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Analysis   of   fungal   genomes   reveals   commonalities   of   intron   loss/gain   and   functions   in  

intron-poor   species  
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ABSTRACT    (249   words)  

Current   evolutionary   reconstructions   predict   that   early   eukaryotic   ancestors   including   both   the   last  

common   ancestor   of   eukaryotes   and   of   all   fungi   had   intron-rich   genomes.   However,   some   extant  

eukaryotes   have   few   introns,   raising   the   question   as   to   why   these   few   introns   are   retained.   Here   we  

have   used   recently   available   fungal   genomes   to   address   this   question.   Evolutionary   reconstruction   of  

intron   presence   and   absence   using   263   diverse   fungal   species   support   the   idea   that   massive   intron   loss  

has   occurred   in   multiple   clades.   The   intron   densities   estimated   in   the   fungal   ancestral   states   differ  

from   zero   to   8.28   introns   per   one   kbp   of   protein-coding   gene.   Massive   intron   loss   has   occurred   not  

only   in   microsporidian   parasites   and   saccharomycetous   yeasts   (0.01   and   0.05   introns/kbp   on   average,  

respectively),   but   also   in   diverse   smuts   and   allies   (e.g.    Ustilago   maydis ,    Meira   miltonrushii    and  

Malassezia   globosa    have   0.06,   0.10   and   0.20   introns/kbp,   respectively).   To   investigate   the   roles   of  

introns,   we   searched   for   their   special   characteristics   using   1302   orthologous   genes   from   eight  

intron-poor   fungi.   Notably,   most   of   these   introns   are   found   close   to   the   translation   initiation   codons.  

Our   transcriptome   and   translatome   data   analyses   showed   that   these   introns   are   from   genes   with   both  

higher   mRNA   expression   and   translation   efficiency.   Furthermore,   these   introns   are   common   in  

specific   classes   of   genes   (e.g.   genes   involved   in   translation   and   Golgi   vesicle   transport),   and   rare   in  

others   (e.g.   base-excision   repair   genes).   Our   study   shows   that   fungal   introns   have   a   complex  

evolutionary   history   and   underappreciated   roles   in   gene   expression.  

 

INTRODUCTION  

Spliceosomal   introns   are   ubiquitous   in   eukaryotes.   They   are   removed   from   all   regions   of   the  

transcripts   including   the   untranslated   regions   (UTRs)   as   well   as   coding   sequences   (CDS)    (De   Conti   et  

al.   2013;   Shi   2017;   Lim   et   al.   2018) .   Early   studies   proposed   that   introns   may   be   involved   in  
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generating   multi-domain   genes   by   exon   shuffling    (Logsdon   et   al.   1995;   Patthy   2003;   Stoltzfus   2004;  

Sverdlov   et   al.   2005) ,   and   promoting   intragenic   recombination   for   higher   fitness    (Gilbert   1978;  

Tonegawa   et   al.   1978;   Comeron   and   Kreitman   2000;   Duret   2001) .   Notable   experimentally   supported  

roles   of   introns   in   eukaryotes   include:   (i)   generating   protein   diversity   by   alternative   splicing  

(Kempken   2013;   Irimia   and   Roy   2014) ,   (ii)   harboring   noncoding   RNA   (ncRNA)   genes,   such   as  

snoRNAs   and   microRNAs    (Chorev   and   Carmel   2012;   Jo   and   Choi   2015) ,   (iii)   maintaining   genome  

stability   by   decreasing   the   formation   of   DNA-RNA   hybrids   called   R-loops    (Niu   2007;   Bonnet   et   al.  

2017) ,   (iv)   intron-mediated   enhancement   of   gene   expression    (Niu   and   Yang   2011;   Gallegos   and   Rose  

2015;   Laxa   2016;   Shaul   2017) ,   (v)   harboring   binding   sites   for   transcriptional   or   posttranscriptional  

regulators   of   gene   expression    (Rose   2018) ,   (vi)   allowing   for   an   additional   level   of   post-transcriptional  

regulation   through   regulation   of   RNA   splicing    (Witten   and   Ule   2011) ,   and   (vii)   triggering  

nonsense-mediated   decay   in   unspliced   or   partially   spliced   mRNAs   through   exon   junction   complexes  

(EJCs)    (Mekouar   et   al.   2010;   Grützmann   et   al.   2014;   Zhang   and   Sachs   2015;   Hellens   et   al.   2016) .  

