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Abstract 

Several past studies have shown that attention and perception can depend upon the phase of ongoing neural 

oscillations at stimulus onset. Here, we extend this idea to the memory domain. We tested the hypothesis that 

ongoing fluctuations in neural activity have an impact on memory encoding using a picture paired-associates 

task to gauge episodic memory performance. Experiment 1 capitalized on the principle of phase reset. We 

tested if subsequent memory performance fluctuates rhythmically, time-locked to a reset cue presented 

before the to-be-remembered pairs. We found indication that behavioral performance was periodically and 

selectively modulated at theta frequency (~4 Hz). In Experiment 2 we focused on prestimulus ongoing 

activity using scalp EEG recorded while participants performed the pair-associate task. We analyzed 

subsequent memory performance as a function of theta and alpha activity around the presentation of the to-

be-remembered pairs. The results of the pre-registered analyses, using large electrode clusters and generic 

spectral ranges, returned null results of prestimulus phase-behavior correlation. However, we found that 

post-stimulus theta-power modulations in left frontal scalp predicted subsequent memory performance. This 

post-stimulus effect in theta power was used to guide a post-hoc prestimulus phase analysis, narrowed down 

to more precise scalp location and frequency. This analysis returned a correlation between prestimulus theta 

phase and subsequent memory. Altogether, these results suggest that the prestimulus theta activity at 

encoding has an impact on later memory performance. 

1. Introduction 

In our daily life we are often bombarded with myriad 

sensory stimuli and events of different kinds. Only a 

fraction of them are later remembered, whereas others 

are just forgotten. Although several processes 

influence our ability to remember, it is generally 

agreed that in all cases later recognition strongly relies 

on successful memory formation (Brassen et al. 2006; 

Wimber et al. 2010; Jutras et al. 2009). The subsequent 

memory paradigm has proven a successful procedure 

to study the neural underpinnings of memory 

formation in various types of memory systems (Paller 

et al. 1987; Hanslmayr and Staudigl 2014; for review 

see Paller and Wagner 2002). This paradigm usually 

compares neural activity that was registered following 

the onset of to-be-remembered stimuli (that is, at 

encoding), as a function of whether these stimuli are 

later remembered or not. Differences—known as 

subsequent memory effects (SMEs)—can help identify 

memory processes involved at encoding that facilitate 

later recall. Studies employing this approach have 

revealed that the brain activity during encoding is 

relevant for whether or not the stimulus will be 

subsequently remembered (Brewer et al. 1998; Wagner 

et al. 1998; Fernández et al. 1999; Kirchhoff et al. 

2000; Strange et al. 2002; Sederberg et al. 2003; for 

review see Paller and Wagner 2002; Kim 2011). Many 

of these studies support the notion that oscillations in 

neural activity at the momnt of encoding, just after the 

stimulus is presented, are associated with effectiveness 

in later recall (for review see Klimesch 1999; 

Hanslmayr and Staudigl 2014). Evidence for the role 

of neural oscillations in episodic memory formation in 

humans comes from EEG/MEG studies using the SME 

approach. These studies show that increases in theta 

(4—8 Hz) and gamma (>30 Hz) power, and decreases 

in alpha (8—13 Hz) and beta (13—30 Hz) oscillatory 

power, are associated with more effective recall 

(Backus et al. 2016; Lega et al. 2012; Sederberg et al. 

2003; Staudigl and Hanslmayr 2013;  though see 

Sederberg et al. 2006, Greenberg et al. 2015 for 
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counter examples of decreases in theta). While the 

association between oscillatory power and memory 

formation in humans has been investigated in 

numerous experiments, only a handful of studies have 

explored the potential role of the oscillatory phase. 

These studies provide evidence for a role of phase 

synchronization among different sensory cortices in the 

theta frequency during memory formation (Backus et 

al. 2016; Clouter et al. 2017). 

The studies mentioned above have considered evoked 

or induced oscillatory activity after the stimulus to be 

encoded. In addition, previous results also suggest that 

ongoing fluctuations in neural activity even before 

stimulus presentation for encoding might also play a 

role in determining whether or not a stimulus will be 

later remembered (Park and Rugg 2010; Haque et al. 

2015; Otten et al. 2006; Otten et al. 2010; Guderian et 

al. 2009; Fell et al. 2011; Rutishauser et al. 2010; 

Addante et al. 2015). Notably, the phase of the ongoing 

low-frequency oscillations appears to reset at the 

moment of the presentation of behaviorally relevant 

stimuli (Rizzuto et al. 2003; Haque et al. 2015). This 

shift in the dynamics of prestimulus ongoing 

oscillations might play a fundamental role in the 

synchronization of neuronal populations and the 

coordination of information transfer necessary for 

efficient encoding. In fact, some studies show that 

phase synchronization is more precise during encoding 

of information that is later remembered compared to 

later forgotten, most likely acting as the “gluing 

mechanism” for binding human memories (Buzsaki 

and Draguhn 2004; Backus et al. 2016; Hanslmayr et 

al. 2016; Clouter et al. 2017; for review see Fell and 

Axmacher 2011). Altogether, these findings suggest 

that memory formation not only depends on stimulus-

driven processes but also on endogenous brain states at 

the time of stimulus presentation. Here, we set out to 

address this question: does the phase of prestimulus 

ongoing oscillations have an impact on memory 

formation? A similar question has been addressed by 

previous research in the domain of perception and 

attention in humans. In particular, some studies have 

related stimulus detection with the phase of the 

ongoing oscillations at or before stimulus onset. These 

studies have revealed cyclic alternations in behavioral 

performance mainly in the theta and alpha bands (~4–8 

and 8–12 Hz, respectively) (Busch et al. 2009; de 

Graaf et al. 2013; Klimesch et al. 2007; Mathewson et 

al. 2009; Palva and Palva 2007; VanRullen 2016; but 

see also Ruzzoli et al. 2019 for conflicting evidence). 

The main idea behind this phenomenon is that 

oscillatory neuronal activity reflects rhythmic 

fluctuations in the neuron’s membrane potential, which 

are associated with changes in neuronal excitability 

(Buzsaki and Draguhn 2004; Lakatos et al. 2005; Fries 

et al. 2007). These fluctuations can be reflected in the 

EEG signal when large neuronal populations are 

synchronized. In the case of perception, low-frequency 

oscillations may gate neural responses to incoming 

sensory information, producing peaks and troughs that 

correspond to favorable and unfavorable states for 

sensory processing. We hypothesize that if the phase of 

slow ongoing oscillations can modulate perceptual 

processing, then the phase of prestimulus fluctuations 

may also modulate encoding efficiency and hence, the 

success in later memory performance.  

We tested this hypothesis using a paired-associates 

memory task in two experiments performed by 

separate groups of healthy human participants. 

Participants were instructed to memorize a short 

sequence of image pairs and then asked whether newly 

presented image pair probes had been previously 

associated or not.  

In the first experiment, we used the logic of phase reset 

(Rizzuto et al. 2003) on behavioral performance. We 

tested if subsequent performance fluctuates 

rhythmically time-locked to a cue (phase-reset signal) 

presented before the to-be-remembered pairs of 

pictures. According to our hypotheses, we focused the 

analysis on low frequencies, ranging from 2 to 20 Hz. 

In the second experiment, we tested the role of ongoing 

low-frequency neural oscillations—before the 

presentation of the picture pairs—in subsequent 

recognition performance using EEG. Specifically, we 

focused on the phase and amplitude of alpha and theta 

oscillations. To do so, we examined prestimulus 

changes in the EEG as participants performed the task 

adapted from Experiment 1 but capitalizing on 

spontaneous neural oscillations, instead of those 

arising from phase reset. The hypotheses and analysis 

pipeline of Experiment 2 were pre-registered based on 

the results of Experiment 1 (see below; pre-registration 

available at https://osf.io/4f5qc/). To anticipate the 

results, although the pre-registered analysis pipeline 

did not yield significant results, we found and report 

phase-behavior correlations upon further exploration of 

the data following a data-driven approach. 

