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ABSTRACT 

Any given visual object input is characterized by multiple visual features, such as 

identity, position and size. Despite the usefulness of identity and nonidentity 

features in vision and their joint coding throughout the primate ventral visual 

processing pathway, they have so far been studied relatively independently. Here 

we document the relative coding strength of object identity and nonidentity 

features in a brain region and how this may change across the human ventral 

visual pathway. We examined a total of four nonidentity features, including two 

Euclidean features (position and size) and two non-Euclidean features (image 

statistics and spatial frequency content of an image). Overall, identity 

representation increased and nonidentity feature representation decreased along 

the ventral visual pathway, with identity outweighed the non-Euclidean features, 

but not the Euclidean ones, in higher levels of visual processing. A similar 

analysis was performed in 14 convolutional neural networks (CNNs) pretrained to 

perform object categorization with varying architecture, depth, and with/without 

recurrent processing. While the relative coding strength of object identity and 

nonidentity features in lower CNN layers matched well with that in early human 

visual areas, the match between higher CNN layers and higher human visual 

regions were limited. Similar results were obtained regardless of whether a CNN 

was trained with real-world or stylized object images that emphasized shape 

representation. Together, by measuring the relative coding strength of object 

identity and nonidentity features, our approach provided a new tool to 

characterize feature coding in the human brain and the correspondence between 

the brain and CNNs. 
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SIGNIFICANCE STATEMENT 
 
This study documented the relative coding strength of object identity compared to 

four types of nonidentity features along the human ventral visual processing 

pathway and compared brain responses with those of 14 CNNs pretrained to 

perform object categorization. Overall, identity representation increased and 

nonidentity feature representation decreased along the ventral visual pathway, 

with the coding strength of the different nonidentity features differed at higher 

levels of visual processing. While feature coding in lower CNN layers matched 

well with that of early human visual areas, the match between higher CNN layers 

and higher human visual regions were limited. Our approach provided a new tool 

to characterize feature coding in the human brain and the correspondence 

between the brain and CNNs. 
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INTRODUCTION 

In real-world vision, object identity information always appears together 

with nonidentity information, such as the position and size of an object. 

Nevertheless, vision research in the past several decades has mainly focused on 

discarding nonidentity features to recover object identity representations 

regardless of how objects may appear in the real world. The formation of such 

identity-preserving transformation tolerant object representations has been 

regarded as the defining feature of primate high-level vision (DiCarlo & Cox, 

2007; DiCarlo et al., 2012). 

Vision, however, is not just about object recognition; it also helps us to 

interact with the objects in the world. For example, to pick up an object, its 

position, size and orientation, rather than its identity, would be most relevant. In 

fact, both object identity and nonidentity features are represented together in 

higher visual areas in occipito-temporal cortex (OTC) in both macaques (Hung et 

al., 2005; Hong et al., 2016) and humans (Schwarzlose et al., 2008; Kravitz et al., 

2008 & 2010; Carlson et al., 2011; Cichy et al., 2011 & 2013; Vaziri-Pashkam et 

al., 2019), with these two types of information being represented in a largely 

distributed and overlapping manner (Hong et al., 2016). Despite the usefulness 

of object identity and nonidentity features in vision and their joint coding in visual 

processing, they have so far been studied relatively independently. What is the 

relative coding strength of these two types of information within a brain region? 

How does it change over the course of visual processing in different brain 

regions? Answers to these questions will not only better characterize the coding 

of different visual features within a brain region, but also delineate the evolution 

of visual information representation along the ventral visual processing pathway. 

Recent hierarchical CNNs have achieved human-like object categorization 

performance (Kriegeskorte, 2015; Yamins & Dicarlo, 2016; Rajalingham, et al., 

2018; Serre, 2019), with representations formed in early and late layers of the 

network tracking those of the human early and later visual processing regions, 

respectively (Khaligh-Razavi & Kriegeskorte, 2014; Güçlü & van Gerven, 2015; 
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Cichy et al., 2016; Eickenberg et al., 2017). Together with results from monkey 

neurophysiological studies, CNNs have been regarded by some as the current 

best models of the primate visual system (e.g., Cichy & Kaiser, 2019; Kubilius et 

al., 2019). Nevertheless, we lack a detailed and clear understanding of how 

information is processed in CNNs. This is especially evident from recent studies 

reporting a number of discrepancies in processing between the brain and CNNs 

(Serre, 2019). Our own investigation has shown that the close brain-CNN 

correspondence was rather limited and could not fully capture visual processing 

in the human brain (Xu & Vaziri-Pashkam, 2020). By examining the 

representations of object identity and nonidentity features in CNNs and 

comparing the results with those from the human brain, we can form a deeper 

understanding of how visual information is processed in CNNs. 

In this study we analyzed four existing fMRI data sets and documented the 

relative encoding strength of object identity and nonidentity features and its 

evolution across the human ventral visual processing pathway in OTC regions 

(Figure 1). We compared object identity representation with four types of 

nonidentity features, including two Euclidean features (position and size) and two 

non-Euclidean features (image statistics and the spatial frequency (SF) content 

of an image). We found an overall increase of identity and a decrease of 

nonidentity information representation along the human visual processing 

hierarchy. While identity representation dominated those of the non-Euclidean 

features in higher levels of visual processing, this was not the case for the 

Euclidean features examined. We additionally examined 14 different CNNs 

pretrained to perform object categorization with varying architecture, depth, and 

with/without recurrent processing. We found that while the relative coding 

strength of object identity and nonidentity features in lower CNN layers matched 

with that in human early visual areas, the match between higher CNN layers and 

higher human visual regions were limited. 
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Figure 1. (A) An illustration of the block design paradigm used. Participants performed a one-back 
repetition detection task on the images. An actual block in the experiment contained 10 images with two 
repetitions per block. See Methods for more details. (B) The eight real-world object categories used. (C)
The brain regions examined. They included topographically defined early visual areas V1 to V4 and 
functionally defined higher object processing regions LOT and VOT. (D) The four types of nonidentity 
transformations examined. They included two Euclidean transformations - position and size, and two non-
Euclidean transformations - image stats and spatial frequency. (E) An example RDM from a brain region 
containing all pairwise Euclidean distances for all the categories shown across both values of the image 
stats feature (i.e., original and controlled).
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Materials and Methods 

fMRI Experimental Details 

Details of the fMRI experiments have been described in two previously 

published studies (Vaziri-Pashkam & Xu, 2019 and Vaziri-Pashkam et al., 2019). 

They are summarized here for the readers’ convenience.  

