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Abstract

Existing single cell neural recording findings predict that, as information ascends 

the visual processing hierarchy in the primate brain, the relative similarity among 

the objects would be increasingly preserved across identity-preserving image 

transformations. Here we confirm this prediction and show that object category 

representational structure becomes increasingly invariant across position and 

size changes as information ascends the human ventral visual processing 

pathway. Such a representation, however, is not found in 14 different 

convolutional neural networks (CNNs) trained for object categorization that varied 

in architecture, depth and the presence/absence of recurrent processing. CNNs 

thus do not appear to form or maintain brain-like transformation-tolerant object 

identity representations at higher levels of visual processing despite the fact that 

CNNs may classify objects under various transformations. This limitation could 

potentially contribute to the large number of training data required to train CNNs 

and their limited ability to generalize to objects not included in training.  
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Introduction 

We can easily recognize a car no matter where it appears in the visual 

environment, how far it is from us, and which way it is facing. The ability to 

extract object identity information among changes of non-identity information and 

form transformation-tolerant object representation allows us to rapidly recognize 

an object under different viewing conditions in the real world. This ability has 

been hailed as one of the hallmarks of primate high-level vision (DiCarlo & Cox, 

2007; DiCarlo et al., 2012; Tacchetti et al., 2018). From a computational 

prospective, rectifying object representations with respect to all transformations 

or, equivalently, if the representations themselves were transformation invariant, 

reduces the complexity of learning by requiring much fewer training examples 

and improves generalization to objects and categories not included in training 

(Tacchetti et al., 2018). 

Recent hierarchical convolutional neural networks (CNNs) have achieved 

human-like object categorization performance and are able to identify objects 

across a variety of identity preserving (sometimes quite challenging) image 

transformations (Yamins & Dicarlo, 2016; Kheradpisheh et al., 2016; 

Rajalingham, et al., 2018; Kriegeskorte, 2015; Serre, 2019). This has led to the 

thinking that CNNs likely form transformation-tolerant object representations in 

their final stages of visual processing similar to those seen in the primate brain 

(Hong et al., 2016; Yamins & Dicarlo, 2016; Tacchetti et al., 2018). CNNs 

incorporate the known architectures of the primate early visual areas and then 

repeat this design motif multiple times. Although the detailed neural mechanisms 

governing high-level primate vision remain largely unknow, CNNs’ success in 

object categorization under image transformations has generated the excitement 

that perhaps the algorithms essential to high-level primate vision would 

automatically emerge in CNNs to provide us with a shortcut to understand and 

model high-level vision. While CNNs are capable of associating the same label to 

an object undergoing different transformations, CNNs could succeed by simply 

grouping all instances of an object encountered during training under the same 
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label without necessarily forming transformation-tolerant object representations 

like those found in high-level primate vision. Indeed, CNNs can achieve a near 

perfect classification accuracy even when image labels were randomly shuffled 

(Zhang et al. 2016), demonstrating their ability to memorize associations 

between images and random class labels. While this is one way to solve the 

invariance problem, this type of representation requires a large number of 

training data and has a limited ability to generalize to objects not included in 

training. Coincidentally, these two limitations have been argued to be the two 

major drawbacks associated with the current CNNs (Serre, 2019), raising the 

possibility that current CNNs may not actually form brain-like transformation-

tolerant object representations in their final stages of visual processing.  

At the neuronal level, a defining signature of transformation-tolerant object 

representation is a neuron’s ability to maintain its relative selectivity (rank-order) 

for different objects across transformations even though the absolute neuronal 

responses might rescale with each state of a transformation (Schwartz et al., 

1983; Tovee et al., 1994; Ito et al., 1995; DiCarlo & Manusell, 2003; Brincat & 

Connor, 2004; DiCarlo and Cox, 2007; Li et al., 2009; Murty & Arun, 2017). Such 

a neuronal response profile would predict that, as tolerance increases, objects 

and categories should be arranged in increasingly similar order across an 

identity-preserving image transformation such that two similar objects or 

categories at one state of a transformation should also be similar at another state 

of the transformation. This signature of tolerance at the representational structure 

level, however, has never been tested. 

Here we took advantage of existing human fMRI data sets and tested 

object representational structure invariance across changes in position and size 

in higher levels of visual processing in the human brain and its development 

across the human ventral visual processing hierarchy. To increase signal to 

noise ratio (SNR), we examined the averaged response from multiple exemplars 

of an object category rather than the response of a single exemplar. The results 

from the human brain were then compared with those from 14 different CNNs 
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trained to perform object categorization with varying architecture, depth and the 

presence/absence of recurrent processing. This allowed us to directly test 

whether a similar representational scheme existed in both the human brain and 

CNNs. We found that while the relative similarity among object categories 

becomes more invariant across changes in position and size during information 

processing in human ventral visual regions, the development of such invariance, 

however, was not found in CNNs trained for object categorization. CNNs thus do 

not appear to form transformation-tolerant object representation like the human 

brain does in higher levels of visual processing. 

Results 

In two fMRI experiments, human participants viewed blocks of sequentially 

presented object images. Each image block contained different exemplars from 

the same object category. A total of eight real-world object categories were used, 

including bodies, cars, cats, chairs, elephants, faces, houses, and scissors 

(Vaziri-Pashkam & Xu, 2019; see Figure 1a). These object images were shown 

in two types of transformations: position (top vs bottom) and size (small vs large) 

(Figure 1b). To ensure that object identity representation in lower brain regions 

would reflect the representation of identity and not low-level differences among 

the images of the different categories, both experiments used controlled images 

with the spectrum, histogram, and intensity of the images normalized and 

equalized across the different categories (Willenbockel et al., 2010). 