Recently,   we   have   uncovered   an   unexpected   relationship   between   introns   and   translation,   suggesting   a  

role   of   5′UTR   introns   in   promoting   translation   of   upstream   open   reading   frames    (Lim   et   al.   2018) .  

The   most   well-studied   introns   are   those   that   interrupt   the   protein-coding   regions   of   genes.  

Extensive   computational   studies   suggest   that   the   last   eukaryotic   common   ancestor   (LECA)   had   a  

density   of   introns   of   about   4   introns/kbp   (the   number   of   introns   per   one   kbp   of   CDS   on   average)  

(Stajich   et   al.   2007;   Csuros   et   al.   2011;   Koonin   et   al.   2013;   Irimia   and   Roy   2014) .   Notably,   a   study   of  

99   eukaryotic   genomes   has   revealed   a   surprising   variability   of   intron   densities,   ranging   from   0.1  

introns/kbp   in   the   baker's   yeast    Saccharomyces   cerevisiae    to   7.8   introns/kbp   in    Trichoplax   adhaerens  

(Csuros   et   al.   2011) .   Counterintuitively,    T.   adhaerens    is   one   of   the   simplest   free-living   multicellular  

animals    (Srivastava   et   al.   2008) .   The   large   variability   of   intron   densities   owes   to   remarkable  

differences   in   rates   of   intron   loss   through   eukaryotic   evolution    (Roy   and   Gilbert   2005;   Csuros   et   al.  

2011)    and   may,   in   part,   be   due   to   the   transposable   properties   of   some   spliceosomal   introns    (Roy   2004;  

Worden   et   al.   2009;   Huff   et   al.   2016;   Wu   et   al.   2017) .   Several   models   have   also   been   proposed   for  

intron   loss,   in   particular,   through   genomic   deletion    (Loh   et   al.   2008;   Yenerall   et   al.   2011;   Zhu   and   Niu  

2013a)    and   recombination   of   cDNA   with   genomic   DNA    (Fink   1987;   Roy   and   Gilbert   2005;   Zhang   et  

al.   2010;   Zhu   and   Niu   2013b) .  

As   of   April   2020,   a   total   of   6,337   fungal   genome   assemblies   were   available   in   NCBI  

Genome.   Fungi   and   their   genomes   are   of   interests   for   many   reasons,   notably   as   food,   and   plant/animal  

pathogens/symbionts,   and   for   biotechnology   applications    (Sapountzis   et   al.   2015;   Wheeler   et   al.   2017;  

Chan   et   al.   2018;   Kijpornyongpan   et   al.   2018;   Uhse   et   al.   2018) .   As   fungi   belong   to   a   diverse   group   of  

organisms   evolving   over   the   past   900   million   years    (Dornburg   et   al.   2017;   Kumar   et   al.   2017) ,   some  

fungal   clades   have   undergone   massive   loss   of   introns,   in   particular,   the   intracellular   parasites  

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.247098doi: bioRxiv preprint 