Seven, seven, six, and ten healthy human participants with normal or 

corrected to normal visual acuity, all right-handed, and aged between 18-35 took 

part in Experiments 1 to 4, respectively. Each main experiment was performed in 

a separate session lasting between 1.5 and 2 hours. Each participant also 

completed two additional sessions for topographic mapping and functional 

localizers. MRI data were collected using a Siemens MAGNETOM Trio, A Tim 

System 3T scanner, with a 32-channel receiver array head coil. For all the fMRI 

scans, a T2*-weighted gradient echo pulse sequence with TR of 2 sec and voxel 

size of 3 mm x 3 mm x 3 mm was used. FMRI data were analyzed using 

FreeSurfer (surfer.nmr.mgh.harvard.edu), FsFast (Dale et al., 1999) and in-

house MATLAB codes. FMRI data preprocessing included 3D motion correction, 

slice timing correction and linear and quadratic trend removal. Following standard 

practice, a general linear model was then applied to the fMRI data to extract beta 

weights as response estimates. 

The general experimental paradigm consisted of a 1-back image repetition 

detection task in which participants viewed a stream of sequentially presented 

images and pressed a response button when the same image repeated back to 

back (Figure 1a). This task engaged participants’ attention on the object shapes 

and ensured robust fMRI responses. Two image repetitions occurred randomly in 

each image block. We used cut-out grey-scaled images from eight real-world 

object categories (faces, bodies, houses, cats, elephants, cars, chairs, and 

scissors) and modified them to occupy roughly the same area on the screen 

(Figure 1b). For each object category, we selected ten exemplar images that 

varied in identity, pose and viewing angle to minimize the low-level similarities 
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among them. Each block of image presentation contained images from the same 

object category. Participants fixated at a central red dot throughout the 

experiment. Eye-movements were monitored in all the fMRI experiments to 

ensure proper fixation. We examined responses from early visual areas V1 to V4 

and higher visual processing regions in lateral occipito-temporal (LOT) and 

ventral occipito-temporal (VOT) cortex (see more details below) (Figure 1c). 

In Experiment 1, we tested position tolerance and presented images either 

above or below the fixation (Figure 1d). Each block contained a random 

sequential presentation of ten exemplars from the same object category shown 

either all above or all below the fixation. To ensure that object identity 

representation in lower brain regions truly reflected the representation of object 

identity and not low-level differences among the images of the different 

categories, controlled images with low-level image differences equated among 

the different categories were shown. These controlled images were generated by 

equalizing contrast, luminance and spatial frequency of the images across all the 

categories using the shine toolbox (Willenbockel et al., 2010, see Figure 1c). All 

images subtended 2.9º x 2.9º and were shown at 1.56º above the fixation in half 

of the 16 blocks and the same distance below the fixation in the other half of the 

blocks. Each image was presented for 200 msec followed by a 600 msec blank 

interval between the images. Each experimental run contained 16 blocks, one for 

each of the 8 categories in each of the two image positions. The order of the 

eight object categories and the two positions were counterbalanced across runs 

and participants. Each block lasted 8 secs and followed by an 8-sec fixation 

period. There was an additional 8-sec fixation period at the beginning of the run. 

Each participant completed one scan session with 16 runs for this experiment, 

each lasting 4 mins 24 secs.  

In Experiment 2, we tested size tolerance and presented images either in 

a large size (5.77º x 5.77º) or small size (2.31º x 2.31º) centered at fixation 

(Figure 1d). As in Experiment 1, controlled images were used here. Half of the 16 

blocks contained small images and the other half, large images. Other details of 
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the experiment were identical to that of Experiment 1. 

In Experiment 3, we tested image stats tolerance and presented images at 

fixation either in the original unaltered format or in the controlled format 

(subtended 4.6º x 4.6º) (Figure 1d). Half of the 16 blocks contained original 

images and the other half, controlled images. Other details of the experiment 

were identical to that of Experiment 1. 

In Experiment 4, only six of the original eight object categories were 

included and they were faces, bodies, houses, elephants, cars, and chairs. 

Images were shown in 3 conditions: Full-SF, High-SF, and Low-SF (Figure 1d). 

In the Full-SF condition, the full spectrum images were shown without 

modification of the SF content. In the High-SF condition, images were high-pass 

filtered using an FIR filter with a cutoff frequency of 4.40 cycles per degree. In the 

Low-SF condition, the images were low-pass filtered using an FIR filter with a 

cutoff frequency of 0.62 cycles per degree. The DC component was restored 

after filtering so that the image backgrounds were equal in luminance. Each run 

contained 18 blocks, one for each of the category and SF condition combination. 

Each participant completed a single scan session containing 18 experimental 

runs, each lasting 5 minutes. Other details of the experimental design were 

identical to that of Experiment 1. Only the results from the LF and HF conditions 

were included in the present analysis. 

We examined responses from independent localized early visual areas V1 

to V4 and higher visual processing regions LOT and VOT (Figure 1c). V1 to V4 

were mapped with flashing checkerboards using standard techniques (Sereno et 

al., 1995). Following the detailed procedures described in Swisher et al. (2007) 

and by examining phase reversals in the polar angle maps, we identified areas 

V1 to V4 in the occipital cortex of each participant (see also Bettencourt & Xu, 

2016) (Figure 1c). To identify LOT and VOT, following Kourtzi and Kanwisher 

(2000), participants viewed blocks of face, scene, object and scrambled object 

images. These two regions were then defined as a cluster of continuous voxels in 

the lateral and ventral occipital cortex, respectively, that responded more to the 
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original than to the scrambled object images. LOT and VOT loosely correspond 

to the location of LO and pFs (Malach et al., 1995; Grill-Spector et al.,1998; 

Kourtzi & Kanwisher, 2000) but extend further into the temporal cortex in an effort 

to include as many object-selective voxels as possible in occipito-temporal 

regions. 

To generate the fMRI response pattern for each ROI in a given run, we 

first convolved an 8-second stimulus presentation boxcar (corresponding to the 

length of each image block) with a hemodynamic response function to each 

condition; we then conducted a general linear model analysis to extract the beta 

weight for each condition in each voxel of that ROI. These voxel beta weights 

were used as the fMRI response pattern for that condition in that run. Following 

Tarhan and Konkle (2019), to increase power, we selected the top 75 most 

reliable voxels in each ROI for further analyses. This was done by splitting the 

data into odd and even halves, averaging the data across the runs within each 

half, correlating the beta weights from all the conditions between the two halves 

for each voxel, and then selecting the top 75 voxels showing the highest 

correlation. This is akin to including the best units in monkey neurophysiological 

studies. For example, Cadieu et al. (2014) only selected a small subset of all 

recorded single units for their brain-CNN analysis. We obtained the fMRI 

response pattern for each condition from the 75 most reliable voxels in each ROI 

of each run. We then averaged the fMRI response patterns from all the runs and 

applied z-normalization to the averaged pattern for each condition in each ROI to 

remove amplitude differences between conditions and ROIs before further 

analyses were carried out. Very similar results were obtained if we included all 

voxels in an ROI instead of just the 75 most reliable voxels (see Extended Figure 

3-1).