We examined fMRI responses from independently defined human early 

visual areas V1 to V4 and higher visual object processing regions LOT and VOT 

(Figure 1c). Reponses in LOT and VOT have been shown to correlate with 

successful visual object detection and identification (Grill-Spector et al. 2000; 

Williams et al., 2007) and their lesions have been linked to visual object agnosia 

(Goodale et al.,1991; Farah, 2004). These two regions have been argued to be 

the homologue of the macaque IT (Orban et al., 2004). For a given brain region, 

fMRI response patterns were extracted for each category for each type of 

transformations. Within each state of a given transformation (e.g., the upper 
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Figure 1 
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Figure 1. a. The eight real-world object categories used. b. The two types of nonidentity transformations examined: position 
(top vs bottom) and size (small vs large). To ensure that object identity representation in lower brain regions would reflect the 
representation of identity and not low-level differences among the images of the different categories, both experiments used 
controlled images with the spectrum, histogram, and intensity of the images normalized and equalized across the different 
category. c. The brain regions examined. They included topographically defined early visual areas V1 to V4 and functionally 
defined higher object processing regions LOT and VOT. d. The representational similarity analysis used to compare the 
representational structural between the two states of a nonidentity transformation (using size transformation as an example).
In this approach, for a given brain region or a sampled CNN layer, a representation dissimilarity matrix was first formed by 
computing all the pairwise Euclidean distances of fMRI response patterns or the CNN output for all the object categories in 
one state of the transformation. The off-diagonal elements of this matrix were then used to form a representational dissimilarity 
vector. These dissimilarity vectors were correlated between the two states of the transformation to assess the similarity 
between the two. 
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position), we calculated pairwise Euclidean distances of the z-normalized fMRI 

response patterns for all the object categories to construct a category 

representational dissimilarity matrix (RDM, Kriegeskorte & Kievit, 2013, see 

Figure 1d). We then correlated these RDMs between the two states of each 

transformation using Spearman rank correlation. These correlations were 

corrected by the reliability of each brain region before the results were compared 

across brain regions (see Methods). 

For both position and size transformations, RDM correlation across the 

two states of each transformation linearly increased from lower to higher visual 

regions (the averaged linear correlation coefficients were .40 and .61, 

respectively for position and size, and both were greater than 0, t(6) = 2.42, p = 

0.026 for position, and t(6) = 4.11, p = 0.003 for size; all t-tests were one-tailed 

as the effects were tested for a specific direction). Additionally, correlations were 

higher between the average of LOT and VOT than the average of V1 to V3 for 

both position and size (t(6) = 2.59, p = 0.021 for position; and t(6) = 3.41, p = 

0.007 for size; the difference between LOT and VOT and those among V1 to V3 

were not significant, all Fs < 1.31, ps > .29; see Figure 2a). Thus, for both 

position and size transformation, object representational structure becomes 

increasingly invariant from lower to higher ventral visual regions. These results 

remain the same whether z-normalized Euclidean distance measure or 

correlation measure was used, and remained qualitatively similar even when 

Pearson correlation, rather than Spearman rank correlation, was applied (see 

Supplemental Figure 1).  

We next examined whether CNNs exhibit a similar pattern in RDM 

correlation across the two states of each transformation from lower to higher 

layers. The 14 CNNs we examined included both shallower networks, such as 

Alexnet, VGG16 and VGG 19, and deeper networks, such as Googlenet, 

Inception-v3, Resnet-50 and Resnet-101 (Supplemental Table 1). We also 

included a recurrent network, Cornet-S, that has been shown to capture the 

recurrent processing in macaque IT cortex with a shallower structure and have 
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Figure 2. Evaluating object representational structure tolerance during the course of visual processing in the human brain and 14 
different CNNs. a. Correlating the object representational structures across the two states of position and size transformations within 
each human ventral brain regions and each sampled layer of the 14 different CNNs using Spearman rank correlation. Results from 
the brain regions were corrected by the reliability of each region (see Methods). b. Response profile correlation between the brain 
and each CNN plotted against the upper and lower bound of the noise ceiling of the brain response reliability across human 
participants. While object representational structure becomes increasingly invariant from lower to higher levels of visual processing in 
the human brain, it becomes more variant from lower to higher CNN layers, with all CNN response profiles showing negative 
correlation with that of the brain. 
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been argued to be the current best model of the primate ventral visual processing 

regions (Kubilius et al., 2019; Kar et al., 2019). All CNNs were pretrained with 

ImageNet images (Deng et al., 2009). Following a previous study (O’Connor et 

al., 2018), we sampled from 6 to 11 mostly pooling layers of each CNN (see 

Supplemental Table 1 for the specific CNN layers sampled). We extracted the 

response from each sampled CNN layer for each exemplar of a category and 

then averaged the responses from the different exemplars to generate a category 

response for each state of a given transformation, similar to how an fMRI 

category response was extracted. 

Despite differences in the exact architecture, depth, and 

presence/absence of recurrent processing, all CNNs exhibited overall similar 

trajectories for a given transformation. For position change, all CNNs showed 

overall high RDM correlation to position change but with a downward trend from 

lower to higher layers (Figure 2a). Given the heavy use of convolution in CNN 

architecture to capture translational invariance (LeCun, 1989), the high RDM 

correlation to position change is expected; however, the downward trend across 

layers is not. This downward trend became much more prominent for size 

change, going from 1 to dropping below .8 from lower to higher layers across all 

the CNNs (in a number of CNNs the correlation dropped below .4), while the 

same correlation went from .2 to close to 1 from lower to higher brain regions 

(Figure 2a). Direct correlation of the response profiles (using Spearman rank 

correlation) revealed negative correlations between the brain and CNNs that 

were all significantly below the lower bound of the noise ceiling of the brain 

response across human participants (for position, ts > 2.62, ps < .020; for size, ts 

> 8.41, ps < .001; all t tests were one tailed as only testing for correlation below

the lower bound of the noise ceiling was meaningful here; see Figure 2b). Thus,

for position and size transformations, the object representational structure

became more variant from lower to higher CNN layers, the opposite of what was

seen in the human brain. Despite CNNs’ success in classifying objects under

identity preserving image transformations, how CNNs represent the relative

similarity among the different objects appears to differ from that of the human
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brain. The built-in CNN architecture at the earlier layers likely gives it a boost in 

forming similar object representational structures in early stages of processing 

compared to visual processing in the brain. However, such a strong invariant 

representation in CNNs is gradually lost during the course of processing, such 

that the representations formed at final stages of CNN processing no longer 

appear to contain object representational structures invariant to these 

transformations. 