https://paperpile.com/c/Nz22qY/FSNct+qg3T0+meSMB+GeK3
https://paperpile.com/c/Nz22qY/FSNct+qg3T0+meSMB+GeK3
https://paperpile.com/c/Nz22qY/DpaSl+6DIx5+jQAvq+BzerY
https://paperpile.com/c/Nz22qY/DpaSl+6DIx5+jQAvq+BzerY
https://paperpile.com/c/Nz22qY/FmLk5+nIcCq
https://paperpile.com/c/Nz22qY/n6GzJ+IUedG
https://paperpile.com/c/Nz22qY/G6R9i+Mm353
https://paperpile.com/c/Nz22qY/G6R9i+Mm353
https://paperpile.com/c/Nz22qY/1U0F3+GUyA5+WGU2e+0WXpy
https://paperpile.com/c/Nz22qY/1U0F3+GUyA5+WGU2e+0WXpy
https://paperpile.com/c/Nz22qY/O5P4
https://paperpile.com/c/Nz22qY/m7Qk
https://paperpile.com/c/Nz22qY/Ahwvr+dnQN3+wuCQj+kA4Yl
https://paperpile.com/c/Nz22qY/wpPWK
https://paperpile.com/c/Nz22qY/qP8jt+aH0DF+nIcCq+Da8f8
https://paperpile.com/c/Nz22qY/aH0DF
https://paperpile.com/c/Nz22qY/kUsUu
https://paperpile.com/c/Nz22qY/29CcC+aH0DF
https://paperpile.com/c/Nz22qY/29CcC+aH0DF
https://paperpile.com/c/Nz22qY/yDTfB+OyF8Z+NKcu+y3Ls
https://paperpile.com/c/Nz22qY/yDTfB+OyF8Z+NKcu+y3Ls
https://paperpile.com/c/Nz22qY/ANy1K+V65qS+LntKX
https://paperpile.com/c/Nz22qY/ANy1K+V65qS+LntKX
https://paperpile.com/c/Nz22qY/YzICN+29CcC+hjii2+RwKY1
https://paperpile.com/c/Nz22qY/YzICN+29CcC+hjii2+RwKY1
https://paperpile.com/c/Nz22qY/7ARPJ+ouNYh+zSJ3f+nxnHc+eAUaq
https://paperpile.com/c/Nz22qY/7ARPJ+ouNYh+zSJ3f+nxnHc+eAUaq
https://paperpile.com/c/Nz22qY/oT2fP+Ogrw8
https://doi.org/10.1101/2020.08.11.247098
http://creativecommons.org/licenses/by/4.0/


3  

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

microsporidia   as   well   as   saccharomycetous   yeasts    (Byrne   and   Wolfe   2005;   Neuvéglise   et   al.   2011;  

Hooks   et   al.   2014;   Corradi   2015;   Han   and   Weiss   2017;   Whelan   et   al.   2019;   Priest   et   al.   2020;   Wang   et  

al.   2020) .   For   instance,   only   4%   of    S.   cerevisiae    genes   have   introns.   In   contrast,   some   other   fungi,   for  

example,   the   facultative   pathogen    Cryptococcus   neoformans ,   have   a   relatively   high   intron   density   of   4  

introns/kbp    (Stajich   et   al.   2007;   Csuros   et   al.   2011) .  

Previous   results   have   suggested   that   frequent   intron   loss   events,   relatively   few   instances   of  

intron   gain,   and   the   retention   of   ancestral   introns   characterize   the   evolution   of   introns   throughout   most  

fungal   lineages    (Csurös   et   al.   2007;   Stajich   et   al.   2007;   Csuros   et   al.   2011) .   With   thousands   of   fungal  

genomes   available   to   date    (Priest   et   al.   2020) ,   it   is   timely   to   revisit   the   ancestral   states   and   scale   of  

intron   gain   or   loss   in   the   fungal   kingdom.   Our   analysis   includes   representatives   from   nearly   all  

phylum-level   clades,   including   the   early-diverging   Blastocladiomycota,   Chytridiomycota,  

Mucoromycota,   Zoopagomycota,   Cryptomycota,   and   Microsporidia   phyla.     The   diversity   of  

intron-exon   structures   and   the   wealth   of   kingdom-wide   genomic   resources   of   fungi   make   them  

excellent   models   for   studying   the   intron   gain   and   loss   dynamics   and   the   functional   roles   of   introns  

(Priest   et   al.   2020) .   Here   we   analyzed   the   introns   of   644   fungal   genomes,   inferring   ancestral   states,  

conservation,   and   functional   processes.  

