 
dot across the whole network), even as the 
absolute similarity among color spaces 
decreases. In the second scenario, the relative 
color space similarity is not preserved in 
different CNN layers (i.e., the purple dot is 
closer to the blue than the green dot in the first 
layer, but is closer to the green than the blue dot 
in the last layer). b. The correlations of the color 
space similarity across different CNN layers for 
the full set of 50 objects in the 12 colors 
calibrated in CIELUV color space for both 
versions of the objects. Top row shows the 
correlations with the first layer of each network, 
bottom row shows correlations with the 
penultimate layer of each network. In most 
cases, correlations between the early and late 
layers are fairly modest. c. A schematic 
illustration of comparing color space similarity 
and object shape similarity, using the same 
notations as those in Figure 2a. In this analysis, 
the achromatic object shape similarity matrix is 
extracted for each CNN layer and then 
correlated with the corresponding color space 
similarity matrix of that layer. d. Correlations 
between the shape similarity and color space 
similarity for each layer of each network for the 
full set of 50 objects in the 12 colors calibrated 
in CIELUV color space for both versions of the 
objects. No clear increases or decreases across 
layers were evident, but in general correlations 
were modest, never exceeding .4. 
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Discussion 

 

 Despite decades of neuroscience research, we still lack a full understanding on 
how feature conjunctions are represented in the primate brain. In this study, we took 
advantage of the recent development in CNNs trained to perform object classification 
and examined how such an information processing system jointly represents different 
object features across the entire processing hierarchy of a CNN. Our investigation not 
only allowed us to gain insight into the internal representations of CNNs, but also 
enabled us to develop a novel network-based stimulus-rich approach to study feature 
binding across the entire network and a large stimulus set, which can be easily 
implemented to study feature binding in biological visual systems. Although we tested 
the joint coding of color and shape here, our approach can be applied to study the joint 
coding of any pair of features.  

With this approach, we found that color coding increasingly varies across 
different real-world object shapes in higher levels of each CNN. This held true for both 
the naturally textured stimuli and the uniformly colored “silhouette” stimuli, suggesting 
that interactive coding of color and shape in higher CNN layers exists for global shape 
features alone (which are preserved in the silhouettes). The textured interior of an 
object shape, however, did further increase the amount of interactive coding between 
colors and shapes, likely due to the presence of additional shape features in these 
textured objects. This interactive coding was present not only for complex real-world 
object shapes, but also for minimally simple oriented bar features when the size of the 
stimuli are equated; in other words, color coding differed greatly even among otherwise 
identical bars of different orientations. Finally, this effect did not depend on the distance 
metric that was used to compute the representational geometry of the features, nor did 
it depend on our particular selection of color space used to calibrate the luminance and 
saturation of the images.  

The interaction between color and shape coding was not a mere byproduct of the 
intrinsic architecture of a CNN, as the interaction effect was profoundly attenuated in 
untrained CNNs with random weights. Neither did it appear to depend on the existence 
of natural covariation between shape and color in the training set, as the magnitude of 
interactive tuning is nearly as large in a CNN trained on objects stripped of their 
naturalistic shape-color pairings. Thus training for object recognition is needed to 
produce the interactive coding of color and shape, even when no consistent color and 
shape pairing is present during training. This suggests that the interactive coding of 
color and shape is not intrinsically tied to the CNN architecture and that object 
recognition training automatically gives rise to increasingly tangled color and shape 
representations in higher levels of processing, even when color is not informative to 
object recognition after training. 

In additional analyses, we found that an object’s color space greatly diverged 
from its initial color space over the course of processing and that two objects with a 
similar color space at the beginning of processing did not necessarily have a similar 
color space at the end of processing. Thus the color space representation for a given 
object as well as the relative similarity of color spaces between objects dynamically 
changed over the course of processing. However, the color space of an object tended to 
transform in similar ways across the trained networks, but differently in the untrained 
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networks. This relative consistency across the trained, but not the untrained, networks 
with vastly varying architectures suggests that this resculpting of color space may be of 
adaptive value for the network’s object classification task. Interestingly, the achromatic 
shape similarity of two objects only weakly predicted the similarity of their respective 
color spaces. This demonstrates that, in general, color space similarity does not closely 
track object shape similarity, suggesting some separation between the two.  