Although CNNs are believed to explicitly represent object shapes in the 

higher layers (Kriegeskorte, 2015; LeCun et al., 2015; Kubilius et al., 2016), 

emerging evidence suggests that CNNs may mostly use local texture patches to 

achieve successful object classification (Ballester & de Araújo, 2016, Gatys et al., 

2017; Geirhos et al., 2019). However, when Resnet-50 was trained with stylized 

ImageNet images in which the original texture of every single image was 

replaced with the style of a randomly chosen painting, object classification 

performance significantly improved, relied more on shape than texture cues, and 

became more robust to noise and image distortions (Geirhos et al., 2019). When 

we compared the representations formed in Resnet-50 pretrained with ImageNet 

images with those from Resnet-50 pretrained with stylized ImageNet Images 

under three different training protocols (Geirhos et al., 2019), however, we found 

overall remarkably similar results in the RDM correlations across the two states 

of each transformation and all were different from what was seen in the human 

brain (Supplementary Figure 2). The inability of Resnet-50 to exhibit brain-like 

invariance in object representational structure across transformations suggests 

that there are likely fundamental differences between the two that cannot be 

easily overcome by this type of training. 

To further document potential processing differences between object 

categories and single objects, instead of object categories, we examined CNN 

representational structure for eight single object images (one from each of the 8 

categories used in the fMRI experiments) undergoing the same four types of 

transformations. Additionally, we tested CNN representations for both the 
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controlled images (as in the fMRI experiments) and the original images. We 

obtained virtually the same results; if anything, the decrease in invariance was 

more drastic for the single objects than for the object categories reported earlier 

(Supplementary Figure 3). The lack of invariance in representational structures at 

higher levels of CNN visual processing thus applies to both object categories and 

single objects. 

Besides position and size, we also tested two non-Euclidian transformations 

involving a change in image statistics (original vs controlled images) and the 

spatial frequency (SF) content of an image (high vs low SF) (see Supplementary 

Results). We again found an increase in tolerance in object representational 

structure across these two transformations from lower to higher human visual 

regions, but not from lower to higher CNN layers (Supplementary Figures 4 to 7).  

Discussion 

Existing single cell neural recording findings predict that, as information 

ascends the visual processing hierarchy in the primate brain, the relative 

similarity among the objects would be increasingly preserved across identity-

preserving image transformations. Interestingly, this key prediction has never 

been directly tested at the population representational structure level. Here we 

confirm this prediction and show that object category representational structure 

becomes increasingly invariant across position and size changes as information 

ascends the human ventral visual processing pathway. Such a representation, 

however, is not found in 14 different CNNs trained for object categorization. 

Similar performance was observed for both shallow and deep CNNs (e.g., 

Alexnet vs Googlenet), and the recurrent CNN did not perform better than the 

other CNNs. Training a CNN with stylized images did not improve performance 

either. CNNs thus do not appear to form or maintain brain-like transformation-

tolerant object identity representations during the course of visual processing 

despite the fact that CNNs are largely successful in classifying objects under 

various transformations.  
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Although we examined object category responses averaged over multiple 

exemplars rather than responses to each object in an effort to increase SNR, 

previous research has shown similar category and exemplar response profiles in 

macaque IT and human lateral occipital cortex with more robust responses for 

categories than individual exemplars due to an increase in SNR (Hung et al., 

2005; Cichy et  al., 2011). Rajalingham, et al. (2018) recently reported better 

behavior-CNN correspondence at the category but not at the individual exemplar 

level. Thus, comparing the representational structure at the category level, rather 

than at the exemplar level, should have increased our chance of finding a close 

brain-CNN correspondence. In a recent study, for the same sets of real-world 

categories used here, we showed that the object representational structures 

formed in lower CNN layers could fully capture those formed in lower human 

visual processing regions (Xu & Vaziri-Pashkam, 2020). Despite this close brain-

CNN correspondence at lower levels of visual processing, the present study 

shows that none of the CNNs examined here exhibits the same transformation-

tolerant object representation in the human brain at higher levels of visual 

processing. Importantly, our CNN results did not depend on the usage of object 

categories, as we showed that the lack of invariance in representational 

structures at higher levels of CNN visual processing applies to both object 

categories and single objects. 

With its vast computing power, CNNs likely associate different instances of 

an object via a brute force approach (i.e., by simply grouping all instances of an 

object encountered under the same object label) without preserving the 

relationships among the objects across transformations and forming (or 

maintaining) transformation-tolerant object representations. This may contribute 

to some of the brain-CNN discrepancies reported in prior studies, such as CNNs’ 

ability to fully capture lower, but not higher, levels of visual representational 

structures of real-world objects as reported in our recent study (Xu & Vaziri-

Pashkam, 2020), their ability to explain only about 50% of the response variance 

of macaque V4 and IT (Cadieu et al., 2014; Yamins et al., 2014; Kar et al. 2019; 

Bashivan et al., 2019; Bao et al., 2020), their usage of different features in object 
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recognition (Ballester & de Araujo, 2016, Ulman et al., 2016; Gatys et al., 2017; 

Baker et al., 2018; Geirhos et al., 2019), and their susceptibility to the negative 

impact of adversarial images (Serre, 2019). While some have regarded CNNs as 

the current best models of the primate visual system (Khaligh-Razavi & 

Kriegeskorte, 2014; Güçlü & van Gerven, 2015; Cichy et al., 2016; Eickenberg et 

al., 2017; Cichy & Kaiser, 2019; Kubilius et al., 2019), the present results show 

that current CNNs likely differ from the primate visual brain in important ways, 

especially for high-level vision. Thus repeating the design motif of the primate 

early visual areas in CNN architecture may not be sufficient to automatically 

recover the algorithms used by primate high-level vision and such a shortcut as 

is may be limited in helping us fully understand and model high-level primate 

vision. 