 

RESULTS  

Evolutionary   reconstruction   reveals   high   ancestral   intron   densities   and   a   general   bias   towards  

intron   loss   over   intron   gain  

We   aligned   protein   sequences   and   mapped   corresponding   intron   positions   for   1445   sets   of   orthologous  

genes   from   263   fungal   species.   We   reconstructed    the   evolutionary   history   of   intron   gain   or   loss  

among   these   species   ( Figure   1 ;   see   Materials   and   Methods).   These   263   species   represented   a   wide  

variety   of   intron   densities,   from   various   intronless   Microsporidia   to   4.8   introns/kbp   in   the   chytrid  

Gonapodya   prolifera .    This   reconstruction   revealed   a   remarkably   dynamic   and   diverse   history   of  

intron   loss   and,   with   many   episodes   of   massive   intron   loss   and/or   gain   coupled   to   general   stasis   within  

large   clades   of   organisms   (e.g.,   very   low   intron   densities   within   all   Microsporidia   and   similar   intron  

densities   among   nearly   all   Pezizomycotina).   Most   strikingly,   we   reconstructed   very   high   intron  

densities   (Figure   2;   Table   1),   with   some   8.3   introns/kbp   reconstructed   in   the   fungal   ancestor.   While   it  

may   be   counterintuitive   that   the   ancestral   fungus   harbored   nearly   twice   as   many   introns   as   any  

modern   fungus   in   this   dataset,   this   finding   is   in   keeping   with   previous   results   showing   a   general   bias  

towards   intron   loss   over   intron   gain   in   many   lineages,   and   echoes   the   finding   of   considerably   higher  

intron   densities   in   alveolate   ancestors   than   in   modern   alveolates    (Csuros   et   al.   2011) .   While   these  

results   are   in   general   agreement   with   previous   studies   that   inferred   intron-rich   ancestral   fungi    (Stajich  

et   al.   2007;   Csuros   et   al.   2011;   Grau-Bové   et   al.   2017) ,   our   inferred   densities   are   considerably   higher,  
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likely   due   to   improved   model   specification   made   possible   by   greater   species   density.   Interestingly,   our  

reconstructed   value   is   close   to   the   inferred   intron   content   of   the   animal   ancestor   (8.8   introns/kbp)   in   a  

study   using   the   same   reconstruction   method   on   a   smaller,   eukaryote-wide   dataset    (Csuros   et   al.   2011) .  

In   contrast   to   intron-rich   ancestral   states,   almost   three-quarters   of   fungi   have   maintained   less   than  

10%   of   the   intron   density   of   the   last   fungal   ancestor   (191   of   263   species;   Figure   1;   see   also  

Supplementary   Table   S1   and   S2).   

These   results   also   illuminate   the   history   of   massive   intron   loss   in   these   same   two   lineages.  

Many   studies   have   found   that   the   obligate   intracellular   microsporidian   parasites   have   zero   or   few  

introns    (Keeling   et   al.   2010;   Cuomo   et   al.   2012;   Peyretaillade   et   al.   2012;   Corradi   2015;   Desjardins   et  

al.   2015;   Han   and   Weiss   2017;   Mikhailov   et   al.   2017;   Ndikumana   et   al.   2017)    and   that  

saccharomycetous    yeasts   have   lost   most   of   their   introns    (Stajich   et   al.   2007;   Csuros   et   al.   2011;   Hooks  

et   al.   2014) .   For   both   remarkable   groups,   our   analysis   includes   newly   available   genomes   including  

relatively   intron-rich   sister   species   ( Rozella   allomycis    (2.7   introns/kbp)   for   Microsporidia   and  

Lipomyces   starkeyi    (1.2   introns/kbp)   for   Saccharomycotina),   allowing   for   improved   resolution   of   the  

history   of   these   organisms.   In   both   lineages   our   reconstructions   reveal   a   massive   intron   loss   event  

leading   to   the   ancestor   of   a   large   clade   of   intron-poor   organisms.   However,   whereas   in   Microsporidia  

this   loss   event   occurred   in   the   ancestor   of   the   group   after   divergence   from   Cryptomycota,   for  

saccharomycetous    yeast   this   massive   loss   event   occurs   within   the   group,   after   divergence   of    L.  

starkeyi .  