Overall, these results show that colors are not represented similarly across 
different objects in an orthogonal manner in CNNs. Rather, colors are encoded 
increasingly differently across objects in an interactive and object-specific manner 
during the course of CNN processing. This is more consistent with a late integration 
account (but without needing an additional binding operation), rather than color and 
shape being represented in an initially entangled and intermingled fashion and only 
being represented separately and explicitly in later layers. To our knowledge, these 
results provide the first detailed and comprehensive documentation of how color and 
shape may be jointly coded in CNNs, unveiling important details regarding the inner 
workings of CNN, which up to now have remained largely hidden. 

It should be noted that interactive tuning does not imply that there exist units 
tuned exclusively to a single color/shape conjunction (a “grandmother unit”); units could 
plausibly be tuned to heterogeneous combinations of color and shape combinations in a 
“mixed selectivity” coding scheme. Such a coding scheme has been reported in the 
macaque prefrontal cortex for the coding of stimulus identity and task and has been 
shown to vastly increase the neural representational capacity of that brain region 
(Rigotti et al., 2013). The present results show that such an interactive coding scheme 
may be more prevalent and can automatically emerge in a complex information 
processing system even though, compared to a biological brain, CNNs have a relatively 
simple structure, consisting only of a single feed-forward sweep and lacking 
mechanisms such as feedback connections (except for the recurrent network we 
included here) and oscillatory synchrony. Such a coding scheme may well be used by 
sensory regions in the primate brain to support the flexible encoding of a wide range of 
sensory feature combinations. Indeed, although initial evidence from visual search 
(Treisman and Gelade, 1980) and neuropsychology studies (Zeki, 1990) suggests that 
color and shape might be initially encoded independently, and only combined in a late 
binding operation, other strands of evidence suggest that color and shape might be 
encoded in an interactive manner early on during processing (Rentzeperis et al., 2014). 
For example, Seymour et al. (2009) found that nonlinear tuning for color/orientation 
combinations might emerge as early as V1, V2, V3, and V4. Consistent with the present 
observation, interactive coding of color and shape has also recently been observed in 
the color selective neurons of macaque color patches (Chang et al., 2017). 

Despite its significance in visual cognition, how feature conjunctions are coded in 
the human brain remains unresolved. A population code that instantiates interactive 
tuning for feature combinations, as we observe here, is a candidate mechanism that 
should be explored in more detail, and analogous analyses should be applied in 
monkey neurophysiology and human fMRI studies to see if similar response profiles 
exist in the primate brain. 

To summarize, despite the success of CNNs in object recognition tasks, 
presently we know very little about how visual information is processed in these 
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systems. The present study provides the first detailed and comprehensive 
documentation of how color and shape may be jointly coded in CNNs. Our development 
of a novel network-based stimulus-rich approach to study feature binding in CNNs can 
be easily implemented to study neural mechanisms supporting feature binding in the 
primate brain. Equally importantly, the discovery of the “mixed selectivity” coding 
scheme used by CNNs to code feature conjunctions could be a viable coding scheme 
that the primate brain may employ to solve the binding problem. 
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Methods 

CNN Selection 

 