 

2. Methods Experiment 1 

 

2.1 Ethics Statement and Participants 

The Clinical Research Ethical Committee of the 

Municipal Institute of Health Care (CIEC-IMAS) 

Barcelona, Spain, approved the study. Following the 

Declaration of Helsinki, all subjects gave written 

consent before their participation. 

Data from 30 healthy subjects (21 females, mean age 

23.2  4.5 years, 5 left-handed) were used in the 

behavioral study. Data from 8 additional subjects were 

excluded based on the predefined inclusion criteria 

(demographic characteristics of each subject are 

detailed in supplement Table S1). The inclusion 

criteria were set up to ensure both, a sufficient number 

of trials in each response category (hit/miss), and that 

participants responded above chance level (for more 

details about inclusion criteria see Experimental 

Design and Procedure). Participants were compensated 

with 10€/hour.  
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2.2 Experimental Design and Procedure  

Participants performed a visual paired-associates 

memory task (Figure 1A) adapted from Haque and 

colleagues (Haque et al. 2015). In our version of the 

paradigm, participants were asked to memorize pairs of 

pictures instead of pairs of words. Participants sat ~60 

cm away from a 21-inch CRT computer monitor (60 

Hz refresh rate). Stimulus presentation was controlled 

using Matlab (Version R2016a, The MathWorks, Inc., 

MA, USA) and the Psychophysics Toolbox (Brainard 

1997; Kleiner et al. 2007). 

 

 
 

Figure 1. Experimental design. A, Experiment 1. 

Participants performed a visual pair-associates memory task. 

During the encoding block, participants were asked to learn 

five unrelated image pairs presented side-by-side on 

placeholders for 500 ms. A cue—composed by a central 

fixation cross and placeholders—flashed once synchronously 

together with a sound-beep before each image pair 

presentation. Critically, the time-lag between the cue and the 

image pair to be encoded (the cue-to-target interval) was 

varied randomly between 0 and 1000 ms. Each encoding 

block was followed by a four-trials recognition block where 

participants judged whether a given image pair had been 

presented together in the previous encoding block. Each 

participant provided a total of 1.408 responses. B, 

Experiment 2. The experimental design was identical to 

Experiment 1 with the following exceptions:  During the 

encoding block, image pairs were sequentially presented at a 

variable stimulus-onset asynchrony (SOA), with a jitter 

according to an exponential distribution (mean 1s) to 

compensate for hazard rate and prevent temporal 

expectation. Each image pair was followed by a blank inter 

stimulus interval (ISI) of 800 ms. Each participant performed 

half of the task, thus providing a total of 704 responses. 

 

Due to the large number of trials, the experiment was 

completed over two sessions on different days within 

the same week (on average, three days apart). In total, 

it consisted of 352 runs, each composed of an encoding 

block of five pairs followed by a recognition block 

with four memory probes. Each participant provided a 

total of 1.408 (352x4) responses throughout the 

experiment. During the encoding blocks, five image 

pairs in placeholders were presented in sequence with a 

central fixation cross in between them (placeholders 

and fixation were present throughout the block). 

Before each image pair, an audio-visual reset cue was 

presented. The reset cue consisted of a flash of fixation 

and placeholders synchronized with a sound and was 

intended to modulate cortical excitability by phase 

resetting the ongoing oscillatory activity (Lakatos et al. 

2009; Fiebelkorn et al. 2011; Daitch et al. 2013). 

Critically, the interval between the reset cue and the 

target image pair to be encoded (cue-to-target interval) 

varied for each trial within each run between 0 and 

1000 ms in steps of 16.66 ms (leading to 61 unique 

times with ~44 trials per interval in the (0 to 500 ms) 

window of interest, and ~16 trials from 500 ms 

onwards). Then, each image pair appeared for 500 ms, 

followed by 1500 ms interval that led to the next reset 

cue. We adopted this strategy to appreciate potential 

oscillations in behavior without using EEG to measure 

ongoing brain signal fluctuations. Since, based on the 

hypothesis, we focus on fluctuations >2 Hz, our 

window of interest was 0 to 500 ms. Hence, the 

probability of occurrence of targets within the 0-500 

ms interval was about three times that of long-time 

intervals (500 to 1000 ms). Long-time intervals were 

only included to make the stimulus onset less 

predictable within the times of interest, but they were 

not used for the analysis. We expected the audio-visual 

cue to reset the phase of the ongoing oscillations, so 

then behavioral performance at the recognition blocks 

should present an oscillatory pattern time-locked to the 

cue presentation.  

Each encoding block was followed by a recognition 

block that consisted of a sequence of four test image 

pairs. On each test pair, participants had to judge 

whether the two images had been presented together 

(paired) in the preceding encoding block. We tested 

four pairs as a test of all five pairs would make the fifth 

pair response predictable. The test pairs always 

contained items that had previously appeared in the 

encoding block (whether paired or not), so that the task 

could not be solved by just recognizing the appearance 

of new items. Each image pair was preceded by a 

prompt—a row of question marks—that appeared on 

the screen for 500 ms followed by a blank interval of 

1000 ms. The image pair, placeholders, and fixation 

cross remained on the screen until the response 

(yes/no) was collected through the keyboard. To 

minimize the number of false alarms, participants were 

encouraged to respond yes only when they were 

confident about their response and to say no if 

doubting. Image pairs in the recognition block could be 

a match (if they had appeared together in the encoding 

block) or a mismatch (if they appeared in different 

pairs during encoding). Matched pairs were slightly 

more likely (60% on average), compared to mismatch 

pairs, to ensure enough useful trials for analysis. From 

a total of 1.408, on average, 847 were match trials (min 

831, max 865). Each recognition block could have a 
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different number of yes/no correct responses to prevent 

guessing based on response history. After every 10 

runs (encoding plus recognition blocks), participants 

took a break and were updated on their overall 

performance to control for false alarms and keep them 

engaged in the task.  

Prior to analysis, we established a set of individual 

inclusion criteria regarding performance: (1) false 

alarm rate below 15%, (2) hit rate above 35% to ensure 

that with the maximum false alarms rate accepted the 

participants responded above chance level, and (3) hit 

rate below 80% to avoid ceiling effects. These criteria 

were defined to ensure enough number of trials in each 

response category (hit, miss), allowing the possibility 

to capture fluctuations in behavior—in the case they 

existed.  

 

2.3 Stimuli 

The pictures used in the pairs were images of familiar 

objects in a usual perspective, from a wide range of 

semantic categories selected from two databases: The 

Bank of Standardized Stimuli (BOSS) (Brodeur et al. 

2010; Brodeur et al. 2014) and the set of 2400 Unique 

Objects used in Brady et al. (2008) (Brady et al. 2008). 

Stimulus characteristics are described in detail in 

previous studies (Brodeur et al. 2010; Brodeur et al. 

2014; Brady et al. 2008). The two sessions of the 

experiment used different image sets. Within a pair, 

images belonged to different semantic categories. 

Living objects were not mixed with non-living objects 

either on the same trial or block (80% of the pairs 

corresponded to non-living objects). All images were 

converted to black and white to avoid memory 

facilitation based on color associations (Lewis et al. 

2013). Image size was subtending a square of 

approximately 5 degrees of visual angle. The auditory 

stimulus used as resetting signal was a beep sound 

(4000 Hz, ~60 dB, 66 ms) presented through 

headphones. 

 

2.4 Behavioral Analyses 

The goal in this experiment was to address if 

behavioral performance at recognition fluctuated 

rhythmically as a function of the reset cue (cue-to-

target interval) at encoding. We followed the analytical 

method described in Fiebelkorn et al. (2013) to extract 

rhythmic variations of behavioral performance. For 

each participant, we only used responses to match 

trials to obtain hit and miss rates. To get a temporally 

smoothed series relating memory behavior to encoding 

time, we first calculated the hit rate in a sliding 50 ms 

window (16.66 ms steps) for the whole window of 

interest (from 0 to 500 ms), and we averaged time-

dependent hit rate across participants. Then, we used a 

Fast Fourier Transform (FFT) to extract the spectral 

pattern of the detrended behavioral time series and 

focused our analyses in the 2–20 Hz frequency range. 