CNN details 

We included 14 CNNs in our analyses (see Table 1). They included both 

shallower networks, such as Alexnet, VGG16 and VGG 19, and deeper 

networks, such as Googlenet, Inception-v3, Resnet-50 and Resnet-101. We also 
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Table 1. The CNNs and the layers examined in this study. 

CNN name Depth/Blocks Layers N of Layers 
Sampled 

Sampled Layer Names and Locations (indicated in the 
parenthesis) 

Alexnet 8 25 6 'pool1' (5), 'pool2' (9), 'pool5' (16), 'fc6' (17), 'fc7' (20), 'fc8' (23) 
Cornet-S 4 42 6 ‘V1_outpt’ (8), ‘V2_output’ (18), ‘V4_output’ (28), ‘IT_output’ 

(38), ‘decoder_avgpool’ (39), ‘decoder_output’ (42) 
Densenet-201 201 709 6 'pool1' (6), 'pool2_pool' (52), 'pool3_pool' (140), 'pool4_pool' 

(480), 'avg_pool' (706), 'fc1000' (707) 
Googlenet 22 144 6 'pool1-3x3_s2' (4), 'pool2-3x3_s2' (11), 'pool3-3x3_s2' (40), 

'pool4-3x3_s2' (111), 'pool5-7x7_s1' (140), 'loss3-classifier' 
(142) 

Inception_v3 48 316 11 'average_pooling2d_1' (29), 'average_pooling2d_2' (52), 
'average_pooling2d_3' (75), 'average_pooling2d_4' (121), 
'average_pooling2d_5' (153), 'average_pooling2d_6' (185), 
'average_pooling2d_7' (217), 'average_pooling2d_8' (264), 
'average_pooling2d_9' (295), 'avg_pool' (313), 'predictions' 
(314) 

Inception-resnet_v2 164 825 7 'max_pooling2d_1' (12), 'max_pooling2d_2' (19),  
'average_pooling2d_1' (29), 'max_pooling2d_3' (285), 
'max_pooling2d_4' (648), 'avg_pool' (822), 'predictions' (823) 

Mobilenet_v2 54 155 10 'block_2_project_BN' (26), 'block_4_project_BN' (43), 
'block_6_project_BN' (61), 'block_8_project_BN' (78), 
'block_10_project_BN' (96), 'block_12_project_BN' (113), 
'block_14_project_BN' (130), 'block_16_project_BN' (148), 
'global_average_pooling2d_1' (152), 'Logits' (153) 

Resnet-18 18 72 6 'pool1' (6), 'res2b_relu' (20), 'res3b_relu' (36), 'res4b_relu' (52), 
'pool5' (69), 'fc1000' (70) 

Resnet-50 50 177 6 'max_pooling2d_1' (5), 'activation_10_relu' (37), 
'activation_22_relu' (79), 'activation_40_relu' (141), 'avg_pool' 
(174), 'fc1000' (175) 

Resnet-101 101 347 6 'pool1' (5), 'res2c_relu' (37), 'res3b3_relu' (79), 'res4b22_relu' 
(311), 'pool5' (344), 'fc1000' (345) 

Squeezenet 18 68 5 'pool1' (4), 'pool3' (19), 'pool5' (34), 'conv10' (64), 'pool10' (66) 
Vgg-16 16 41 8 'pool1' (6), 'pool2' (11), 'pool3' (18), 'pool4' (25), 'pool5' (32), 

'fc6' (33),'fc7' (36), 'fc8' (39) 
Vgg-19 19 47 8 'pool1' (6), 'pool2' (11), 'pool3' (20), 'pool4' (29), 'pool5' (38), 

'fc6' (39),'fc7' (42), 'fc8' (45) 
Xception 71 171 8 'block2_pool' (18), 'block4_pool' (42), 'block6_sepconv3_bn' 

(68), 'block8_sepconv3_bn' (94), 'block10_sepconv3_bn' 
(120), 'block12_sepconv3_bn' (146), 'avg_pool' (168), 
'predictions' (169) 
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included a recurrent network, Cornet-S, that has been shown to capture the 

recurrent processing in macaque IT cortex with a shallower structure (Kubilius et 

al., 2019; Kar et al., 2019). This CNN has been recently argued to be the current 

best model of the primate ventral visual processing regions (Kar et al., 2019). All 

the CNNs used were trained with ImageNet images (Deng et al., 2009).  

To understand how the specific training images would impact CNN 

representations, besides CNNs trained with ImageNet images, we also examined 

Resnet-50 trained with stylized ImageNet images (Geirhos et al., 2019). We 

examined the representations formed in Resnet-50 pretrained with three different 

procedures (Geirhos et al., 2019): trained only with the stylized ImageNet Images 

(RN50-SIN), trained with both the original and the stylized ImageNet Images 

(RN50-SININ), and trained with both sets of images and then fine-tuned with the 

stylized ImageNet images (RN50-SININ-IN). 

Following O’Connor et al. (2018), we sampled between 6 and 11 mostly 

pooling and FC layers of each CNN (see Supplemental Table 1 for the specific 

CNN layers sampled). Pooling layers were selected because they typically mark 

the end of processing for a block of layers before information is pooled and 

passed on to the next block of layers. When there were no obvious pooling layers 

present, the last layer of a block was chosen. For a given CNN layer, we 

extracted the CNN layer output for each object image in a given condition, 

averaged the output from all images in a given category for that condition, and 

then z-normalized the responses to generate the CNN layer response for that 

object category in that condition (similar to how fMRI category responses were 

extracted). Cornet-S and the different versions of Resnet-50 were implemented 

in Python. All other CNNs were implemented in Matlab. Output from all CNNs 

were analyzed and compared with brain responses using Matlab. 
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Visualizing and quantifying the relative coding strength of identity and 
nonidentity features 

To directly visualize how object identity and nonidentity features may be 

represented together in a brain region, from the z-normalized fMRI response 

patterns averaged over all the runs, we first calculated all pairwise Euclidean 

distances including all the categories shown and both values of each nonidentity 

feature (e.g., small and large). We then constructed a category representational 

dissimilarity matrix (RDM) for each brain region (Kriegeskorte & Kievit, 2013, see 

Figure 1e). Using multi-dimensional scaling (MDS, Shepard, 1980), we visualized 

this RDM by projecting the first two dimensions that captured most of the 

variance onto a 2D space with the distance denoting the similarity in 

representation among the different feature combinations (Figure 2 and Extended 

Figures 2-1 to 2-4).  