 We chose five CNNs in our analyses: AlexNet, CORNet-S, GoogLeNet, ResNet-
50, and VGG19. These CNNs were selected based on several different criteria. AlexNet 
(Krizhevsky, Sutskever, & Hinton, 2012) was included for its high object recognition 
performance, relative simplicity, and prevalence in the literature. VGG19 (Simonyan & 
Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), and ResNet-50 (He, Zhang, Ren, 
& Sun, 2015) were chosen based on their high object recognition performance and 
architectural diversity. Additionally, both AlexNet and VGG19 have a shallower network 
structure, whereas GoogLeNet and ResNet-50 have a deeper network structure. Finally, 
CORNet-S (Kubilius et al., 2018), a shallow recurrent CNN designed to approximate the 
structure of the primate ventral visual pathway, was included for its high correlation with 
neural and behavioral metrics. This CNN has recently been argued to be the current 
best model of the primate ventral visual regions (Kar et al., 2019). For most analyses, 
we used pre-trained implementations of these CNNs optimized for object recognition 
using ImageNet (Deng et al., 2009). To understand how the specific training images 
would impact CNN representations, we also examined responses from an alternative 
version of ResNet-50 that was trained on stylized ImageNet images in which the original 
texture of every single image was replaced with the style of a randomly chosen painting. 
This biased the model towards representing holistic shape information rather than 
texture information (Geirhos et al., 2019). Finally, in order to determine to what extent 
the architectural parameters of a network (number of layers, kernel size, etc.), 
independent of any training, affects the results, we also examined multiple initializations 
of AlexNet and ResNet-50 with randomly assigned weights and no training. The 
PyTorch implementations of all models were used, and custom scripts designed to 
interface with PyTorch were used for all analyses (Paszke et al., 2017).  
 Since these CNNs have varying, and often large, numbers of layers, we 
performed analyses over a subset of layers in each model, in order to simplify analysis 
and roughly equate the number of layers analyzed in each model. The first layer, 
several intermediate layers, the penultimate layer (i.e., the last layer before the object 
category label outputs), and the final layer (i.e,. the object category label output layer) 
were used for each model. Selection of intermediate layers varied based on the model, 
but since all CNNs we examined tended to be structured into architecturally significant 
“segments” (e.g., VGG19 has repeated “segments” composed of alternating conv and 
relu layers followed by a pooling layer, CORNet-S has “segments” meant to correspond 
to different visual brain areas etc.), we included the intermediate layer corresponding to 
the beginning or end of each “segment”. The specific layers we included are listed in 
Table 1. For this study, we adopt the convention of labeling layers by the kind of layer, 
followed by the number of times that kind of layer was used up to that point in 
processing (e.g., the third convolutional layer is conv3).  
 In cases where we wished to compare coding at the beginning and end of 
processing in the network, the first and penultimate layers were used; this is because 
the final layer is the category output layer, and thus the penultimate layer can be seen 
as the last “feature-coding” layer. 
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 In order to compare our results across different CNNs, for some analyses we 
coded a variable, layer_fraction, that reflects what fraction of a network’s layers have 
been traversed up to a given layer in the course of a CNN’s processing hierarchy (all 
layer types were included). For example, the first layer in a ten-layer network would 
have a value of .1 for this variable, and the final layer would have a value of 1.0.  
 
Stimulus Selection 

 

 We used a set of real-world object stimuli from Brady et al. (2013) as our main 
object stimuli. This stimulus set consists of images (400 x 400 jpegs) of 540 different 
objects, where the colored portions of these objects are all initially of the same hue (so 
as to facilitate manipulating the colors of the objects in a consistent way). To derive the 
stimuli used in our analyses, we selected a smaller subset of these objects (as detailed 
below), and then manipulated the color and texture of these objects.  
 