The minimum and maximum frequencies of interest 

were determined by the window of interest (500 ms) 

and the width of the sliding window used to calculate 

time resolved hit rate (50 ms). We sought for 

oscillatory patterns above and beyond chance within 

the low-frequency spectral window. 

To examine the reliability of the results, we assessed 

statistical significance using a non-parametric 

procedure with 10.000 randomly generated surrogates. 

For each participant, we permuted hit rates across the 

cue-to-target interval windows, averaged across 

participants, and extracted the surrogate power 

spectrum. The p-value corresponds to the proportion of 

permutations in which the surrogate value matched or 

exceeded the empirical value. We obtained the p-

values for each frequency (9 frequencies) and then 

applied multiple comparisons correction with False 

Discovery Rate (FDR) using the Benjamini-Hochberg 

procedure (Benjamini and Hochberg, 1995) with an 

alpha level of 0.05. 

 

3. Results Experiment 1 

 

We expected the time-resolved recognition 

performance to show a periodic component indicative 

of fluctuations time-locked to the cue at the encoding. 

Overall, participants performed above chance level 

with a mean hit rate of 62.97 ± 10.74%, and a false 

alarm rate of 6.09 ± 3.82% (mean hits 534, min 323, 

max 672; mean misses 314, min 169, max 516; 

individual hit and miss rates plus demographic data are 

detailed in the supplemental Table S1). In line with the 

question of this first experiment, behavioral 

performance in recognition fluctuated as a function of 

cue-to-target interval (Figure 2A). We used FFT on the 

behavioral time series and found that memory 

performance was periodically and selectively 

modulated with a peak frequency of ~4 Hz (Figure 

2B). Although this result was statistically significant 

(p=0.0398), it did not survive correction for multiple 

comparisons across all frequencies included in the test 

(2–20 Hz).  

Because of the large spectral window analyzed—and 

the ensuing strong correction for multiple 

comparisons—our data provide only weak support for 

the hypothesis of a rhythmic modulation of behavioral 

performance within the theta range, after phase 

resetting by the prestimulus cue. This putative 

modulation, if only tentatively, suggests that the phase 

in the theta band at which the stimulus arrives has an 

impact on later successful recognition. Despite the 

relatively large spectral window analyzed and the 

unknown statistical power of the effect, we considered 

this result potentially indicative of the relevant 

frequency, and hence useful to narrow down on a more 

specific spectral window of interest for an EEG study, 

presented in Experiment 2. 
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Figure 2. A. Behavioral Performance. Demeaned mean hit 

rate and standard deviation across participants as a function 

of time (N=30). B. Power Spectrum. Amplitude measurement 

obtained using the FFT for the mean hit rate. As can be seen 

(blue line), there is a peak around ~4 Hz (theta band). 

 

4. Methods Experiment 2  

 

The aim in Experiment 2 was to investigate the role of 

ongoing low-frequency oscillations—before the to-be-

encoded stimulus presentation—in subsequent 

recognition performance using EEG. Several 

neuroimaging studies have shown that frontotemporal 

regions are actively engaged during episodic encoding 

(Wagner 1999; Kirchhoff et al. 2000; Hanslmayr et al. 

2011; Park and Rugg 2011; Griffiths et al. 2016). 

However, the results show contradictory evidence for 

theta frequency fluctuations of the local field potential: 

some provide evidence in favor of encoding-related 

increases (Herweg et al. 2016; Addante et al. 2011; 

Summerfield and Mangels 2005; Osipova et al. 2006; 

Hanslmayr et al. 2011), other results report decreases 

(Fellner et al. 2016; 2019; Michelmann et al. 2018). A 

well-accepted interpretation of these activations is that 

they reflect hippocampal theta, induced in cortical 

areas via hippocampal-cortical feedback connections 

(for a review see Herweg et al. 2020). Moreover, 

episodic-encoding is also associated with decreases in 

the alpha band in occipitoparietal regions (Klimesch 

and Doppelmayr 1996; Klimesch et al. 1997; 2000), 

likely contributing to the encoding of visuospatial 

stimulus attributes and signaling directed attention 

(Klimesch 1999; Klimesch et al. 2000). On these 

grounds, we focused our analysis on the phase and 

amplitude of the theta and alpha oscillations in broad 

frontotemporal and occipitoparietal regions, 

respectively. Here, we used the 4–7 Hz range to clearly 

distinguish between theta and alpha activity (which is 

commonly defined as 8–12 Hz). Please note that 

although theta is usually defined as the 4–8 Hz range, 

the 4–7 Hz range has also been used (Crivelli-Decker 

et al. 2018; Hanslmayr et al. 2010; Li et al. 2017; 

Mizrak et al. 2018). 

We hypothesized that the phase of the ongoing 

oscillations at which the to-be-encoded stimulus 

arrives modulates subsequent visual memory 

performance. If so, we expected to find fluctuations in 

behavioral performance as a function of the phase 

angle of the ongoing brain oscillation. The hypotheses 

and the initial analysis pipeline of this experiment were 

pre-registered (https://osf.io/4f5qc/). In the results 

section below we indicate which part of the analyses 

belong to the pre-registered pipeline, and which ones 

are exploratory. 

 

4.1 Participants and Ethics Statement 

As in Experiment 1, the local ethics committee 

approved the study, and all participants gave written 

consent before their participation. 

Data from 30 subjects (15 females, mean age 22.9  

2.9 years, 5 left-handed) were used in the EEG study. 

Data from six additional subjects were excluded: 2 did 

not meet the behavioral inclusion criteria specified 

above, and 5 because of artifact contamination of the 

EEG (demographic characteristics of each subject are 

detailed in supplement Table S2). Participants were 

compensated with 10€/hour. 

 

4.2 Experimental Design and Procedure 

The experimental design and procedure were identical 

to Experiment 1 with the following three exceptions: 

First and foremost, since ongoing oscillations were 

registered directly with EEG, we did not use a reset 

cue. During the encoding blocks, image pairs were 

sequentially presented at a variable inter-stimulus 

interval (ISI), without a prestimulus cue. Indeed, we 

expected the image pair presentation to work as a reset 

cue and link the phase of the ongoing oscillation at the 

image pair onset with subsequent behavioral 

recognition. The second difference was that the ISI 

was composed of a fixed 500 ms period plus a jitter 

according to an exponential distribution—with mean 

1000 ms—to further increase temporal uncertainty 

(Figure 1B). And third, participants performed only 

one experimental session containing a total of 704 

responses from which, on average, 421 were match 

trials (min 412, max 431). The reduction in 

observations was justified by the advantage of 

measuring multiple frequency bands within one trial 

through EEG, and by the possibility to narrow down on 

the frequency band of interest for the analysis 

according to the result in Experiment 1 and hypothesis. 
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4.3 Stimuli  

The stimuli were identical to the ones used in the first 

session of Experiment 1, namely, images taken from 

the Bank of Standardized Stimuli (BOSS) (Brodeur et 

al. 2010; Brodeur et al. 2014). All the stimuli were 

processed as described for Experiment 1. 

 

4.4 EEG Recording and Data Analyses 

Electrical brain signals were recorded using an EEG 

system with 60 active electrodes (actiCAP, Brain 

Products GmbH) located according to the standard 

international 10–10 system and sampled at a rate of 

500 Hz. Two electrodes placed at the right and left 

mastoids served for offline re-reference. An electrode 

placed at the tip of the nose served for online 

reference, and the ground electrode was placed at AFz. 

Electrooculogram (EOG) was monitored on the 

horizontal and vertical directions to control for blinks 

and eye movements.  