The formation of transformation-tolerant object representations in the 

primate brain has been argued to be critical in facilitating information processing 

and learning by reducing the number of training examples needed while at the 

same time increasing the generalizability from the trained images to new 

instances of an object and a category (Tacchetti et al., 2018). Even if CNNs were 

to use a fundamentally different, but equally viable, computational algorithm to 

solve the object recognition problem compared to the primate brain, 

implementing transformation tolerant visual representation in their visual 

processing may nevertheless help overcome the two major drawbacks currently 

associated with the CNNs: a requirement of large training examples and a 

limitation in generalizability to objects not included in training (Serre, 2019). That 

being said, making CNNs more brain like has its own practical advantages: as 

long as CNNs “see” the world differently from the human brain, they will make 

mistakes that are against human prediction and intuition. If CNNs are to aid or 

replace human performance, they need to capture the nature of human vision 

and then improve upon it. This will ensure the safety and reliability of the devices 

powered by CNNs, such as in self-driving cars, and, ultimately, our trust in using 

such an information processing system. Thus, in addition to benchmarking object 

recognition performance, it may be beneficial for future CNN architectures and/or 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246934
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

training regimes to explicitly improve transformation-tolerant object 

representations at higher levels of CNN visual processing. For example, 

preserving the similarity structure among the objects across transformations 

could be incorporated as a routine in CNN training. Doing so may push forward 

the next leap in model development and make CNNs not only better models for 

object recognition but also better models of the primate brain.	
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Materials and Methods 

fMRI Experimental Details 

Details of the fMRI experiments have been described in a previously 

published study (Vaziri-Pashkam & Xu, 2019). They are summarized here for the 

readers’ convenience.  

Seven healthy human participants with normal or corrected to normal 

visual acuity, all right-handed, and aged between 18-35 took part in both the 

position and size experiments. Each experiment was performed in a separate 

session lasting between 1.5 and 2 hours. Each participant also completed two 

additional sessions for topographic mapping and functional localizers. MRI data 

were collected using a Siemens MAGNETOM Trio, A Tim System 3T scanner, 

with a 32-channel receiver array head coil. For all the fMRI scans, a T2*-

weighted gradient echo pulse sequence with TR of 2 sec and voxel size of 3 mm 

x 3 mm x 3 mm was used. FMRI data were analyzed using FreeSurfer 

(surfer.nmr.mgh.harvard.edu), FsFast (Dale et al., 1999) and in-house MATLAB 

codes. FMRI data preprocessing included 3D motion correction, slice timing 

correction and linear and quadratic trend removal. Following standard practice, a 

general linear model was then applied to the fMRI data to extract beta weights as 

response estimates. 

In the position experiment, we tested position tolerance and presented 

images either above or below the fixation (Figure 1b). We used cut-out grey-

scaled images from eight real-world object categories (faces, bodies, houses, 

cats, elephants, cars, chairs, and scissors) and modified them to occupy roughly 

the same area on the screen (Figure 1a). For each object category, we selected 

ten exemplar images that varied in identity, pose and viewing angle to minimize 

the low-level similarities among them. Participants fixated at a central red dot 

throughout the experiment. Eye-movements were monitored in all the fMRI 

experiments to ensure proper fixation. During the experiment, blocks of images 

were shown. Each block contained a random sequential presentation of ten 
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exemplars from the same object category shown either all above or all below the 

fixation. To equal low-level image differences among the different categories, 

controlled images were shown. Controlled images were generated by equalizing 

contrast, luminance and spatial frequency of the images across all the categories 

using the shine toolbox (Willenbockel et al., 2010, see Figure 1b). All images 

subtended 2.9º x 2.9º and were shown at 1.56º above the fixation in half of the 

16 blocks and the same distance below the fixation in the other half of the blocks. 

Each image was presented for 200 msec followed by a 600 msec blank interval 

between the images. Participants detected a one-back repetition of the exact 

same image. This task engaged participants’ attention on the object shapes and 

ensured robust fMRI responses. Two image repetitions occurred randomly in 

each image block. Each experimental run contained 16 blocks, one for each of 

the 8 categories in each of the two image positions. The order of the eight object 

categories and the two positions were counterbalanced across runs and 

participants. Each block lasted 8 secs and followed by an 8-sec fixation period. 

There was an additional 8-sec fixation period at the beginning of the run. Each 

participant completed one scan session with 16 runs for this experiment, each 

lasting 4 mins 24 secs.  

In the size experiment, we tested size tolerance and presented images 

either in a large size (5.77º x 5.77º) or small size (2.31º x 2.31º) centered at 

fixation (Figure 1b). As in the position experiment, controlled images were used 

here. Half of the 16 blocks contained small images and the other half, large 

images. Other details of the experiment were identical to that of the position 

experiment. 