Main Object Stimuli in CIELUV Colorspace 
 
 For our main stimulus set, we chose 50 objects intended to be maximally 
dissimilar with respect to their high-level visual features. To do this, we converted the 
initial 540 objects to grayscale, ran them through AlexNet, and extracted their 
activations from AlexNet’s penultimate (last pre-classification) layer, FC2. We then 
constructed a representational similarity matrix (RSM) by computing all pairwise 
correlations of the CNN output from layer FC2 for each object with each other, and used 
this RSM to select a set of 50 objects whose mean pairwise correlation was minimally 
low. With this procedure, the mean pairwise similarity went from r = .25 (min r = -.02, 
max r = .92) for the original set of 540 objects, to a mean pairwise similarity of r = .13 
(min  r = -.02, max r = .78). The resulting set of 50 objects are shown in Figure 1A; 
visual inspection confirms that the resulting object set spans a wide range of different 
shape and internal texture features.  
 We then recolorized each of the 50 objects, roughly following the procedure 
outlined in Chang, Bao, and Tsao (2017). This procedure guaranteed that all stimuli had 
the same mean luminance and saturation over the non-background portions of the 
image. Equating mean luminance was necessary in order to equate each image’s 
contrast with the background. Equating mean saturation was necessary to ensure the 
validity of some of our analyses; in particular, since we examine whether color coding 
varies based on shape, failing to equate saturation could introduce spurious results, 
since a relatively unsaturated image would by definition have less hue variation. Each 
object stimulus was colored in each of 12 different hues, evenly spaced around the 
colorwheel. Specifically, we converted all images to the CIELUV colorspace, which is 
constructed such that equal distances in the space correspond to roughly equal 
psychophysical differences; this was done so that we could use the same stimuli on a 
future study comparing our results to those of human observers. Next, we computed the 
mean luminance (L) of each stimulus over the non-background portion of each stimulus, 
and did the same for the saturation (computed as , where u and v are the two 
chromaticity coordinates in the LUV color space). For each image, a constant value was 
then added to the luminance and saturation of the non-background pixels so as to bring 
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the mean luminance and saturation of that image to target values that were equated 
across all objects. This procedure sometimes resulted in overflow past the permissible 
LUV luminance and saturation boundaries; in cases where this occurred, the variance of 
the luminance or saturation about the mean was shrunk until all pixel values fell within 
permissible boundaries. Once the luminance and saturation for each pixel were set in 
this manner, each object was colored in 12 different hues by rotating the U and V (hue) 
coordinates in each pixel to 12 equally spaced angles. Additionally, a grayscale version 
of each stimulus was created by setting U and V to zero, while keeping the luminance 
channel the same. This procedure preserves relative saturation and luminance patterns 
that were present across each original image, while manipulating hue and equating 
mean saturation and luminance. The target mean saturation and luminance were 
derived through successive adjustments, until applying the above transformations to 
each image did not take any pixel’s LUV values outside of their allowable range. Mean 
saturation was required to be relatively low, due to the nonlinearities of the LUV color 
space; specifically, a high saturation value may be possible for one luminance/hue 
combination, but not others, so saturation had to be kept within relatively narrow 
boundaries. Stimuli were converted from LUV back to RGB color space prior to being 
run through the networks, as the networks were trained on RGB images. Since internal 
texture is preserved for these stimuli, we henceforth refer to them as the “Textured” 
stimuli.  
 In addition to the above method, which preserved the internal texture of the 
stimuli, we also constructed a version of each stimulus that consisted of a uniformly-
colored “silhouette” of the image (henceforth “silhouette” stimuli), thereby removing 
internal texture information while sparing global shape information. Twelve such 
silhouette images were created from each object, using the same 12 hues and the 
same mean luminance and saturation values, as were used for the Textured stimuli. We 
performed this manipulation because some evidence suggests that CNNs may prioritize 
texture over global shape features (Geirhos et al., 2019), so employing silhouette stimuli 
allowed us to examine whether our results hold in the absence of texture. Example  
stimuli from these two methods, in the 12 possible colors, are shown in Figure 1B. 
 
Main Object Stimuli in Synthetic HSV Colorspace 
 
 The CIELUV color space, while widely used, is calibrated based on human 
psychophysical judgments, which may not be applicable to how CNNs represent visual 
information. To ensure that our results do not depend on these idiosyncrasies of the 
CIELUV color space, we constructed a new color space that was not based on human 
data, but more aligned with the RGB input CNNs receive. Specifically, we used a 
variation of the common hue/saturation/luminance parametrization calculated over RGB 
values, which we call Synthetic HSV. Some such parametrizations require taking 
maxima and minima of the RGB channels, an operation which is not available to 
convolutional kernels. Thus, luminance was stipulated to be the mean of R, G, and B; 
this definition assigns equal weights to the three channels (unlike some HSV 
parametrizations, which weight the three channels differently to account for human 
psychophysical performance), and uses an operation (taking the mean) that is easily 
implemented by convolutional kernels. Intuitively, saturation reflects the dissimilarity of a 
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color from neutral grey; thus, saturation was stipulated to be the Euclidean distance in 
RGB coordinates from a color to neutral grey of the same luminance. Once these 
values are fixed, the range of possible RGB values forms a circle in the 3D RGB space. 
This occurs because restricting the RGB values to have a fixed average - and therefore 
a fixed sum - constrains the range of possible RGB values to fall on a single plane, and 
further restricting the RGB values to have a fixed Euclidean distance from the neutral 
gray point on that plane (where R = G = B) selects a circle of RGB values on that plane. 
Within this circle, we stipulated that the RGB triplet with the highest R channel 
corresponds to a hue value of 0°. Using this definition, we constructed stimuli whose 
mean saturation and luminance with respect to this color space corresponded to the 
mean values used in the CIELUV color space, with 12 equally spaced colors. Stimulus 
construction was otherwise identical to the procedure for the stimuli colored based on 
CIELUV.  
 