To quantify the relative coding strength of the different features in a brain 

region, from the z-normalized fMRI response patterns, we obtained the averaged 

Euclidean distance between different object categories sharing the same value of 

a nonidentity feature (dwithin) and the averaged Euclidean distance between the 

same object category across the two values of a nonidentity feature (dbetween). We 

then constructed an identity dominance index (ODI) as: 

identity dominance = ( dwithin - dbetween) / (dwithin + dbetween) 

An identity-only representation that disregards the nonidentity feature would have 

a dbetween of “0” and an identity dominance of “1”. Conversely, a nonidentity-only 

representation that disregards identity would have a dwithin of “0” and an identity 

dominance of “-1”. An identity dominance of “0” indicates that equal 

representational strength of object identity and nonidentity features, such that an 

object category is equally similar to itself in the other value of the nonidentity 

feature as it is to the other categories sharing the same value of the nonidentity 

feature. Figures 3a and 3b illustrate two scenarios of how the relative coding 

strength of object identity and nonidentity features may change identity 
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dominance between two hypothetical brain regions. A similar procedure was 

applied to CNN layer output to calculate identity dominance in CNN outputs. 

All reported t tests were two-tailed and corrected for multiple comparisons 

using the Benjamini and Hochberg method (Benjamini & Hochberg, 1995). 

RESULTS 

Any given visual object input is characterized by multiple visual features, 

such as its identity, position and size. Although object identity representation has 

been intensely studied in the primate brain, nonidentity features, such as position 

and size, have also been found to be robustly coded throughout the primate 

ventral visual processing pathway (Hong et al., 2016; Vaziri-Pashkam et al., 

2019). Here we document the relative coding strength of object identity and 

nonidentity features in a brain region and how this may change across the ventral 

visual processing pathways in human OTC. We also examined responses from 

14 CNNs pretrained to perform object categorization with varying architecture, 

depth and the presence/absence of recurrent processing. Our fMRI data were 

collected with a block design in which responses were averaged over a whole 

block of multiple exemplars from the same category to increase SNR (Figure 1a). 

A total of eight real-world object categories were included and they were bodies, 

cars, cats, chairs, elephants, faces, houses, and scissors (Vaziri-Pashkam & Xu, 

2019; Vaziri-Pashkam et al., 2019; Figure 1b). The images were shown in 

conjunction with four nonidentity features (Figure 1d), including two Euclidean 

features - position (top vs bottom), size (small vs large), and two non-Euclidean 

features image - statistics (original vs controlled) and SF of an image (high SF vs 

low SF). Controlled images were created to achieve spectrum, histogram, and 

intensity normalization and equalization across the images from the different 

categories (Willenbockel et al., 2010). Controlled images also appeared in the 

position and size manipulations to ensure that object identity representation in 
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lower brain regions would reflect the representation of object identity and not low-

level differences among the images of the different categories.  

To increase power, we extracted the averaged neural response patterns 

from each block of trials from the 75 most reliable voxels from each 

independently defined visual regions along the human OTC (see Methods; the 

same results were obtained when all voxels were included from each region, see 

Extended Figure 3-1). These regions included topographic early visual areas V1 

to V4 and higher visual object processing regions LOT and VOT (Figure 1c). LOT 

and VOT have been considered as the homologue of the macaque inferio-

temproal (IT) cortex involved in visual object processing (Orban et al., 2004). 

Their responses have been shown to correlate with successful visual object 

detection and identification (Grill-Spector et al. 2000; Williams et al., 2007) and 

their lesions have been linked to visual object agnosia (Goodale et al.,1991; 

Farah, 2004). 

The 14 CNNs we examined here included both shallower networks, such 

as Alexnet, VGG16 and VGG 19, and deeper networks, such as Googlenet, 

Inception-v3, Resnet-50 and Resnet-101 (Table 1). We also included a recurrent 

network, Cornet-S, that has been shown to capture the recurrent processing in 

macaque IT cortex with a shallower structure (Kubilius et al., 2019; Kar et al., 

2019). This CNN has been recently argued to be the current best model of the 

primate ventral visual processing regions (Kar et al., 2019). To understand how 

the specific training images would impact CNN representations, besides CNNs 

trained with ImageNet images (Deng et al., 2009), we also examined Resnet-50 

trained with stylized ImageNet images (Geirhos et al., 2019). Following a 

previous study (O’Connor et al., 2018), we sampled from 6 to 11 mostly pooling 

layers of each CNN included (see Table 1 for the specific CNN layers sampled). 

Pooling layers were selected because they typically mark the end of processing 

for a block of layers before information is passed on to the next block of layers.  
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Visualizing feature coding in human OTC and CNNs 

To directly visualizing how object identity and nonidentity features may be 

represented together in a brain region, from the z-normalized fMRI response 

patterns averaged over all the runs, we first calculated all pairwise Euclidean 

distances including all the categories shown and both values of each nonidentity 

feature (e.g., small and large). We then constructed a category RDM for each 

brain region (Kriegeskorte & Kievit, 2013, see Figure 1e). Using MDS (Shepard, 

1980), we visualized this RDM by projecting the first two dimensions that 

captured most of the variance onto a 2D space with the distance denoting the 

similarity in representation among the different feature combinations (Figure 2).  

A striking feature of these MDS plots was the presence or absence of the 

separation between the objects across the two values of each nonidentity 

feature. In V1, all four types of nonidentity features resulted in some separation in 

the representational space such that objects sharing the same value were 

grouped together. As information processing ascended the visual pathway, in 

VOT, while the separation remained visible for the two Euclidean features 

positions and sizes, object representations became largely overlapping for the 

two non-Euclidean features image stats and SF values (Figure 2).  

Applying the same procedure, we also visualized how object identity and 

nonidentity features may be represented together in a CNN layer. Just like in 

early visual areas, a separation for the different values of the four nonidentity 

features was present in the lower layers of all 14 CNNs (see Figure 2 for results 

from three representative CNNs examples; see Extended Figures 2-1 to 2-4 for 

all the CNNs examined). In the last fully connected layer or the pooling layer 

before that, however, not all CNNs behaved like the higher visual regions in their 

encoding of position, size and image stats, and, critically, none resembled the 

brain in SF coding. The CNNs examined here thus do not appear to fully follow 

all the feature coding characteristics of the human brain, especially in higher 

layers. 
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This was done by projecting the first two dimensions that captured most of the variance onto a 2D space 
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Quantifying the relative coding strength of identity and nonidentity features 
in human OTC 

To quantify the relative coding strength of object identity and nonidentity 

features in a brain region and a CNN layer, from the z-normalized fMRI response 

patterns, we obtained the averaged Euclidean distance between different object 

categories sharing the same value of a nonidentity feature (dwithin) and the 

averaged Euclidean distance between the same object category across the two 

values of a nonidentity feature (dbetween). We then constructed an identity 

dominance index (see Methods). An identity-only representation that disregards 

the nonidentity feature would have a dbetween of “0” and an identity dominance of 

“1”. Conversely, a nonidentity-only representation that disregards identity would 

have a dwithin of “0” and an identity dominance of “-1”. An identity dominance of 

“0” would indicate equal representational strength of identity and nonidentity 

features, such that an object category is equally similar to itself in the other value 

of the nonidentity feature as it is to the other categories sharing the same value 

of the nonidentity feature. Figures 3a and 3b illustrate two scenarios of how the 

relative encoding strength of identity and nonidentity features may change the 

identity dominance measure between two hypothetical brain regions.   