All data and statistical analyses were performed using 

custom code in Matlab (Version R2016b, The 

MathWorks, Inc., MA, USA), and the FieldTrip 

toolbox (Oostenveld et al. 2011). Raw EEG data were 

re-referenced to averaged mastoids, and a notch-filter 

at 50 Hz was applied to remove line contamination. To 

extract specific spectral information, we bandpass 

filtered the EEG data in two preselected frequency 

bands: theta (4–7 Hz) and alpha (8–14 Hz), using a 

second-order zero-phase Butterworth filter. The 

filtered data were then segmented from –500 ms to 100 

ms with respect to the onset of each pair in the 

encoding blocks. Malfunctioning electrodes were 

removed, and their data were estimated based on 

neighboring electrodes using spline interpolation. 

Trials contaminated by blinks, muscle movements, or 

brief amplifier saturation were discarded from further 

analyses by visual inspection. As in Experiment 1, we 

were interested in the encoding phase of trials labeled 

as hit or miss according to participant´s response in the 

subsequent recognition block. Thus, only matching 

trials could be used for the analysis. To ensure a 

reliable estimation of oscillatory patterns, for a given 

participant, if the number of artifact-free trials in the 

less populated condition (hit or miss) was below 80, 

the entire participant’s dataset was excluded. 

Since we were interested in phase-dependent memory 

effects, our hypothesis capitalized on the endogenous 

oscillations in the EEG before the onset of image pairs 

at the encoding blocks. We compared the spectral 

power and the instantaneous EEG phases between hits 

and misses. Based on the results of Experiment 1 and 

previous literature (Addante et al. 2011; Sederberg et 

al. 2003; Nenert et al. 2012; Jensen et al. 2002; Schack 

et al. 2002; Summerfield and Mangels 2005), we set 

the spectral-spatial regions of interest (ssROIs). The 

frequencies and regions of interest were theta (4–7 Hz) 

for frontotemporal electrodes, and alpha (8–14 Hz) for 

occipitoparietal electrodes (see details in Figure 3). 

Phase opposition measurement values at electrodes 

belonging to the ssROIs at the specific frequency of 

interest were averaged at the individual participant 

level and then averaged over participants.  

 

 

Figure 3. Map of scalp EEG electrode locations and their 

corresponding regions of interest (ROIs). Electrodes were 

divided into 2 ROIs: frontotemporal—outlined in blue, and 

occipitoparietal—outlined in red. 

 

The Hilbert transform was used on the narrow-band 

filtered data to obtain, for each frequency  at time , the 

associated complex analytical signal (𝑡), defined by 

the instantaneous phase 𝜑(𝑡)We then calculated the 

intertrial coherence (ITC) separately for hits and 

misses for the time interval -500 to 100 ms relative to 

the image-pairs onset. The ITC is a direct measure of 

frequency-specific synchronization (Lachaux et al. 

1999), and is given by, 
 

𝐼𝑇𝐶 =  
1

𝑁
|∑ 𝑒𝑖𝜑𝑘

𝑁

𝑘=1

| 

 

Where N is the total number of trials and k the trial ID. 

Under complete independence across trials between the 

EEG data and the time-locking events, ITC is nearly 0, 

representing absence of synchronization; whereas for 

ITC equals 1, all phases are concentrated, representing 

full synchronization. 

 

Phase Opposition Analyses 

To determine subsequent memory effects as a function 

of the phase at stimulus onset, we evaluated phase 

differences between hits and misses using the Phase 

Opposition Sum (POS) (VanRullen 2016), see pre-

registration (https://osf.io/4f5qc/). The POS 

measurement estimates the correlation between an 

oscillation phase at a particular frequency, and an 

observed behavior. It is computed as the sum of the 

ITC calculated separately for two or more conditions 

according to the observed behavior. Moreover, it 

assumes that the phase in the prestimulus period is 

distributed randomly (i.e., follows a uniform 

distribution) across trials and, consequently, if the EEG 

phase at one point in time and frequency influences 

subsequent memory recognition, we expect a phase 
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concentration opposition between hits and misses. 

Analytically, the POS measure is given by: 
 

POS = ITChits + ITCmisses – 2ITCall 

 

where we computed the ITC individually for hits and 

misses.  

According to the simulation results presented in 

VanRullen (2016), an imbalanced number of trials 

between conditions decreases the sensitivity of the 

index. Based on the performances obtained in 

Experiment 1, we expected an imbalance in the 

number of trials in each category (number of hits larger 

than misses). In consequence, we decided to equate the 

number of trials between conditions for analysis by 

subsampling the more populated condition. By 

equating the number of trials using subsampling, we 

estimated that the POS per subject would be based on 

approximately 300 trials, which according to 

VanRullen (2016), provides around 80% statistical 

power for a balanced number of trials. For each 

subject, we calculated the ITC of the less populated 

condition using all the trials available for this condition 

(N). Subsequently, N trials were randomly sampled 

from the more populated condition and the ITC for this 

condition and for both conditions (ITCall) were 
calculated. We repeated the calculation of the ITC for 

both the more populated and the collapsed conditions 

together 250 times and we averaged across repetitions 

to obtain an estimation of the ITC of the more 

populated condition and both conditions together and 

we used these estimations to calculate POS. We 

averaged the POS values across electrodes within each 

region of interest (ROI).  

The POS is bounded between -1 and 1. If the phase is 

related to the trial outcomes, then the POS comes out 

positive (ITC of each trial group should exceed the 

overall ITC), then the p-value corresponds to the 

proportion of group average pseudo-POS larger than 

the actual POS. To test for significance, we used the 

Monte Carlo test procedure i.e. for each subject, we 

created a distribution of 500 surrogates by randomly 

assigning the hit/miss labels to existing trials. These 

surrogate individual distributions were subsequently 

used to calculate 10,000 group average pseudo-POS by 

randomly picking surrogates of the  distribution of 

each participant. p-values were further corrected for 

multiple comparisons using the False Discovery Rate 

(FDR) method (p<0.05). 

In the post-hoc analyses that we present after the pre-

registered ones, we used an additional measure for 

phase opposition called the Phase Consistency Metric 

(PCM) (Landau et al. 2015). Similar to the POS 

method, the PCM quantifies the consistency of phase 

differences in a particular frequency band but with a 

bias-free sample estimator that controls for the 

imbalance in the number of trials between conditions 

by looking at pairs of observations instead of all 

observations together. The PCM evaluates the average 

of the cosine of the differences between all possible 

pairs of hit-miss trials. In case of perfect opposition, 

the phases would be point to 180° apart and, therefore 

the observed value would be -1. Therefore, negative 

values in PCM would indicate phase opposition. 

 

5. Results Experiment 2 

 

Participants performed the task with an overall hit rate 

of 64.15 ± 6.89% and a false alarm rate of 7.46 ± 

3.52% (mean hits 270, min 190, max 321; mean misses 

151, min 98, max 222; see individual results in 

supplemental Table S2). After artefact rejection, the 

number of trials per participant was 343 ± 32 trials 

(minimum 280, maximum 401), so 79 ± 32 trials per 

subject were discarded (minimum 21, maximum 142). 

The focus of this experiment was to address whether 

the phase of the ongoing EEG activity before the 

associate-pair onset at encoding (-500 to 0 ms time-

window) could predict subsequent memory 

performance.  

To answer this question, according to the pre-

registered analysis pipeline, we used the POS analysis 

(VanRullen, 2016) described above, on the preselected 

frequencies and regions of interest. The POS results 

showed no significant phase opposition in either Theta 

(max 0.044 ± 0.017, t=-500 ms) or Alpha frequency 

bands (max 0.0509 ± 0.026, t=-174 ms)  in either ROI  

(Supplemental Figure S1, A-B). In principle, this result 

would mean that the phase of ongoing oscillations 

within the specified frequency ranges and ROIs was 

not predictive of subsequent memory performance (or 

that if present, the effect was undetectable with the 

present statistical power). However, before committing 

to this conclusion, we explored the data further to rule 

out potential alternative explanations for the null result 

from the pre-registered analysis and to try and increase 

the sensitivity of the measurements. The results of the 

exploratory analyses are reported below. 