Oriented Bars in CIELUV Colorspace 
 
 To examine the extent to which our results may hold for stimuli equated in their 
spatial coverage and for simpler stimuli than the naturalistic object stimuli that were 
used in the study, we constructed a set of oriented bar stimuli (Figure 1C). Twelve 
orientations, ranging in even increments from 0° to 180°, were used, and each was 
uniformly colored in the same twelve isoluminant and isosatured colors that were used 
for the object stimuli (using CIELUV space).   
 
Analysis Methods  

 

 For all analyses, images were fed into each network. Next, unit activations were 
extracted from each sampled layer and flattened into 1D vectors in cases where the 
layer was 3D (e.g., if it was a convolutional layer).  
 
Visualizing Color Space Representation Across Objects and CNN Layers 
 
 We used representational similarity analysis (RSA) to measure conjunctive 
tuning for color and object shape. Specifically, we examined the extent to which the 
representational structure for color changes across the different object shapes. To the 
extent that the representational structure of color varies across the object shape, it 
would provide evidence that CNNs encode color and object shape not independently, 
but interactively.  
 As an initial analysis, we visualized how the color spaces for two example objects 
differ at the beginning and end of a CNN. Specifically, we extracted the patterns for all 
12 colors of two example objects from the first and the penultimate layers of AlexNet 
(which are Conv1 and FC2). Within each layer, we performed all pairwise Pearson 
correlation among the 24 patterns to create a representational similarity matrix (RSM, 
with the value for each cell being the Pearson correlation coefficient). Using 
multidimensional scaling (MDS), we visualized the resulting similarity space (Figure 1d).  
 Next, we visualized how the color spaces of six representative objects might 
diverge over the course of processing in AlexNet (Figure 1e). To do this, for each object 
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and for each sampled layer of AlexNet, we first constructed a “color space” RSM by 
performing all pairwise Pearson correlations of the patterns associated with the 12 
different colors of that object (with the value for each cell of the matrix being the 
Pearson correlation coefficient). We vectorized the off-diagonal value of this RSM to 
create a “color space” vector. Next, we performed all pairwise correlations of these 
“color space” vectors across objects and layers to form a “color space similarity” RSM 
that quantifies how similarly color is coded in different objects and layers. We then used 
MDS to visualize the similarity of the different color spaces across different objects and 
CNN layers.  
 Following these qualitative observations, to provide a comprehensive and 
quantitative description of color representation across different objects and CNN layers, 
we performed a series of analyses. Specifically, we quantified (1) within each layer, how 
color is coded differently across objects (Figure 2a), (2) within each object, how color is 
coded across different layers of a CNN and different CNNs (Figure 3a), and (3) whether 
or not color space similarity among the different objects within one layer is preserved 
across CNN layers (Figure 4a). We also quantified how color space similarity between 
two objects may be determined by their shape similarity at a given CNN layer (Figure 
4c). These four analyses are described in detail below. All the analyses were performed 
for both the Textured and Silhouette stimuli. 
 
Quantifying Color Space Differences Across Objects within a CNN Layer 
 
 To understand how color is coded across objects in each CNN layer, we first 
created a “color space” vector for each object in each layer of each CNN as described 
above for our main stimulus set of 50 objects and 12 colors calibrated in CIELUV color 
space. We then performed all pairwise correlations of these “color space” vectors for all 
the objects for a given CNN layer. We next averaged these correlation values within 
each layer and used a line plot to visualize how the mean colorspace correlation 
changes over layers of a given CNN (Figure 2). To assess statistical significance of any 
change across layers, the correlation values between the color spaces of each pair of 
objects were Fisher Z-transformed and regressed onto the position of that layer in the 
CNN (using the layer_fraction variable described in the CNN Selection section). The 
resulting slope from this regression reflects the degree to which the color space 
similarity for these two object shapes increases or decreases over the course of the 
network. A positive slope would mean that the color spaces for these two object shapes 
become progressively more similar over the course of processing. A one-sample t-test 
was used to test the slopes from all possible object shape pairs against zero to assess 
whether the average slope was significantly different from zero. Additionally, a matched-
pairs t-test was used to assess whether the slope was significantly different between the 
textured and silhouette images.  