For all four types of nonidentity features examined, identity dominance 

was greater for higher than lower visual areas (the averages of LOT and VOT 

were all higher than those of V1 and V2, ts > 3.24, ps < .01; all reported t tests 

were two-tailed and corrected for multiple comparisons using the Benjamini and 

Hochberg method, Benjamini & Hochberg, 1995). Thus, object category 

encoding strength increased for all four types of nonidentity features as 

information ascended the visual processing pathway. Nonetheless, differences 

existed among them, especially between the Euclidean and non-Euclidean 

features (Figure 3c).  

The two Euclidean features exhibited an overall similar response pattern. 

For position, identity dominance for early visual areas was very negative (the 

average of V1 and V2 was much lower than zero, t(6) = 57.04, p < 0.001), but 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246967doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246967
http://creativecommons.org/licenses/by-nc-nd/4.0/


C
at

eg
or

y 
D

om
in

an
ce

 In
de

x
C

at
eg

or
y 

D
om

in
an

ce
 In

de
x

Figure 3 

C

D

Alexnet
Cornet-S
Densenet-201
Googlenet
Inception-v3
Inception-Resnet_v2
Mobilenet_v2

Brain

CNN Set 1

Resnet-18
Resnet-50
Resnet-101
Squeezenet
VGG-16
VGG-19
Xception

Brain

CNN Set 2

Area A Area B

A B

Area A Area BArea A Area B 

0

C
at

eg
or

y 
D

om
in

an
ce

 In
de

x

Area A Area B 

0

C
at

eg
or

y 
D

om
in

an
ce

 In
de

x

X

Y

X >> Y X ≈ Y X ≈ Y X << Y

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts

-1

-0.5

0

0.5

1

To
le

ra
nc

e 
In

de
x

Lower Layers

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts

Higher Layers

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts

Lower Layers

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts

Higher Layers

1 2 3 4 5 6
Layer

Alexnet

1 2 3 4 5 6

Cornet-S

1 2 3 4 5 6

Densenet-201

1 2 3 4 5 6

Googlenet

1 3 5 7 9 11

Inception-v3

1 2 3 4 5 6 7

InceptRes-v2

1 3 5 7 9

Mobilenet-v2

1 2 3 4 5 6
Layer

Resnet-18

1 2 3 4 5 6

Resnet-50

1 2 3 4 5 6

Resnet-101

1 2 3 4 5

Squeezenet

1 2 3 4 5 6 7 8

Vgg-16

1 2 3 4 5 6 7 8

Vgg-19

1 2 3 4 5 6 7 8

Xception

V1 V2 V3 V4 LO
T

VO
T

-1

-0.5

0

0.5

1

To
le

ra
nc

e 
In

de
x

Brain

ImageStats
SF
Size
Position

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts

-1

-0.5

0

0.5

1

To
le

ra
nc

e 
In

de
x

Lower Layers

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts

Higher Layers

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts
Lower Layers

Po
si

tio
n

Si
ze SF

Im
ag

eS
ta

ts

Higher Layers

C
at

eg
or

y 
D

om
in

an
ce

 In
de

x

E

1 2 3 4 5 6
Layer

RN50-IN

1 2 3 4 5 6

RN50-SIN

1 2 3 4 5 6

RN50-SININ

1 2 3 4 5 6

RN50-SININ-IN

1 2 3 4 5 6

Alexnet

1 2 3 4 5 6

Cornet-S

1 2 3 4 5 6

Densenet-201

1 2 3 4 5 6
Layer

Googlenet

1 3 5 7 9 11

Inception-v3

1 2 3 4 5 6 7

InceptRes-v2

1 3 5 7 9

Mobilenet-v2

1 2 3 4 5 6

Resnet-18

1 2 3 4 5 6 7 8

Vgg-16

1 2 3 4 5 6 7 8

Vgg-19

V1 V2 V3 V4 LO
T

VO
T

-1

-0.5

0

0.5

1

To
le

ra
nc

e 
In

de
x

Brain

ImageStats
SF
Size
Position

1 2 3 4 5 6
Layer

RN50-IN

1 2 3 4 5 6

RN50-SIN

1 2 3 4 5 6

RN50-SININ

1 2 3 4 5 6

RN50-SININ-IN

1 2 3 4 5 6

Alexnet

1 2 3 4 5 6

Cornet-S

1 2 3 4 5 6

Densenet-201

1 2 3 4 5 6
Layer

Googlenet

1 3 5 7 9 11

Inception-v3

1 2 3 4 5 6 7

InceptRes-v2

1 3 5 7 9

Mobilenet-v2

1 2 3 4 5 6

Resnet-18

1 2 3 4 5 6 7 8

Vgg-16

1 2 3 4 5 6 7 8

Vgg-19

V1 V2 V3 V4 LO
T

VO
T

-1

-0.5

0

0.5

1

To
le

ra
nc

e 
In

de
x

Brain

ImageStats
SF
Size
Position

Figure 3. Quantifying the relative coding strength of identity and nonidentity features in human OTC and CNNs. An identity dominance
index was used to quantify the relative coding strength of object identity and nonidentity features in a brain region and a CNN layer (see 
Methods). An identity-only representation that disregards the nonidentity feature would an identity dominance of “1”. Conversely, a 
nonidentity-only representation that disregards identity would have an identity dominance of “-1”. (A) and (B) Two scenarios of how a 
change in the relative coding strength of identity and nonidentity features in two hypothetical brain regions may change the resulting 
identity dominance measure. (C) Identity dominance measures from human OTC and CNNs comparing the coding of identify with each 
of the four nonidentity features. (D) Direct comparisons of identity dominance across the four types of nonidentity features. For brain
regions, only the average of the two early brain regions (V1 and V2) and the two higher brain regions (LOT and VOT) were included. For 
CNNs, only the average of the first two sampled layers and the average of the last two sampled layers were included. (E) Identity 
dominance from human OTC and Resnet-50 trained with original and stylized ImageNet images. Resnet-50 was pretrained either with 
the original ImageNet images (RN50-IN), the stylized ImageNet Images (RN50-SIN), both the original and the stylized ImageNet Images 
(RN50-SININ), or both sets of images and then fine-tuned with the stylized ImageNet images (RN50-SININ-IN).
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increased to be close to zero in higher visual areas (the average of VOT and 