We examined responses from independent localized early visual areas V1 

to V4 and higher visual processing regions LOT and VOT (Figure 1c). V1 to V4 

were mapped with flashing checkerboards using standard techniques (Sereno et 

al., 1995). Following the detailed procedures described in Swisher et al. (2007) 

and by examining phase reversals in the polar angle maps, we identified areas 

V1 to V4 in the occipital cortex of each participant (see also Bettencourt & Xu, 
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2016) (Figure 1C). To identify LOT and VOT, following Kourtzi and Kanwisher 

(2000), participants viewed blocks of face, scene, object and scrambled object 

images. These two regions were then defined as a cluster of continuous voxels in 

the lateral and ventral occipital cortex, respectively, that responded more to the 

original than to the scrambled object images. LOT and VOT loosely correspond 

to the location of LO and pFs (Malach et al., 1995; Grill-Spector et al.,1998; 

Kourtzi & Kanwisher, 2000) but extend further into the temporal cortex in an effort 

to include as many object-selective voxels as possible in occipito-temporal 

regions. 

To generate the fMRI response pattern for each ROI in a given run, we 

first convolved an 8-second stimulus presentation boxcar (corresponding to the 

length of each image block) with a hemodynamic response function to each 

condition; we then conducted a general linear model analysis to extract the beta 

weight for each condition in each voxel of that ROI. These voxel beta weights 

were used as the fMRI response pattern for that condition in that run. Following 

Tarhan and Konkle (2019), we selected the top 75 most reliable voxels in each 

ROI for further analyses. This was done by splitting the data into odd and even 

halves, averaging the data across the runs within each half, correlating the beta 

weights from all the conditions between the two halves for each voxel, and then 

selecting the top 75 voxels showing the highest correlation. This is akin to 

including the best units in monkey neurophysiological studies. For example, 

Cadieu et al. (2014) only selected a small subset of all recorded single units for 

their brain-CNN analysis. We obtained the fMRI response pattern for each 

condition from the 75 most reliable voxels in each ROI of each run. We then 

averaged the fMRI response patterns within each half of the runs and applied z-

normalization to the averaged pattern for each condition in each ROI to remove 

amplitude differences between conditions and ROIs before further analyses were 

carried out (see more below). 
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CNN details 

We included 14 CNNs in our analyses (see Supplemental Table 1). They 

included both shallower networks, such as Alexnet, VGG16 and VGG 19, and 

deeper networks, such as Googlenet, Inception-v3, Resnet-50 and Resnet-101. 

We also included a recurrent network, Cornet-S, that has been shown to capture 

the recurrent processing in macaque IT cortex with a shallower structure 

(Kubilius et al., 2019; Kar et al., 2019). This CNN has been recently argued to be 

the current best model of the primate ventral visual processing regions (Kar et 

al., 2019). All the CNNs used were trained with ImageNet images (Deng et al., 

2009).  

To understand how the specific training images would impact CNN 

representations, besides CNNs trained with ImageNet images, we also examined 

Resnet-50 trained with stylized ImageNet images (Geirhos et al., 2019). We 

examined the representations formed in Resnet-50 pretrained with three different 

procedures (Geirhos et al., 2019): trained only with the stylized ImageNet Images 

(RN50-SIN), trained with both the original and the stylized ImageNet Images 

(RN50-SININ), and trained with both sets of images and then fine-tuned with the 

stylized ImageNet images (RN50-SININ-IN). 

Following O’Connor et al. (2018), we sampled between 6 and 11 mostly 

pooling and FC layers of each CNN (see Supplemental Table 1 for the specific 

CNN layers sampled). Pooling layers were selected because they typically mark 

the end of processing for a block of layers before information is pooled and 

passed on to the next block of layers. When there were no obvious pooling layers 

present, the last layer of a block was chosen. For a given CNN layer, we 

extracted the CNN layer output for each object image in a given condition, 

averaged the output from all images in a given category for that condition, and 

then z-normalized the responses to generate the CNN layer response for that 

object category in that condition (similar to how fMRI category responses were 

extracted). Cornet-S and the different versions of Resnet-50 were implemented 
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in Python. All other CNNs were implemented in Matlab. Output from all CNNs 

were analyzed and compared with brain responses using Matlab. 

Comparing the representational structures between two states of a 
transformation in the brain and CNNs 

Due to differences in measurement noise across the different brain 

regions, even if the representational structures were identical for the two states of 

a given transformation, the correlation between the two could vary across brain 

regions. To account for this potential variability across brain regions, we used a 

split-half approach by splitting the data into odd and even halves and averaging 

the data within each half. To determine the extent to which object category 

representations were similar between the two states of each transformation in a 

brain region, within each half of the data, we first obtained the category 

dissimilarity vector for each of the two states of a given transformation. This was 

done by computing all pairwise Euclidean distances for the object categories 

sharing the same state of a transformation and then taking the off-diagonal 

values of this representation dissimilarity matrix (RDM) as the category 

dissimilarity vector. We then correlated the category dissimilarity vectors across 

the two states of a given transformation across the two halves of the data using 

Spearman rank correlation and took the average as the raw RDM correlation 

(e.g., correlating odd run upper position with even run lower position and vice 

versa, and then taking the average of these two correlations). We calculated the 

reliability of RDM correlation by correlating the category dissimilarity vectors 

within the same state of a given transformation across the two halves of the data 

using Spearman rank correlation and took the average as the reliability measure 

(e.g., correlating odd run upper position with even run upper position and 

correlating odd run lower position with even run lower position, and then taking 

the average of these two correlations). The final corrected RDM correlation was 

computed as the raw RDM correlation divided by the corresponding reliability 

measure. This was done separately for each ROI of each participant. 

Occasionally the absolute value of the reliability measure was lower than that of 
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the raw RDM correlation, yielding the corrected RDM correlation to be outside 

the range of [-1, 1]. Since correlation should not exceed the range of [-1, 1], any 

values exceeding the range were replaced by the closest boundary value (1 or -

1). Without such a correction we obtained very similar line plots as those shown 

in Figure 2, but with a few large error bars due to a few excessively large values 

obtained during the RDM normalization process. 