We also performed the same analysis in a number of control conditions, to 
examine whether specific choices regarding the stimulus set and analysis method affect 
the results. As our first control, to test how the particular similarity measure we used 
may impact the results, we repeated our analysis, but used Euclidean distance as our 
initial similarity metric instead of Pearson correlation (Figure 2c); this was done because 
Euclidean distance, unlike Pearson correlation, is an unbounded metric, and we sought 
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to ensure that the choice of the specific similarity measure did not affect the results. As 
our second control, to examine whether our results depended on our particular choice of 
color space, we repeated the same analysis on the same set of objects whose colors 
were calibrated in the synthetic HSV space described above, instead of the LUV space 
used in our main stimulus set (Figure 2d). As a final control, we repeated the same 
analysis on simple oriented bar stimuli, where the different object “shapes” were simply 
different orientations of a centrally placed bar stimulus (Figure 2e). This allowed us to 
examine whether the results would hold for stimuli equated in their overall spatial 
coverage and whether results obtained from complex nature objects hold for simple 
shape stimuli.  

 
The Effect of Training on CNN Color Space Representation 

 
In order to assess whether the naturally occurring consistent color and shape 

conjunctions present in the training images were necessary to produce the results we 
observed, we compared models trained on naturally textured stimuli, versus unnaturally 
textured “stylized” stimuli (Geirhos et al., 2019). Specifically, we compared performance 
between ResNet-50 trained on ImageNet, and ResNet-50 trained on stylized images. In 
order to assess the extent to which the results are driven by the intrinsic architecture of 
the networks, versus being a consequence of training them for object recognition, we 
also performed this same analysis on 100 initializations of AlexNet and ResNet-50 with 
random weights and no training of any kind. The same analysis pipeline was applied to 
each random initialization independently, and the final results (mean color space 
correlation across objects within a layer) were averaged to obtain the final result (Figure 
2f). Targeted matched-pairs t-tests were used to compare the slopes of these 
differently-trained networks with the corresponding networks trained on object 
recognition. 
 
Transformation of Color Space Representations Across CNN Layers and 
Architectures 
 

To understand how the color space of an object may evolve over the course of 
processing and whether colors are coded similarly for an object across different layers 
of a network, for the main original set of 50 objects and 12 colors calibrated in CIELUV 
color space, we correlated the color space vector for each object in either the first or 
penultimate layer of each network with its color space vector from each other layer of 
the network (Figure 3a). These correlation values were then averaged across all objects 
and plotted in Figure 3b. To test for statistical significance, we performed a regression 
analysis to examine whether correlations with the first and penultimate layers of the 
network decrease in layers that are further apart. To do this, for each object, we applied 
Fisher’s Z transformation to the correlation values, and regressed them onto the 
positions of the CNN layers (using layer_fraction) of all layers up to, but not including, 
the comparison layer (first or penultimate layer). A one-sample t-test was then used to 
test the slopes from all the objects against zero to assess whether the average slope 
was significantly different from zero. 
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 To examine whether color coding within an object transforms in a similar manner 
across different networks, for each object we correlated its color space vector from each 
sampled layer of each network with every other layer (Figure 3c, left column). The 
resulting similarity space was visualized using MDS, and the mean pairwise similarities 
in the first and penultimate layers of each network were reported in Supplementary 
Figure 1.  
 To examine whether the color space of an object evolves in a similar way in 
trained networks and in randomly initialized networks, we performed the same analysis 
as described above comparing the version of AlexNet trained on object recognition with 
10 random initializations of AlexNet (Figure 3c, middle column). We also performed the 
same analysis for ResNet, including the ImageNet-trained version, the version trained 
on stylized images, and ten random initializations (Figure 3c, right column). The mean 
pairwise similarities in the first and penultimate layers for these comparisons were 
reported in Supplementary Figures 2 and 3. 
 