LOT was still less than zero, t(6) = 7.23, p = 0.005) (Figure 3c). Identity 

dominance did not vary significantly across V1 to V3 (F(2,12) = 3.32, p > .071), 

but did increase between V3 and V4, and between V4 and LOT (ts > 4.12, ps < 

.016), with no difference between LOT and VOT (t(6) = 1.54, p = .18). For size, 

identity dominance for early visual areas was also very negative (the average of 

V1 and V2 was much lower than zero, t(6) =16.88, p < 0.001), but increased to 

be no different from zero in higher visual areas (the average of VOT and LOT to 

zero, t(6) = 0.21, p = 0.84) (Figure 3c). Like position, identity dominance did not 

vary significantly from V1 to V3 (F(2,12) = .23, p > .79), but did increase between 

V3 and V4, and between V4 and LOT (ts > 3.85, ps < .021), with no difference 

between LOT and VOT (t(6) = 0.50, p = 1). These results indicated that position 

and size were much more prominent than objects in determining the 

representational space in early visual areas. The dominance of these two 

features over objects did not change from V1 to V3. Starting from V4, however, 

the strength of object coding increased until at higher visual regions LOT and 

VOT where it played a more or less similar role as position and size in shaping 

the representational space. Higher visual representations were thus never truly 

dominated by object identities, but rather maintained position and size 

information as part of the object representation.  

A different pattern emerged for the two non-Euclidean features. For image 

stats, identity dominance started close to zero in early visual areas (the average 

of V1 and V2 was greater than zero, paired t(5) = 4.02, p = 0.014; however, V1 

alone was only marginally significantly different from zero, t(5) = 2.22, p = 0.077) 

to significantly above zero in higher visual areas (the average of LOT and VOT 

was greater than zero, t(5) = 10.40, p = 0.004) (Figure 3c). Identity dominance 

also differed among V1 to V4 (F(3,15) = 12.94, p < .001) and linearly increased 

from V1 to V4 (with the averaged linear correlation coefficients being 0.84, and 

different from 0, t(5) = 4.92, p = 0.004). Pairwise tests showed that the difference 

between V1 and V2, and that between V4 and LOT were significant (ts > 3.69, ps 

< .036), with no difference observed between other adjacent region (ts < 2.42, ps 
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> .10). Thus, while object identity and image stats were more or less equally

prominent in determining object representation in early visual areas, the strength

of identity coding gradually increased and dominated representation at higher

levels of visual processing. For SF, although a similar overall trend of identity

dominance going from zero in early visual areas to significantly above zero in

higher visual areas was seen (t(9) = 0.40, p = 0.70, and t(9) = 4.79, p = 0.001,

respectively, for the difference between zero and the averages of V1 and V2 and

that of LOT and VOT), this was primarily driven by an identity dominance

increase in LOT and VOT as identity dominance did not vary from V1 to V4 (no

difference among V1 to V4, F(3,27) = 1.75, p = .18, the averaged linear

correlation coefficient was -0.03 and no different from 0, t(9) = 0.39, p = 0.71).

Thus, unlike in image stats, object identity and SF played a similar role in

determining the representational space from V1 to V4; identity dominated SF

representation only during higher levels of visual processing. Overall, image stats

and SF appeared to be equally prominent as object identity in determining the

representational space in early visual areas. As information ascends the visual

processing hierarchy, however, object identity, rather than image stats or SF,

took over the representational space.

To understand how the four types of nonidentity features may differ from 

each other, we also directly compared identity dominance for these four features 

across the four experiments using unpaired t tests (Figure 3d). In early visual 

regions, identity dominance for the average of V1 and V2 was lower for position 

than size (t(12) = 6.21, p < 0.001; all t tests reported here were corrected for 

multiple comparisons), lower for size than for both SF and image stats (ts > 

11.05, ps < 0.0001), with the difference between the latter two approaching 

significance (t(14) = 2.05, p = 0.060). In higher visual regions, identity dominance 

for the average of LOT and VOT followed the same relative difference as in the 

average of V1 and V2, with all the above pairwise comparisons reaching 

significance (ts >3.06, ps < 0.0079). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246967doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246967
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Overall, we found that the representational strength of object identity 

information significantly increased over nonidentity information from lower to 

higher visual areas. Nevertheless, differences existed among the different 

nonidentity features, with identity dominating the two non-Euclidean features 

(image statistics and SF) but not the two Euclidean features (position and size) in 

higher OTC regions. 

Quantifying the relative coding strength of identity and nonidentity features 
in CNNs 

Like the regions in OTC, for position, all CNNs tested showed very 

negative identity dominance in the early layers (Figure 3c). However, 12 of the 14 

CNNs showed above zero identity dominance in the final layers and thus a 

dominance of identity over position coding not seen in the brain. For size, identity 

dominance of CNNs followed a similar trajectory as those of the brain, being very 

negative in the early layers and became close to zero in the final layers. 

Nevertheless, 13 of the 14 CNNs showed a dip in the middle layers not seen in 

the brain. For image stats, although, like the brain, identity dominance of a 

majority of the CNNs started close to zero in early layers and then became above 

zero in the final layers, their identity dominance trajectories differed from the 

brain: instead of showing a gradual increase across the layers, CNNs either 

showed no increase across multiple layers, or a dip below zero in the middle 

layers, before a rise was seen towards the end of the processing. For SF, identity 

dominance from CNNs were largely negative and none were above zero in the 

final layers like the brain. Overall, CNNs exhibited an over representation of 

identity over position and an under representation of identity over SF across low 

to high layers. Even for size and image stats where brain-like identity dominance 

was seen in the early and final layers, their trajectories, however, deviated from 

those of the brain.  

As with the brain data, we also directly compared CNN identity dominance 

for the four types of nonidentity features and with those obtained from the brain 

(Figure 3d). While CNN lower layers exhibited a globally similar identity 
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dominance profile across the four types of nonidentity features as that seen in 

early visual areas, the profile for the higher layers deviated from that of the higher 

visual regions, notably with an overrepresentation of identity over position and an 

underrepresentation of identity over SF (and also for image stats to some extent). 

Thus, while the relative coding strength of object identity and nonidentity features 

in lower CNN layers matched with that in early visual areas, the match between 

higher CNN layers and higher human visual regions were limited.  