 

5.1 Reality checks and alternative phase-opposition 

analysis 

First, an important reality check is to ensure the 

assumption that the phase of ongoing brain activity 

before the stimulus in the time period of interest is 

distributed randomly. This ensures that ongoing phase 

is not influenced by any stimulus-related factor or 

anticipation based on the protocol itself. As expected, 

through the calculation of phase concentration with the 

Rayleigh statistic, we observed that prestimulus phases 

were randomly distributed when collapsing hits and 

misses in the prestimulus time-window that 

corresponded to pure ongoing activity. We observed 

phase concentration around stimulus onset time (~1 

cycle of each frequency of interest), which is due to the 
use of non-causal filters, and the stimulus-related phase 

resetting.  

Second, we questioned whether the Phase Opposition 

Sum (POS) index used in the main analyses was 
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reliable within the range of parameters we used. As it 

was explained above, the POS metric has a positive 

bias (inherited from the ITC used in the calculation) 

that correlates with the total number of trials and with 

the relative number of trials per condition (VanRullen 

2016; Moratti et al. 2007; Vinck et al. 2010). It has 

been shown that the statistical power of POS and other 

phase opposition measures decreases as the imbalance 

in trials between conditions increases (VanRullen 

2016). Our EEG experiment had two sources of 

imbalance in the number of trials for the hit vs. miss 

comparison: (1) because conditions were determined as 

a function of performance, we could not anticipate 

exactly how many trials per condition there would be, 

and (2) due to the unequal artifact rejection. For this 

reason, in the planned analyses above we equated the 

number of trials in each condition by random picking 

from the more populated condition the same number of 

trials as in the less populated condition. This 

procedure, however, may have been suboptimal, as it 

resulted in a decrease in the total number of trials 

available to estimate each of the POS in each subject. 

Additionally, the number of repetitions used to 

calculate POS was based on computational time. In 

order to evaluate if the number of repetitions used to 

calculate POS was enough to produce a consistent 

POS, we calculated the empirical POS and generated 

null POS measures for one electrode and time point in 

the theta frequency band, for different numbers of 

random samples (from 25 to 1.000 samples). We 

observed that even when using 1.000 random samples 

per participant, the p-values obtained were not stable: 

at the maximum number of iterations, the p-values 

varied in the interval 0.06 to 0.12 (Supplemental 

Figure S2). This result casts doubts on the stability of 

the POS obtained by the subsampling of the data and 

hence, on the null result observed. 

Third, because of the above, we decided to ascertain 

whether phase effects could be found in our data when 

using an alternative measure, less affected by trial 

imbalance. We assessed the impact of the phase of 

ongoing EEG at encoding onset on subsequent 

performance using the Phase Consistency Metric 

(PCM) (Landau et al. 2015) method. Similar to the 

POS, the PCM quantifies the consistency of phase 

differences in a particular frequency band but with a 

bias-free sample estimator that controls for the 

imbalance in the number of trials between conditions 

by pairing observations. Like the POS, we did not 

observe any significant phase opposition in any 

frequency or region of interest when comparing the 

PCM between hit and miss trials (theta in 

frontotemporal electrodes: min 0.00013 ± 0.0022, t=-

500 ms; alpha in occipitoparietal electrodes: min: 

0.000087 ± 0.0027, t=-350 ms) (Supplemental Figure 

S1, C-D). 

Fourth, we investigated whether our data could 

replicate previous results showing that differences in 

oscillatory amplitude in the time window around 

stimulus onset at encoding are predictive of subsequent 

memory performance (Strunk and Duarte 2019). In 

order to obtain time-resolved data, oscillatory 

amplitude values were computed using the Hilbert 

transform (as specified in the methods section) on a 

trial by trial basis for theta and alpha frequencies. 

Power was averaged across electrodes within each 

ROI. The difference between conditions in the period –

500 to 100 ms relative to stimulus onset, was estimated 

as follows (power expressed in dB):  
 

𝑃𝑜𝑤𝑒𝑟𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  10 𝑙𝑜𝑔10 (
𝑃𝑜𝑤𝑒𝑟ℎ𝑖𝑡𝑠

𝑃𝑜𝑤𝑒𝑟𝑚𝑖𝑠𝑠𝑒𝑠
) 

We assessed the significance of the power contrast 

between hits and misses within ROIs using a two-tail t-

test corrected for multiple comparisons using the FDR 

method (p<0.05). In the alpha band, no significant 

differences in power between hits and misses were 

found (t-test, p<0.05, FDR corrected). However, we 

found a significantly higher theta power for later 

remembered stimuli compared to latter forgotten in the 

peri-stimulus time-window -50 to +100 ms (t-test, 

p<0.05, FDR corrected) (see, Figure 4). This 

subsequent memory effect (SME), even if including a 

brief prestimulus period, is most likely fully explained 

by evoked activity, given the temporal smoothing 

involved in the analysis used. SME in theta evoked 

activity is well in line with previous findings showing 

that increases in theta oscillatory power during the 

encoding period predict subsequent recall (Guderian et 

al. 2009; Sederberg et al. 2003; Osipova et al. 2006; 

White et al. 2013; Long et al. 2014; Solomon et al. 

2019).  

 

5.2 Post-hoc analyses of phase effects using fine-

tuned frequency and region of interest. 

Based on prior evidence for SMEs in evoked theta 

power (Backus et al. 2016; Lega, Jacobs, and Kahana 

2012; Sederberg et al. 2003; Staudigl and Hanslmayr 

2013), and on the significant theta power contrast for 

hits vs. misses in Experiment 2, we decided to adopt a 

data-driven approach to further seek for prestimulus 

phase effects using fine-tuned parameters.  

Theta power modulations following stimulus 

presentation have been widely related to subsequent 

memory performance. Whereas several studies support 

that increases in theta amplitude during the encoding 

period relate to successful memory performance 

(Osipova et al. 2006; Sederberg et al. 2003; White et 

al. 2013; Clouter et al. 2017; Khader et al. 2010; 

Guderian et al. 2009; Long et al. 2014; Lega et al. 

Kahana 2012), others have reported the effect in the 

opposite direction (Long et al. 2014; Lega et al. 2012; 

Greenberg et al. 2015; Sederberg et al. 2006). 

Regardless of the directionality of the theta power 

effect, which could respond to two different 

mechanisms that arise from cortical and subcortical 

processes in support of memory encoding (Herweg et 

al. 2020), we decided to tailor the new pre-stimulus 

phase analysis to the frequency peak and scalp region 

based on this theta power SME. This approach is 
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justified given that the a priori ROIs we used were very 

broad and probably suboptimal. Moreover, individual 

theta frequency shows large inter-individual 

differences (Haegens et al. 2014; Klimesch 1999), as it 

covaries with the individual alpha frequency 

(Doppelmayr et al. 1998; Klimesch and Doppelmayr 

1996). Below, we describe the fine-tuning of the 

frequency of interest and scalp location adopting a 

data-driven approach. Later, we report the results of 

the ensuing prestimulus phase SME 

 

 

Figure 4. Theta power contrast between hits and misses 

(thick blue line). The Shaded grey area shows the period of 

significant differences (p<0.05) after FDR correction. The 

shaded blue area represents the standard error of the mean 

(SEM), and the green line shows stimulus onset. 

 

Adjustment of Individual Frequency of Interest 

(IFOI)  

To select the individual frequency of interest (IFOI) we 

calculated the scalp average power spectrum during the 

encoding period (0 to 1000 ms from stimulus 

presentation) using a Fourier Transform (FT) (padded 

to 12 s to increase frequency resolution, 4 slepian 

tapers) in the range from 1 to 40 Hz. Then, we 

calculated the power spectrum for all trials (hits and 

misses), and we normalized with respect to the mean 

power across frequencies (𝑃𝑚 = 〈𝑃(𝑓)〉𝑓).: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑜𝑤𝑒𝑟 (𝑓) = (
𝑃(𝑓)

𝑃𝑚
). 