To determine the extent to which object category representations were 

similar between the two states of each transformation in a CNN layer, from the 

CNN layer output, we first generated the object category dissimilarity vector for 

each state of a given transformation. We then correlated these vectors between 

the two states of the transformation using Spearman rank correlation. This was 

done for each sampled layer of each CNN. 

To assess the similarity between the brain and CNN in their overall cross-

transformation RDM correlation profile across regions/layers, we directly 

correlated the two using Spearman rank correlation. Before doing so, we first 

obtained the reliability of the RDM correlation profile across the group of human 

participants by calculating the lower and upper bounds of the noise ceiling 

following the procedure described by Nili et al. (2014). Specifically, the upper 

bound of the noise ceiling was established by taking the average of the 

Spearman correlation coefficients between each participant’s RDM correlation 

profile and the group average RDM correlation profile including all participants, 

whereas the lower bound of the noise ceiling was established by taking the 

average of the Spearman correlation coefficients between each participant’s 

RDM correlation profile and the group average RDM correlation profile excluding 

that participant. To evaluate the similarity in RDM correlation profile between the 

brain and a given CNN, we obtained the Spearman correlation coefficient 

between the CNN and each human participant and tested these values against 

the lower bound of the noise ceiling obtained earlier using a one-tailed t test. 

When the number of layers sampled in a CNN did not match the number of brain 

regions tested, bilinear inteprelation was used to down sample the CNN profile to 
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match with that of the brain. This allowed us to preserve the overall response 

profile of the CNN while still being able to carry out our correlation analysis. One-

tailed t tests were used here as only testing values below the lower bound of the 

noise ceiling was meaningful here. If a CNN was able to fully capture the RDM 

correlation profile of the human brain, then its RDM correlation profile with the 

brain should be no different or exceed the lower bound of the noise ceiling. 
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Supplemental Table 1. The CNNs and the layers examined in this study. 

CNN name Depth/Blocks Layers N of Layers 
Sampled 

Sampled Layer Names and Locations (indicated in the 
parenthesis) 

Alexnet 8 25 6 'pool1' (5), 'pool2' (9), 'pool5' (16), 'fc6' (17), 'fc7' (20), 'fc8' (23) 
Cornet-S 4 42 6 ‘V1_outpt’ (8), ‘V2_output’ (18), ‘V4_output’ (28), ‘IT_output’ 

(38), ‘decoder_avgpool’ (39), ‘decoder_output’ (42) 
Densenet-201 201 709 6 'pool1' (6), 'pool2_pool' (52), 'pool3_pool' (140), 'pool4_pool' 

(480), 'avg_pool' (706), 'fc1000' (707) 
Googlenet 22 144 6 'pool1-3x3_s2' (4), 'pool2-3x3_s2' (11), 'pool3-3x3_s2' (40), 

'pool4-3x3_s2' (111), 'pool5-7x7_s1' (140), 'loss3-classifier' 
(142) 

Inception_v3 48 316 11 'average_pooling2d_1' (29), 'average_pooling2d_2' (52), 
'average_pooling2d_3' (75), 'average_pooling2d_4' (121), 
'average_pooling2d_5' (153), 'average_pooling2d_6' (185), 
'average_pooling2d_7' (217), 'average_pooling2d_8' (264), 
'average_pooling2d_9' (295), 'avg_pool' (313), 'predictions' 
(314) 

Inception-resnet_v2 164 825 7 'max_pooling2d_1' (12), 'max_pooling2d_2' (19),  
'average_pooling2d_1' (29), 'max_pooling2d_3' (285), 
'max_pooling2d_4' (648), 'avg_pool' (822), 'predictions' (823) 

Mobilenet_v2 54 155 10 'block_2_project_BN' (26), 'block_4_project_BN' (43), 
'block_6_project_BN' (61), 'block_8_project_BN' (78), 
'block_10_project_BN' (96), 'block_12_project_BN' (113), 
'block_14_project_BN' (130), 'block_16_project_BN' (148), 
'global_average_pooling2d_1' (152), 'Logits' (153) 

Resnet-18 18 72 6 'pool1' (6), 'res2b_relu' (20), 'res3b_relu' (36), 'res4b_relu' (52), 
'pool5' (69), 'fc1000' (70) 

Resnet-50 50 177 6 'max_pooling2d_1' (5), 'activation_10_relu' (37), 
'activation_22_relu' (79), 'activation_40_relu' (141), 'avg_pool' 
(174), 'fc1000' (175) 

Resnet-101 101 347 6 'pool1' (5), 'res2c_relu' (37), 'res3b3_relu' (79), 'res4b22_relu' 
(311), 'pool5' (344), 'fc1000' (345) 

Squeezenet 18 68 5 'pool1' (4), 'pool3' (19), 'pool5' (34), 'conv10' (64), 'pool10' (66) 
Vgg-16 16 41 8 'pool1' (6), 'pool2' (11), 'pool3' (18), 'pool4' (25), 'pool5' (32), 

'fc6' (33),'fc7' (36), 'fc8' (39) 
Vgg-19 19 47 8 'pool1' (6), 'pool2' (11), 'pool3' (20), 'pool4' (29), 'pool5' (38), 

'fc6' (39),'fc7' (42), 'fc8' (45) 
Xception 71 171 8 'block2_pool' (18), 'block4_pool' (42), 'block6_sepconv3_bn' 

(68), 'block8_sepconv3_bn' (94), 'block10_sepconv3_bn' 
(120), 'block12_sepconv3_bn' (146), 'avg_pool' (168), 
'predictions' (169) 
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Supplementary Results 

Besides examining the two Euclidian transformation involving position and 

size, we also tested two non-Euclidian transformations involving a change in 

image statistics (original vs controlled images) and the spatial frequency (SF) 

content of an image (high vs low SF). Although object representation has been 

shown to be invariant to the cues defining the shape (e.g., luminance, motion, or 

texture contrast) in macaque IT and human LOT and VOT (Sary et al., 1993; 

Grill-Spector et al., 1998), and the fact that we could recognize a line-drawing of 

a car just as easily as we do with a photograph of a car (which is similar to a SF 

transformation), tolerance for these two non-Euclidean image transformations 

has never been directly tested. 