The effect of training a CNN on original vs stylized image-net images 

Although CNNs are believed to explicitly represent object shapes in the 

higher layers (Kriegeskorte, 2015; LeCun et al., 2015; Kubilius et al., 2016), 

emerging evidence suggests that CNNs may largely use local texture patches to 

achieve successful object classification (Ballester & de Araujo, 2016, Gatys et al., 

2017) or local rather than global shape contours for object recognition (Baker et 

al., 2018). In a recent demonstration, CNNs were found to be poor at classifying 

objects defined by silhouettes and edges, and when texture and shape cues 

were in conflict, classifying objects according to texture rather than shape cues 

(Geirhos et al., 2019; see also Baker et al., 2018). However, when Resnet-50 

was trained with stylized ImageNet images in which the original texture of every 

single image was replaced with the style of a randomly chosen painting, object 

classification performance significantly improved, relied more on shape than 

texture cues, and became more robust to noise and image distortions (Geirhos et 

al., 2019). It thus appears that a suitable data set may overcome the texture bias 

in standard CNNs and allow them to utilize more shape cues. 

Here we tested if the relative coding strength of object identity and 

nonidentity features in a CNN may become more brain-like when the CNN was 

trained with stylized ImageNet images. To do so, we examined the 

representations formed in Resnet-50 pretrained with three different procedures 

(Geirhos et al., 2019): trained only with the stylized ImageNet Images (RN50-

SIN), trained with both the original and the stylized ImageNet Images (RN50-

SININ), and trained with both sets of images and then fine-tuned with the stylized 
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ImageNet images (RN50-SININ-IN). For comparison, we also included Resnet-

50 trained with the original ImageNet images (RN50-IN) that we tested before.  

Despite minor differences, object dominance measures were remarkably 

similar whether or not Resnet-50 was trained with the original or the stylized 

ImageNet images: all were still substantially different from the human ventral 

regions (Figure 3e). Thus, despite the improvement in object classification 

performance with the inclusion of the stylized images, the relative coding strength 

of object identity and nonidentity features in Resnet-50 did not appear to change. 

The incorporation of stylized ImageNet images likely forced Resnet-50 to use 

long-range structures rather than local texture structures, but without 

fundamentally changing how images were computed. The inability of Resnet-50 

to exhibit brain-like object dominance suggests that such a difference could not 

be overcome by this type of training. 

DISCUSSION 

Despite the usefulness of object identity and nonidentity features in vision 

and their joint coding in visual processing in the primate brain, they have so far 

been studied relatively independently. Here we documented the relative coding 

strength of object identity and nonidentity features within a brain region and 

tracked how it changed over the course of processing along the human ventral 

visual pathway. We compared object identity with nonidentity features, which 

included both Euclidean features (position and size) and non-Euclidean features 

(basic image statistics and the SF content of an image). We additionally 

compared responses from the human brain with those from 14 CNNs pretrained 

for object recognition. 

Our measure of the relative coding strength of object identity and 

nonidentity features depended on the variation we introduced in each feature. 

For example, the relative coding strength of two similar object identities over two 

dissimilar object positions could be very different from that of two different object 
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identities over two similar object positions. Because similarity within a feature 

dimension changes across brain regions (e.g., similar objects in one region may 

become dissimilar in another region), it would not have been possible to equate 

feature variations for all the brain regions examined. Thus we have chosen what 

we believed to be reasonable variations for each feature, including sampling a 

wide range of real-world object categories, choosing two positions and two sizes 

that were as different as possible but still allowed each object at a given position 

or size to be visible, and choosing two SF ranges that were far apart from each 

other. The goal here was therefore not to measure the absolute feature coding 

bias in a brain region or a CNN layer, but rather, for a set of reasonably chosen 

features, how the feature coding bias may change across visual areas and CNN 

layers to inform us how object identity and nonidentity features may be 

represented together.  

Overall, we found that the encoding of object identity significantly 

increased over all four types of nonidentity features from lower to higher visual 

areas. Meanwhile, differences existed among these different nonidentity features, 

with identity dominating the non-Euclidean features (image statistics and SF) but 

not the Euclidean features (position and size) in higher OTC regions. Specifically, 

position and size were much more prominent than objects in determining the 

representational space in early visual areas. The dominance of these two 

features over objects did not change from V1 to V3. Starting from V4, the 

strength of object coding increased until at higher visual regions LOT and VOT 

where it played a more or less similar role as position and size in shaping the 

representational space. Higher visual representations were thus never truly 

dominated by object identities, but rather maintaining position and size 

information as part of the object representation. This is consistent with the 

existence of topographic maps in higher visual regions (Brewer et al. 2005) and 

the robust representation of position information in monkey IT (DiCarlo & 

Maunsell, 2003; Hung et al., 2004; Hong et al., 2016) and in human VOT and 

LOT (Schwarzlose et al., 2008; Kravitz et al., 2008 & 2010; Carlson et al., 2011; 

Cichy et al., 2011 & 2013). Meanwhile, image stats and SF were equally 
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prominent as identity in determining the representational space in early visual 

areas. As information ascends the visual processing hierarchy, however, identity 

dominated image stats and SF in the representational space. While the 

dominance of identity over image stats increased steadily from V1 to LOT/VOT, 

the dominance of identity over SF remained relatively stable from V1 to V4 and 

then increased significantly in LOT/VOT. Together, our study documented for the 

first time the relatively coding strength of object identity and nonidentity features 

in different human visual processing regions and its evolution of along the ventral 

processing pathway. 

Why would identity dominate the two non-Euclidean but not the two 

Euclidean features examined at higher levels of ventral visual processing? One 

possibility could be that Euclidean features are more essential in our direct 

interaction with the objects, such as in reaching and grasping. The non-Euclidean 

features, on the other hand, may be discarded once object identity and other 

non-identity information is recovered. For example, once we identity an object 

and its position and size in a foggy viewing condition, information about how 

foggy it is may no longer be useful in guiding our further interaction with the 

object. Further studies are needed to verify this speculation. 

Compared to regions in human OTC, the 14 CNNs we examined exhibited 

an over representation of identity over position and an under representation of 

identity over SF from lower to higher layers. Even for size and image stats where 

brain-like responses were seen in the early and final layers, their trajectories, 

however, deviated from those of the brain. Direct comparison of the encoding of 

the four types of nonidentity features with respect to object identity revealed that 

while CNN lower layers exhibited a globally similar response profile across the 

four types of nonidentity features as that seen in early visual areas, the profile for 

the higher layers deviated from that of the higher visual regions. Thus, while the 

relative coding strength of object identity and nonidentity features in lower CNN 

layers of CNNs matched with that of early human visual areas, the match 

between higher CNN layers and higher human visual regions were limited. 
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Similar results were obtained for the different CNNs tested and for a CNN trained 

with stylized object images that emphasized shape representation. 