 

The IFOI was defined as the largest local maxima in 

the 3 to 7 Hz interval. We shifted the lower bound of 

the spectral range of the IFOI to account for participant 

variability. To illustrate the results, Figure 5 shows the 

scalp average power spectrum during the encoding 

interval for a representative participant. The mean IFOI 

measured was 4.05 ± 0.27 Hz (minimum 4 Hz, 

maximum 5.5 Hz). 

 

 

Figure 5. Individual frequency of interest (IFOI) for one 

representative participant. The figure represents the scalp 

average power spectrum, relative to average power, during 

the encoding interval for the collapsed distribution of hits 

and misses (black), as well as separately for hits (blue) and 

misses (red).  

 

Adjustment of the Region of Interest (ROI) 

We band-passed the signal around the individual 

frequency of each participant in the narrow band IFOI 

± 2 Hz using a second-order Butterworth filter, and 

computed the corresponding instantaneous power 

spectrum using the Hilbert Transform. Then, the power 

contrast for hit vs. miss trials was obtained for each 

participant, electrode, and latency (0 to 500 ms in steps 

of 2 ms) and transformed to dB. As shown in Figure 6, 

across subjects, we identified a significant positive 

time-frequency cluster (p-value<0.0002) that initiated 

in the left frontal area—shortly after stimulus 

presentation—and extended towards central and 

posterior regions. Consequently, the new ROI was 

defined as the set of electrodes in the left frontal area 

which first displayed a significant power effect in the 

post-stimulus period (0-50 ms) and remained 

significant for most of the time within the window of 

analysis (0-500 ms): F3, F5, F7, FT7 and FC5. 

Significance in power across conditions was obtained 

by means of a t-test (right-tail, alpha level p=0.05) and 

corrected for multiple comparisons using a cluster 

approach (Maris and Oostenveld 2007), (alpha level 

p=0.05, 10.000 randomizations).  

Fine-tuned analysis of prestimulus phase SME 

We ran the Phase Consistency Metric (PCM) analysis 

in the prestimulus time-window for hits vs. misses with 

the new, fine-tuned IFOI and ROI estimated as 

described above. The PCM allows to include all 

available trials without inducing a bias. For each 

participant, phases were extracted from the IFOI-

filtered signal using the Hilbert Transform in the time-

window immediately before stimulus onset (-500 to 0 

ms), and the PCM was computed for each time point of 

the window. Because the surrogate distributions used 

for assessing the POS and PCM seemed to be biased 

by the data (as can be seen in Supplemental Figure S1), 

statistical significance for PCM values below the null 

hypothesis was assessed by means of surrogate 

distribution in the time domain.  
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Figure 6. Adjusting the ROI based on the IFOI. Snapshots 

of the positive cluster for theta power contrast between hit 

and miss trials, using the individual frequency of interest 

(IFOI). Black stars indicate electrodes with significant 

activity at displayed time points. Red circle indicates the new 

ROI that was defined as the set of electrodes in the left 

frontal area which first displayed a significant power effect 

in the post-stimulus period. 

 

The surrogate distributions were calculated for each 

subject and electrode as follows: For each trial, we 

randomly assigned the labels hit and miss, and then 

picked the phase of the EEG signal at a time point 

selected randomly from the -800 to -500 ms pre-

stimulus window. We repeated this procedure 500 

times per subject and electrode, and then averaged 

across electrodes. The individual null distributions 

were used to generate 10.000 group average null 

PCMs. We observed that PCM was not significantly 

below the null distribution (all p-values>0.5). 

Therefore, our results do not support phase opposition. 

But it could still be possible that either hit or miss trials 

were concentrated around a preferent phase, even if not 

opposite. We performed this final check, evaluating 

phase concentration of hit (later remembered) and miss 

(later forgotten) trials separately, by means of pairwise 

phase consistency (PPC) (Vinck et al. 2010), according 

to the following formula: 

 

𝑃𝑃𝐶 =
2

𝑁(𝑁 − 1)
∑ ∑ (cos 𝜑𝑗 cos 𝜑𝑘 + sin 𝜑𝑗 sin 𝜑𝑘)

𝑁

𝑘=(𝑗+1)

𝑁−1

𝑗=1

 

Where N is the total number of trials, and 

𝜑𝑗  corresponds to the phase of trial j. The PPC is a 

measure of phase concentration that can take values 

between -1 and 1, that has been shown to be less biased 

by the number of trials than ITC (Vinck et al. 2010). 

When phases are perfectly aligned, the PPC equals 1.  

PPC was calculated for the time window of interest, 

and all the electrodes of the ROI, for the theta filtered 

signal. The PPC for hit trials (PPCHits) and for miss 

trials (PPCMisses) were calculated separately and 

statistical significance was assessed by means of a 

Montecarlo permutation test. Null distributions for hit 

and miss trials were built same as described above 

(label and time shuffled), with the number of hits and 

misses equivalent to the empirical values of hits and 

misses for each subject. After averaging across 

electrodes, we obtained for each subject a distribution 

of 500 null PPCs for hits and 500 null PPCs for misses. 

These individual PPCs were used to generate 10.000 

group averaged null PCCs for hits and misses. The p-

value corresponded to the proportion of times that the 

null distribution was above the empirical PPCs. We 

used Guthrie and Buchwald correction for correcting 

for multiple comparison (estimated autocorrelation 

0.999, N=30, 251 time points, required minimum 

number of consecutive significant samples=26). 

Around stimulus presentation onset, both hit and miss 

trials were significantly concentrated (Figure 7). This 

can be attributed to the phase resetting caused by the 

stimulus presentation. Miss trials were concentrated 

from -356 ms to 0 ms, but not in the early time 

window. On the other hand, hit trials were significantly 

concentrated for all the time window of interest -500 to 

0 ms (Figure 8). In other words, the results show that 

there is an increase of theta phase consistency among 

later remembered trials, suggesting that the probability 

of successful encoding is higher for specific phases of 

the theta cycle. 

 

 
 

Figure 7. Phase concentration measure and surrogate 

distribution. To assess whether the surrogate distribution 

used was affected by a positive bias due to the concentration 

of hits trials, we used random distribution based on a 

different time window to calculate PCM surrogates, i.e., -0.8 

to -0.5 s (because we know that no stimulus was presented 

there). Then, for each subject and electrode, labels for hit 

and miss trials were shuffled. For each trial, a random time 

point in the interval -0.8 to -0.5 was selected. Surrogate 

PCM was calculated based on these randomly sampled 

phases. The surrogate calculation was repeated 500 times for 

each subject and electrode and averaged across electrodes. 

10.000 group surrogates were built (by sampling from 

individual surrogate distributions). We observed that no 

significant phase opposition was found (all PCM above 5% 

percentile surrogate distribution). 
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Figure 8. Phase concentration of hits and miss trials 

separately. The PPC for hit and miss trials was calculated 

separately and compared with the percentile 95 of a 

surrogate distribution. According to surrogate testing, hit 

phases are always concentrated (all p-values <0.0014, i.e., 

251 consecutive timepoints), whereas, miss phases are 

concentrated in the time window from -0.356 to 0 s relative 

to stimulus onset. 

 

 

6. Discussion 

 

Although with mixed evidence, several studies have 

demonstrated a link between the phase of ongoing 

neural oscillations and behavioral outcomes, especially 

in perception and attention tasks (Busch et al. 2009; 

Mathewson et al. 2009; VanRullen et al. 2011). 

Conversely, a handful of studies have reported null 

results regarding this link (Ruzzoli et al. 2019; Bompas 

et al. 2015; Busch and VanRullen 2010; Benwell et al. 

2017). The interpretation of these phase-behavior 

correlation results capitalizes on the idea that brain 

oscillations reflect fluctuations in neural excitability 

and the coordinated action of neural populations across 

different brain regions. Here, we applied the same 

logic to investigate whether the phase of ongoing 

activity at stimulus onset, has an impact on later 

memory performance. The question is whether 

fluctuations in prestimulus brain states, as reflected by 

oscillatory dynamics, will have an impact on memory 

formation and consequently, on subsequent recognition 

of the stimulus. We have obtained some positive 

evidence, after post-hoc analyses.  