Details of the human fMRI image stats and SF experiments have been 

described in two previously published studies (Vaziri-Pashkam & Xu, 2019 and 

Vaziri-Pashkam et al., 2019). They are summarized here for the readers’ 

convenience. Six and ten participants took part in the image stats and SF 

experiments, respectively. In the image stats experiment, we tested image stats 

tolerance and presented images at fixation either in the original unaltered format 

or in the controlled format (subtended 4.6º x 4.6º) (Supplementary Figure 4a left). 

Half of the 16 blocks contained original images and the other half, controlled 

images. Other details of the experiment were identical to that of position 

experiment. In the SF experiment, only six of the original eight object categories 

were included and they were faces, bodies, houses, elephants, cars, and chairs. 

Images were shown in 3 conditions: Full-SF, High-SF, and Low-SF 

(Supplementary Figure 4a right). In the Full-SF condition, the full spectrum 

images were shown without modification of the SF content. In the High-SF 

condition, images were high-pass filtered using an FIR filter with a cutoff 

frequency of 4.40 cycles per degree. In the Low-SF condition, the images were 

low-pass filtered using an FIR filter with a cutoff frequency of 0.62 cycles per 

degree. The DC component was restored after filtering so that the image 

backgrounds were equal in luminance. Each run contained 18 blocks, one for 
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each of the category and SF condition combination. Each participant completed a 

single scan session containing 18 experimental runs, each lasting 5 minutes. 

Other details of the experiment design were identical to that the position 

experiment. Only the results from the High-SF, and Low-SF conditions were 

included in the present analysis. 

Results from the human fMRI image stats and SF experiments were 

analyzed following the same procedure as described in Methods. We obtained 

similar results for these two types transformations as we did for the position and 

size transformations in the human brain. Specifically, RDM correlation across the 

two states of each transformation linearly increased from lower to higher visual 

regions (the averaged linear correlation coefficients were .43 and .28, 

respectively for image stats and SF, and both were greater than 0, t(5) = 2.58, p 

= 0.025 for image stats, and t(9) = 1.93, p = 0.043 for SF). RDM correlation 

between the two states of each transformation was also significantly higher for 

the average of LOT and VOT than the average of V1 to V3 (t(5) = 3.17, p = 0.012 

for image stats; and t(9) = 2.37, p = 0.021, for SF; the difference between LOT 

and VOT and those among V1 to V3 were not significant, all Fs < 2.11, ps > .20; 

see Supplementary Figure 4b). These results remain the same whether z-

normalized Euclidean distance measure or correlation measure was used, and 

remained qualitatively similar even when Pearson correlation, rather than 

Spearman rank correlation, was applied (see Supplementary Figure 5). Thus 

across both the two types Euclidian transformations examined (i.e., position and 

size) and the two types of non-Euclidian transformations examined here (i.e., 

image stats and SF), object representational structure across transformations 

becomes increasingly invariant from lower to higher ventral visual regions. 

As in the main study, we next examined whether CNNs exhibit a similar 

pattern in RDM correlation across the two states of image stats and SF 

transformation from lower to higher layers. Despite differences in the exact 

architecture, depth, and presence/absence of recurrent processing, all 14 CNNs 

exhibited overall similar trajectories for a given transformation. Specifically, RDM 
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correlations fluctuated across the different CNN layers, more drastically for SF 

than image stats, and showed an inverted U-shape between lower and higher 

layers in a large number of CNNs (Supplementary Figure 4b), rather than an 

increase in RDM correlation from lower to higher layers. This response pattern 

again differed from the monotonic increase in RDM correlation from lower to 

higher brain regions.  

For the image stats transformation, direct correlation of the response 

profiles (using Spearman rank correlation) revealed in 10 out of the 14 CNNs a 

negative correlations between the brain and CNNs that were significantly below 

the lower bound of the noise ceiling of the brain response across human 

participants (ts > 2.34, ps < .033; Supplementary Figure 4c). Three of the four 

CNNs that did not show a significant effect showed a marginally significant effect 

(Alexnet, t(5) = 1.64, p = 0.081; VGG-16, t(5) = 1.82, p = .064; and VGG-19, t(5) 

= 1.62, p = .084). The effect was not significant for Squeezenet (t(5) = .47, p = 

.33). For SF transformation, direct correlation of the response profiles between 

the brain and CNN revealed few significant or marginally significant correlations 

that were below the lower bound of the noise ceiling of the brain responses 

across human participants (Alexnet, t(9) = 2.26, p = .025; Inception-v3, t(9) = 

1.42, p = .094; Mobilenet-v2, t(9) = 1.63, p = .069; Xception, t(9) = 1.42, p = .094; 

all other CNNs, ts < .94, ps >.19; Supplementary Figure 4c). Note that the overall 

response profiles were flatter for image stats and SF transformations in the brain 

than for the position and size transformations. Additionally, reliability for SF was 

low (close to 0 for the lower bound of the noise ceiling) even though more 

participants were included in this experiment. Both of these two factors likely 

contributed to the overall weaker differentiation between the brain and CNN 

response profiles for these two types of transformation than for position and size. 