Transformation of Color Space Similarity Across CNN Layers  
 

To understand how color space similarities across objects would change over the 
course of processing and whether two objects with a relatively similar color space at the 
beginning of processing would also have a relatively similar color space at the end of 
processing, for the main original set of 50 objects and 12 colors calibrated in CIELUV 
color space, we correlated the color space vector of all objects within each layer 
together to construct a color space similarity RSM for that layer. From the similarity 
matrix formed, we used the off-diagonal values to define a color space similarity vector. 
The resulting color space similarity vector from the first and penultimate layers were 
then correlated with those from each of the other layers (Figure 4).  
 
The Effect of Object Shape Similarity on Color Space Similarity  
 

To understand how color space similarity of two objects is determined by the 
shape similarity of these two objects (Figure 4c) and if two objects with similar shapes 
would also have similar color spaces, for the main set of 50 objects and 12 colors 
calibrated in CIELUV color space, we first measured the overall object shape similarity 
in each CNN layer for the original set of 50 objects. This was done by calculating all the 
pairwise Pearson correlations of the CNN layer output to grayscale versions of all the 
object shapes. From the similarity matrix formed, we used the off-diagonal values to 
define an object shape similarity vector. We then correlated the object shape similarity 
vector with the corresponding color space similarity vector for that CNN layer. The 
resulting correlation value from each CNN layer was plotted together in a line graph 
(Figure 4d).  
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Supplementary Figure 1. Color space comparisons for the five trained networks. a. MDS plots depicting color space correlation across different CNN 
layers and architectures, plotted separately for the two versions of the objects (copied from Figure 3c for convenience). This was done by 
constructing a color space correlation matrix for each object including its color space correlation across all sampled layers of all CNNs. The resulting 
correlation matrix was then averaged across objects and visualized using MDS. Each trajectory is a different network, each dot is a different layer, and 
the hollow dots denote the first layer of each network. b. Exact correlation values for the between network correlations in the first layer of each 
network (top) and the penultimate layer of each network (bottom) for both versions of the objects. Correlations are very similar across networks in the 
first layer, but diverges by the end of processing.
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Supplementary Figure 2. Color space comparisons for AlexNet trained with ImageNet images and with 10 different random-weight initializations. a. 
MDS plots depicting color space correlation across different layers for ImageNet trained AlexNet and 10 instances of AlexNet with random-weight 
initializations, plotted separately for the two versions of the objects (copied from Figure 3c for convenience). b. Exact correlation values for the 
between network correlations in the first layer of each network (top) and the penultimate layer of each network (bottom) for both ImageNet image 
trained AlexNet and the 10 instances of AlexNet with random-weight initializations, done separately for the two versions of the objects. Other details 
are the same as Supplementary Figure 1. Correlations are very similar across the trained and untrained networks in the first layer and remain 
similar across all the untrained networks, but differ substantially between the trained and untrained networks by the end of processing.
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Supplementary Figure 3. Color space comparisons for ResNet-50 trained with ImageNet images, trained with stylized ImageNet images, and with 10 
random-weight initializations. a. MDS plots depicting color space correlation across different layers for original ImageNet trained ResNet-50, stylized 
ImageNet trained ResNet-50, and 10 instances of ResNet-50 with random-weight initializations, plotted separately for the two versions of the objects 
(copied from Figure 3c for convenience). b. Exact correlation values for the between network correlations in the first layer of each network (top) and the 
penultimate layer of each network (bottom) for original ImageNet image trained ResNet-50, stylized ImageNet image trained ResNet-50 and the 10 
instances of ResNet-50 with random-weight initializations, done separately for the two versions of the objects. Other details are the same as 
Supplementary Figure 1. Correlations are relatively similar across the trained and untrained networks in the first layer, but diverge substantially between 
the trained and untrained networks, and between the 10 different instances of the untrained networks by the end of processing.
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