In the first experiment, we collected behavioral data 

from 30 healthy participants performing a visual 

paired-associates episodic memory task. Before each 

to-be-remembered image pair, an audio-visual reset 

cue was presented to induce modulation in cortical 

excitability by phase resetting the ongoing oscillatory 

activity (Lakatos et al. 2009; Fiebelkorn et al. 2011; 

Daitch et al. 2013). We measured later memory 

recognition performance as a function of the time-lag 

between the audio-visual reset cue and the presentation 

of the image pair to be encoded (randomly varied 

within an interval between 0 and 1000 ms, in steps of 

16 ms). The data showed that subsequent memory 

performance for the associated pairs fluctuated 

periodically at ~4 Hz as a function of the time lag from 

the audio-visual reset cue to encoding. Although the 

effect did not survive multiple comparisons correction 

for the number of frequencies included in the analysis, 

it suggests that theta-band oscillatory activity 

prestimulus may modulate the encoding. Consistent 

with previous findings, this periodic fluctuation could 

be attributed to a phase resetting of the ongoing 

oscillatory signal in the theta band that would be 

functionally relevant for encoding (Rizzuto et al. 2003; 

Fiebelkorn et al. 2011; Daitch et al. 2013; Fiebelkorn 

et al. 2018). However, the behavioral data in this 

experiment does not provide a direct measure of the 

phase of ongoing brain activity; therefore, we could 

only assume the phase resetting as the most likely 

explanation of the possible modulation. Because of 

this, and the lack of significance after correcting for 

multiple comparisons, we consider that any 

interpretation derived from this result must be cautious.  

In a second experiment, we used EEG to investigate 

more directly the role of ongoing low-frequency brain 

oscillations prior to the to-be-encoded stimulus. 

Specifically, we focused on the phase and amplitude of 

frontotemporal theta and occipitoparietal alpha 

oscillations as a function of trial to trial successful or 

unsuccessful recognition. The results indicated that 

theta-phase differences between hits and misses in the 

prestimulus time-window predicted subsequent 

memory performance. Note that we pre-registered an 

analysis pipeline focusing on the phase of 

frontotemporal theta and occipitoparietal alpha that 

returned null results. After ascertaining that the ROI 

and the Phase Opposition Sum method (POS) 

(subsampling of trials with POS) were probably sub-

optimal, we ran a post-hoc phase analysis based on the 

Phase Consistency Metric (PCM). This phase analysis 

was guided by a more precise estimation of the ROI 

and the individual frequency parameters based on post-

stimulus theta power effects (i.e., increment after 

successfully remembered items). Following this data-

driven approach, we observed significant prestimulus 

phase subsequent memory effects in a cluster of left 

frontal electrodes, suggesting a relationship between 

the phase of ongoing theta oscillations before stimulus 

onset, and later memory performance. Importantly, in 

the time window were the effect was observed, we 

only found phase concentration for hits, suggesting that 

there is a particular phase which favours encoding, and 

that the modulation observed in the hit rate relates 

exclusively to the hits concentration. This was not 

observed for miss trials. 

The significant theta power effect, which was the base 

for the data-driven phase analysis, was a replication of 

a well-known SME consisting of a theta increase in the 

peri-stimulus period with similar topographic 

distribution as in previous studies (Osipova et al. 2006; 

White et al. 2013; Long et al. 2014; Khader et al. 2010; 
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Guderian et al. 2009; Klimesch and Doppelmayr 

1996). In particular—for each participant—the theta 

power effect appeared frontally after stimulus 

presentation and spread toward centro-posterior areas 

at increasing latencies. We may argue that the effects 

of phase and power are analytically independent since 

they were found at different times with respect to the 

stimulus onset. Increases in theta power appeared 

around (e.g., immediately before and during) stimulus 

presentation, while phase effects in the theta band 

predictive of later recognition were observed long 

before the stimulus, in the –500 to –442 ms, (as well as 

–134 to 82 ms) time window with respect to stimulus 

onset. 

Most of the studies looking at prestimulus oscillatory 

effects in subsequent memory performance have used a 

prestimulus central orientation/fixation cue signaling 

the impending appearance of the to-be-encoded 

stimulus (Haque et al. 2015; Guderian et al. 2009; 

Otten et al. 2010). Thus, the increases in memory 

performance are mainly attributed to active 

anticipatory states. A substantial difference, at least 

with our second experiment, is that we focused on 

prestimulus ongoing oscillations; therefore, we did not 

use a prestimulus informative cue. In the first 

experiment, one could argue that the cue was not 

particularly time-informative (especially within the 

time window of relevance, 0-500 ms after the cue), 

although this could be more controversial. According 

to prior literature, in the absence of anticipatory states, 

i.e., under ongoing theta fluctuations, evidence from 

animal studies has shown an enhancement in the 

learning rate when the stimulus is presented during a 

specific hippocampal theta phase (Seager et al. 2002). 

The relevance of theta phase to the encoding of new 

information has been well-established through studies 

in vitro and in rodents and further implemented in 

leading theoretical models of memory (Huerta and 

Lisman 1995; Hyman et al. 2003; Hasselmo et al. 

2002; Hasselmo 2005). Hippocampal theta is thought 

to be induced in cortical areas via hippocampal-cortical 

feedback connections, gating synaptic plasticity. In 

turn, the induction of long-term potentiation (LTP) is 

dependent on the phase of theta rhythm; whereas LTP 

preferentially occurs on the positive phase of the theta 

cycle, long-term depression occurs at opposing phases 

(Pavlides et al. 1988; Fell and Axmacher 2011). 

Another possible interpretation for the role of the 

prestimulus phase in the modulation of later 

recognition success is that it may reflect attentional 

mechanisms. Indeed, attention orienting is known to 

impact memory encoding (Chun and Turk-Browne 

2007). The idea is that the recruitment of frontal 

regions promotes encoding processes by top-down 

modulation of posterior occipitoparietal regions. In 

particular, frontal regions may contribute by selecting 

goal-relevant information and binding pieces of 

information (Gazzaley and Nobre 2012; Blumenfeld 

and Ranganath 2007). Thus, the fluctuations that have 

been observed may reflect cyclic changes in 

preparation for optimal stimulus processing (Sekuler 

and Kahana 2007; Gazzaley and Nobre 2012). Along 

these lines, Busch and colleagues (Busch and 

VanRullen 2010) showed that detection performance 

was improved by attention and fluctuated over time, 

along with the phase of spontaneous theta oscillations, 

before stimulus onset. However, the evidence against 

attentional mechanisms arises from studies suggesting 

that prestimulus attentional effects are correlated with 

decreases in occipitoparietal alpha (Thut et al. 2006; 

O’Connell et al. 2009; Mazaheri et al. 2009). In our 

study, we did not find significant prestimulus 

differences in alpha power, and our experimental 

design does not allow us to disentangle the effects of 

the induced anticipatory states from the impact of 

attentional processes.  

Recognition and free recall are two memory processes 

whose performance could differ on storage, recovery 

operations, or some combination of both (Atkinson and 

Shiffrin 1968; Kahana 2012). In fact, using intracranial 

EEG, Merkow et al. (2014) showed that selective 

hippocampal prestimulus theta activity was associated 

with better subsequent recognition, but not with 

subsequent recall. Their results suggest that 

hippocampal prestimulus theta power increases 

preferentially promote the encoding of item 

information rather than the associative information of 

the item with the self-generated cues necessary for 

retrieval. Results from our analysis support the notion 

that prestimulus theta oscillations underlie mnemonic 

processes that favor later performance in recognition 

paradigms, but may not generalize to other memory 

paradigms, such as the free or cued recall. 