Although strong conclusions may not be drawn from the direct response profile 

correlations for the image stats and SF transformation, given that tolerance in 

object representational structure steadily increased for these two transformation 

from lower to higher human visual regions but not from lower to higher CNN 
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layers, there still appeared to be some divergence between the brain and CNNs 

in how they represent these two types of transformations. 	
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Supplementary Figure 1. Correlating the object representational structures across the two states of position and size 
transformations within each human ventral brain regions and each sampled layer of the 14 different CNNs. a. The results from Z-
normalized Euclidean distance measure and Spearman rank correlation. These are the same results as those reported on Figure 2
and are included here for comparison purposes. b. The results from Z-normalized Euclidean distance measure and Pearson 
correlation. c. The results from correlation measure and Spearman rank correlation. Very similar results were obtained from these 
different types of measures. 

33 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246934
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 2 3 4 5 6
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

R
D

M
 C

or
re

la
tio

n
RN50-IN

1 2 3 4 5 6

RN50-SIN

1 2 3 4 5 6

RN50-SININ

1 2 3 4 5 6

RN50-SININ-IN

1 2 3 4 5 6

Alexnet

1 2 3 4 5 6

Cornet-S

1 2 3 4 5 6

Densenet-201

1 2 3 4 5 6
Layer

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

R
D

M
 C

or
re

la
tio

n

Googlenet

1 3 5 7 9 11

Inception-v3

1 2 3 4 5 6 7

InceptRes-v2

1 3 5 7 9

Mobilenet-v2

1 2 3 4 5 6

Resnet-18

1 2 3 4 5 6 7 8

Vgg-16

1 2 3 4 5 6 7 8

Vgg-19
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Supplemental Figure 3
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Supplementary Figure 3. Comparing the representational structure correlation for object categories and single objects for position and 
size transformations in 14 different CNNs. a. The stimuli used. Both the controlled and the original images were used in this analysis. b.
The representational structure correlation for object categories, using the controlled images. These are the same results as those 
reported on Figure 2 and are included here for comparison purposes. c. The representational structure correlation for single objects, 
using the controlled images. A single exemplar was chosen from each of the eight object categories for this analysis. This analysis was 
carried out twice, each involving a different exemplar from a given category. d. The representational structure correlation for single 
objects, using the original images. Other details are identical to c. Similar results were obtained for object categories and single objects 
such that object representational structures became more variable across the two states of each transformation over the course of CNN 
processing. If anything, the decrease in invariance was more drastic for the single objects than for the object categories.
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Supplementary Figure 4. Evaluating object representational structure tolerance during the course of visual processing in the human 
brain and 14 different CNNs for image stats and SF transformations. a. The two types of transformations examined: image stats 
(original vs controlled) and SF (high SF vs low SF). b. Correlating the object representational structures across the two states of 
image stats and SF transformations within each human ventral brain regions and each sampled layer of the 14 different CNNs using
Spearman rank correlation. Results from the brain regions were corrected by the reliability of each region (see Methods). c Response 
profile correlation between the brain and each CNN plotted against the upper and lower bound of the noise ceiling of the brain 
response reliability across human participants. While object representational structure becomes increasingly invariant from lower to 
higher levels of visual processing in the human brain, CNNs do not exhibit this response profile (see Supplementary Results for more 
details).

Supplemental Figure 4

Al
ex

ne
t

Co
rn

et
-S

De
ns

en
et

-2
01

Go
og

len
et

In
ce

pt
ion

-v
3

In
ce

pt
Re

s-
v2

M
ob

ile
ne

t-v
2

Re
sn

et
-1

8
Re

sn
et

-5
0

Re
sn

et
-1

01
Sq

ue
ez

en
et

Vg
g-

16
Vg

g-
19

Xc
ep

tio
n

-1

-0.5

0

0.5

1

Br
ai

n-
C

N
N

 C
or

re
la

tio
n

Al
ex

ne
t

Co
rn

et
-S

De
ns

en
et

-2
01

Go
og

len
et

In
ce

pt
ion

-v
3

In
ce

pt
Re

s-
v2

M
ob

ile
ne

t-v
2

Re
sn

et
-1

8
Re

sn
et

-5
0

Re
sn

et
-1

01
Sq

ue
ez

en
et

Vg
g-

16
Vg

g-
19

Xc
ep

tio
n

-1

-0.5

0

0.5

1

Br
ai

n-
C

N
N

 C
or

re
la

tio
n

Image statistics Spatial frequencya

36 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246934
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 5 
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Supplementary Figure 5. Correlating the object representational structures across the two states of image stats and SF 
transformations within each human ventral brain regions and each sampled layer of the 14 different CNNs. a. The results from Z-
normalized Euclidean distance measure and Spearman rank correlation. These are the same results as those reported on 
Supplementary Figure 4 and are included here for comparison purposes. b. The results from Z-normalized Euclidean distance measure 
and Pearson correlation. c. The results from correlation measure and Spearman rank correlation. Very similar results were obtained 
from these different types of measures.
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Supplementary Figure 6. Correlating the object representational structures across the two states of image stats and SF 
transformations within each sampled layer of Resnet-50 pretrained either with the original ImageNet images (RN50-IN), the 
stylized ImageNet Images (RN50-SIN), both the original and the stylized ImageNet Images (RN50-SININ), or both sets of 
images and then fine-tuned with the stylized ImageNet images (RN50-SININ-IN). The results do not appear to differ 
substantially across these different training regimes.
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Supplemental Figure 7
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Supplementary Figure 7. Comparing the representational structure correlation for object categories and single objects for image stats 
and SF transformations in 14 different CNNs. a. The stimuli used. b. The representational structure correlation for object categories. 
These are the same results as those reported on Supplementary Figure 4 and are included here for comparison purposes. c. The 
representational structure correlation for single objects. A single exemplar was chosen from each of the eight object categories for this 
analysis. This analysis was carried out twice, each involving a different exemplar from a given category. Similar results were obtained 
for object categories and single objects with object representational structure correlation fluctuated over the course of CNN
processing. If anything, the fluctuation in correlation was more drastic for the single objects than for the object categories. 
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