To increase SNR, using a block design, we averaged responses from 

multiple exemplars from the same category. We thus examined object category 

responses rather than responses to each induvial exemplar. Previous research 

has shown similar category and exemplar response profiles in macaque IT and 

human lateral occipital cortex with more robust responses by categories than 

individual exemplars due to an increase in SNR (Hung et al., 2005; Cichy et  al., 

2011). In a recent study, Rajalingham, et al. (2018) found better behavior-CNN 

correspondence at the category but not at the individual exemplar level. Thus, 

comparing responses averaged overall multiple exemplars at the category level, 

rather than at the exemplar level, should have increased our chance of finding a 

close brain-CNN correspondence if it existed. Yet, such a close correspondence 

was only found at the lower, but not at higher, levels of visual processing. This 

result echoes our finding in another study in which we showed that the object 

representational structures formed in lower CNN layers could fully capture those 

formed in lower human visual processing regions but that higher CNN layers 

failed to do so for higher human visual processing regions (Xu & Vaziri-Pashkam, 

2020). 

We included in this study both shallow and very deep CNNs. Deeper 

CNNs in general exhibit better object recognition performance (as evident from 

the ImageNet challenge results, see Russakovsky et al., 2015), and can partially 

approximate the recurrent processing in ventral visual regions (Kar et al., 2019). 

The recurrent CNN we examined here, Cornet-S, explicitly models recurrent 

processing in ventral visual areas (Kar et al., 2019) and is considered by some 

as the current best model of the primate ventral visual regions (Kubilius et al., 

2019). Yet we observed similar performance between shallow and deep CNNs 

(e.g., Alexnet vs Googlenet), and the recurrent CNN did not perform better than 

the other CNNs.  
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The present results join other studies that have shown differences 

between the CNNs and brain, such as the kind of features used in object 

recognition (Ballester & de Araujo, 2016, Ulman et al., 2016; Gatys et al., 2017; 

Baker et al., 2018; Geirhos et al., 2019), disagreement in representational 

structure between CNNs and brain/behavior (Kheradpisheh et al., 2016; Karimi-

Rouzbahani et al., 2017; Rajalingham, et al., 2018; Xu & Varziri-Pashkam, 2020), 

the inability of CNN to explain more than 55% of the variance of macaque V4 and 

IT neurons (Cadieu et al., 2014; Yamins et al., 2014; Kar et al. 2019; Bao et al., 

2020), and how the two systems handle adversarial images (see Serre, 2019). 

Here by using a novel measure of documenting the relative coding strength of 

object identity and nonidentity features, we showed that although there was a 

close brain-CNN correspondence at lower levels of visual processing, such a 

correspondence was limited at higher levels of visual processing.  

To conclude, by documenting the relative coding strength of object identity 

and nonidentity features in different human visual processing regions and its 

evolution of along the ventral processing pathway, we showed overall an 

increase of identity and a decrease of nonidentity information representation 

during the course of visual processing in the human brain. While the 

representation of identity dominated those of the non-Euclidean features in 

higher levels of visual processing, this was not the case for the Euclidean 

features examined. Our examination of 14 CNNs further revealed that, while 

feature coding in lower CNN layers matched with that of human early visual 

areas, the match between higher CNN layers and higher human visual regions 

were limited. 
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Figure Captions 

Figure 1. (A) An illustration of the block design paradigm used. Participants 

performed a one-back repetition detection task on the images. An actual block in 

the experiment contained 10 images with two repetitions per block. See Methods 

for more details. (B) The eight real-world object categories used. (C) The brain 

regions examined. They included topographically defined early visual areas V1 to 

V4 and functionally defined higher object processing regions LOT and VOT. (D) 
The four types of nonidentity transformations examined. They included two 

Euclidean transformations - position and size, and two non-Euclidean 

transformations - image stats and spatial frequency. (E) An example RDM from a 

brain region containing all pairwise Euclidean distances for all the categories 

shown across both values of the image stats feature (i.e., original and controlled). 

Figure 2. Visualizing feature coding in human OTC and CNNs. Using MDS, the 

RDMs containing object categories in both values of a nonidentity feature from 

each brain region/sampled CNN layer was visualized. This was done by 

projecting the first two dimensions that captured most of the variance onto a 2D 

space with the distance denoting the similarity in representation among the 

different feature combinations.  

Figure 3. Quantifying the relative coding strength of identity and nonidentity 

features in human OTC and CNNs. An identity dominance index was used to 

quantify the relative coding strength of object identity and nonidentity features in 

a brain region and a CNN layer (see Methods). An identity-only representation 

that disregards the nonidentity feature would an identity dominance of “1”. 

Conversely, a nonidentity-only representation that disregards identity would have 

an identity dominance of “-1”. (A) and (B) Two scenarios of how a change in the 

relative coding strength of identity and nonidentity features in two hypothetical 

brain regions may change the resulting identity dominance measure. (C) Identity 

dominance measures from human OTC and CNNs comparing the coding of 

identify with each of the four nonidentity features. (D) Direct comparisons of 

identity dominance across the four types of nonidentity features. For brain 
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regions, only the average of the two early brain regions (V1 and V2) and the two 

higher brain regions (LOT and VOT) were included. For CNNs, only the average 

of the first two sampled layers and the average of the last two sampled layers 

were included. (E) Identity dominance from human OTC and Resnet-50 trained 

with original and stylized ImageNet images. Resnet-50 was pretrained either with 

the original ImageNet images (RN50-IN), the stylized ImageNet Images (RN50-

SIN), both the original and the stylized ImageNet Images (RN50-SININ), or both 

sets of images and then fine-tuned with the stylized ImageNet images (RN50-

SININ-IN). 

Extended Figure 2-1. Visualizing identity and position coding in human OTC and 

all the CNNs examined.  

Extended Figure 2-2. Visualizing identity and size coding in human OTC and all 

the CNNs examined. 

Extended Figure 2-3. Visualizing identity and image stats coding in human OTC 

and all the CNNs examined.  

Extended Figure 2-4. Visualizing identity and SF coding in human OTC and all 

the CNNs examined. 

Extended Figure 3-1. Identity dominance from human OTC including the 75 

most reliable voxels (left) and all the voxel (right) from each brain region 

examined. Similar response patterns were seen in both. 
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Extended Figure 2-1. Visualizing identity and position coding in human OTC and all the CNNs examined. 
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Extended Figure 2-2. Visualizing identity and size coding in human OTC and all the CNNs examined. 
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Extended Figure 2-3. Visualizing identity and image stats coding in human OTC and all the CNNs examined. 
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Extended Figure 2-4 
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Extended Figure 2-4. Visualizing identity and SF coding in human OTC and all the CNNs examined. 
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Extended Figure 3-1 

Extended Figure 3. Identity dominance from human OTC including the 75 most reliable voxels (left) and 
all the voxel (right) from each brain region examined. Similar response patterns were seen in both.
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