One limitation of the present study is that the initial 

selection of the regions of interest was possibly not 

optimal. We initially divided the whole electrode set 

into two large clusters (anterior and posterior) that 

were too broad. We are aware that besides 

characterizing the functional significance of the 

observed effects in phase and amplitude, it is relevant 

to identify the brain areas that play a role in the 

observed effects. Although this is challenging to do 

with EEG, through additional analyses, we redefined 

the ROI as the set of electrodes displaying post-

stimulus increases in theta power (putatively) after 

stimulus onset in our data, which replicate a relatively 

well known pattern  (Osipova et al. 2006; Sederberg et 

al. 2003; White et al. 2013; Clouter et al. 2017; Khader 

et al. 2010; Guderian et al. 2009). 

Another possible limitation of the present study was 

the choice of a suboptimal method for phase opposition 

analysis. The disproportion between correct trials and 

misses (as performance was well above chance level) 

resulted in a decrease of the sensitivity of the POS 

index (VanRullen, 2016). We found that our initial 

strategy to circumvent this problem, by equalizing the 

number of trials among conditions using subsampling, 

reduced the sensitivity of phase opposition measures 

more than anticipated (VanRullen 2016; Zoefel et al. 

2019). Based on post-hoc simulations, we found that 

the decrease in the number of trials had a stronger 

impact than the imbalance itself. However, it remains 

an open question to fully understand how the 
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combination of these two parameters (number of trials 

and balance in number of trials) affects the sensitivity 

of the phase opposition measures, something that is 

beyond the scope of this paper. In our follow-up 

exploratory analyses, we decided to use PCM, a 

measure that is less affected by trial imbalance, in 

order to use all available trials. 

In summary, despite further confirmation will 

undoubtedly be needed, the principle finding to emerge 

from this study is that the spatiotemporal pattern of 

brain activity preceding the stimulus onset, measured 

with EEG, can predict behavioral performance in a 

memory recognition task. This provides further 

evidence that the state of neural activity preceding 

stimulus presentation has an impact on the subsequent 

processing, extending prior results in perceptual and 

attentional tasks. In the particular case of the memory 

task used here, the relevant spatiotemporal pattern is 

characterized by theta-band fluctuations and increases 

in phase consistency among hits reflected in the left 

frontal scalp. These novel insights highlight the role of 

theta phase in cortical oscillations at encoding and 

support episodic memory models linking behavioral 

data to phasic properties of theta rhythm (Hasselmo et 

al. 2002; Hasselmo 2005). 
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Supplementary Material 

 

Participant Gender Age Handedness Hit Rate 

(%) 

False Alarm Rate (%) 

1 F 22 R 43,75 11,11 

2 F 21 R 89,11 6,47 

3 M 21 L 74,22 4,91 

4 F 22 R 60,27 1,46 

5 F 20 L 84,13 6,82 

6 F 21 R 49,94 16,99 

7 F 24 R 63,05 1,23 

8 F 20 R 38,49 11,07 

9 F 25 R 95,36 5,65 

10 M 21 R 64,29 2,90 

11 F 42 R 71,85 3,35 

12 F 21 R 73,64 1,55 

13 F 23 R 66,78 4,59 

14 M 22 R 58,49 6,62 

15 F 20 R 81,94 4,41 

16 F 19 R 68,48 11,34 

17 F 20 R 49,76 8,39 

18 F 20 R 68,67 1,06 

19 F 21 R 76,67 8,91 

20 M 21 R 85,23 9,15 

21 M 24 R 55,05 7,34 

22 F 20 R 67,14 3,32 

23 M 27 R 45,00 12,74 

24 M 23 R 66,18 2,27 

25 F 21 R 76,62 3,03 

26 M 26 L 47,23 9,30 

27 M 20 L 79,90 3,52 

28 F 21 R 52,58 7,91 

29 F 32 R 67,21 4,15 

30 F 31 R 58,60 7,10 

31 F 22 R 66,54 4,47 

32 F 24 R 87,79 8,33 

33 M 23 R 65,57 12,15 

34 F 22 R 91,07 3,23 

35 F 21 R 68,76 11,30 

36 F 24 R 76,33 1,83 

37 F 32 R 54,18 10,94 

38 M 26 L 64,07 3,04 

Supplemental Table S1: Demographic characteristics and performance for each participant in 

Experiment 1. Excluded participants are marked in red. 
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Participant Gender Age Handedness Hit Rate (%) False Alarm Rate (%) 

1 F 22 R 58,31 9,03 

2 M 26 R 58,91 10,25 

3 M 21 R 75,53 10,39 

4 F 21 R 56,80 13,33 

5 M 29 R 45,63 27,76 

6 F 23 R 87,67 4,38 

7 F 22 R 46,12 6,51 

8 F 23 R 78,25 2,49 

9 M 23 R 70,52 5,00 

10 F 23 L 61,37 8,51 

11 M 24 R 52,73 11,66 

12 M 24 R 63,72 0,00 

13 M 26 R 66,98 6,57 

14 F 29 R 56,40 7,80 

15 F 26 R 71,46 10,80 

16 F 20 R 68,27 3,82 

17 M 22 R 64,59 9,09 

18 M 19 R 77,62 6,34 

19 M 27 R 76,33 6,23 

20 F 19 R 77,14 4,93 

21 F 23 R 69,17 4,45 

22 M 20 R 60,29 4,90 

23 F 23 R 76,56 1,40 

24 M 18 R 70,26 10,10 

25 M 19 L 70,12 6,81 

26 M 25 R 66,51 3,11 

27 M 20 R 60,14 11,23 

28 F 22 L 63,36 7,12 

29 F 21 R 69,09 1,08 

30 F 23 L 60,43 10,10 

31 F 20 R 72,60 7,22 

32 F 23 R 67,29 5,38 

33 M 22 R 74,54 4,04 

34 M 20 L 60,19 4,73 

35 M 25 R 57,41 10,39 

36 M 26 R 67,76 12,68 

37 F 31 R 61,56 10,36 

Supplemental Table S2: Demographic characteristics and performance for each participant in 

Experiment 2. Excluded participants are marked in red. 
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Supplemental Figure S1: Phase consistency metrics. POS analysis showed no significant phase 

opposition in either (A) Theta in frontotemporal electrodes (max 0.044 ± 0.017, t=-500 ms), or (B) Alpha 

in occipitoparietal electrodes (max 0.0509 ± 0.026, t=-174 ms). Similar to the POS, the PCM showed null 

results for (C) Theta in frontotemporal electrodes (min 0.00013 ± 0.0022, t=-500 ms), or Alpha in 

occipitoparietal electrodes (min: 0.000087 ± 0.0027, t=-350 ms). 
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Supplemental Figure S2: Assessing the stability of the POS measure. Histograms of p-values obtained 

for POS analysis for one electrode and time point in the theta frequency band, for different number of 

random (I) pickings per participant. Each histogram contains 100 values. As can be seen, the p-values 

obtained were not stable: at the maximum number of iterations, the p-values varied in the interval 0.06 to 

0.12 
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Supplemental Figure S3: Differences in (A) mean hit phases (B) mean miss phases and (c) difference 

between hit and miss phases, for all subjects, in the most significant and positive timepoint of PPCHits in 

the time window where PPCMiss is not significant (t=-442 ms), for electrodes in the frontal areas. As can 

be seen, phases for hits trials were close to opposition for some of the electrodes, as compared to phases 

of miss trials suggesting an optimal phase for memory encoding. 
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Supplemental Figure S4: Phase distributions for all trials at the electrode with the lower p-value and 

most positive PPC for hits (electrode F7)(~442 ms). Panel A shows variations in hit rate (HR) with 

respect to mean HR at -442 ms (mean HR=0.647, thus, 0.05 corresponds to a 7.7% change in HR). Panel 

B shows percentage of total hits (grey) and misses (red) at each phase bin at -442 ms. Panel C shows HR 

modulation as a function of time. In order to reduce interparticipant variability, for each subject, phases 

were aligned to the mean hit phase at -442 ms. 
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