 

A   general   bias   towards   intron   loss   punctuated   by   several   independent   episodes   of   intron   gain  

A   bias   towards   intron   loss   over   intron   gain   is   seen   across   the   fungal   tree.   This   is   evident   not   only   in  

Microsporidia   and   Saccharomycotina   but   also   in   groups   with   more   moderate   intron   densities,  

including   the   filamentous   ascomycetes   Pezizomycotina   (120   of   122   species)   and   smuts/allies  

Ustilaginomycotina   (15   of   20   species).   Indeed,   we   find   a   striking   bias   towards   intron   loss   over   gain.  

Among   branches   estimated   to   have   undergone   at   least   5%   change   in   intron   density,   ten   times   as   many  

have   more   loss   than   gain.   Remarkably,   a   bias   is   seen   even   for   lineages   with   very   little   change,   in  

which   intron   loss   outweighs   gain   three-fold   (Supplementary   Figure   S1).  

While   ongoing   intron   loss   is   characteristic   of   most   lineages,   our   results   indicate   several  

substantial   episodes   of   intron   gain.   Within   Basidiomycotina,   we   estimated   a   26%   increase   in   intron  

density   leading   to   the   ancestor   of   Ustilaginomycotina   and   an   18%   increase   in   the   ancestor   of  

Pucciniomycotina.   The   most   substantial   intron   gains   occurred,   unexpectedly,   within   the   famously  

intron-poor   lineages   Microsporidia   and   Saccharomycotina.   We   inferred   substantial,   secondary  

independent   intron   gain   in   two   extant   microsporidians,   ( Nosema   bombycis    and    Nosema   apis )   and   four  

saccharomycetous    yeasts   ( Scheffersomyces   stipitis ,    Candida   maltosa ,    Pichia   kudriavzevii ,   and  

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.247098doi: bioRxiv preprint 

https://paperpile.com/c/Nz22qY/aH0DF
https://paperpile.com/c/Nz22qY/X83Cc+37Amh+HjrUk+FqWKx+gEbvG+yGMRV+JqxXV+jTRTE
https://paperpile.com/c/Nz22qY/X83Cc+37Amh+HjrUk+FqWKx+gEbvG+yGMRV+JqxXV+jTRTE
https://paperpile.com/c/Nz22qY/omrEO+qP8jt+aH0DF
https://paperpile.com/c/Nz22qY/omrEO+qP8jt+aH0DF
https://doi.org/10.1101/2020.08.11.247098
http://creativecommons.org/licenses/by/4.0/


5  

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

Spathaspora   passalidarum ).   While   preliminary   analysis   suggests   the   reality   of   some   of   these   gains,   it  

is   worthy   of   note   that,   given   the   small   absolute   number   of   gains   involved   (leading   to   <1   intron/kbp),  

further   detailed   analysis   will   be   necessary   to   confirm   these   episodes.  

  

No   relationship   of   genome   size   to   intron   number  

Given   that   genome   size   has   been   argued   to   relate   to   intron   number,   organismal   complexity,   population  

size   and   generation   time    (Lynch   and   Conery   2003;   Koonin   et   al.   2013) ,   we   examined   the   relationship  

between   genome   size   and   intron   density   using   phylogenetic   independent   contrasts.   Remarkably,   we  

found   no   evidence   for   a   positive   relationship   between   genome   size   and   intron   number   —   indeed,   the  

correlation   is   slightly   and   non-significantly   negative   ( Figure   3 ;   Spearman’s   rho   =   −0.070,    p -value   =  

0.41).  

 

Functional   biases   of   intron-containing   genes   in   intron-poor   species  

To   better   understand   the   evolutionary   forces   responsible   for   maintenance   of   introns   through   evolution,  

we   chose   eight   intron-poor   species   (with   intron   densities   <10%   of   the   fungal   ancestor),   identified  

orthologous   genes,   and   analyzed   the   selective   pressures   on   intron-containing   and   intronless   genes.  

These   species   comprised   of    S.   cerevisiae    and    Candida   dubliniensis    in   Saccharomycotina,  

Cyphellophora   europaea    and    Sporothrix   schenckii    in   Pezizomycotina,   and    Ustilago   maydis ,  

Pseudozyma   hubeiensis ,    Meira   miltonrushii    and    Malassezia   sympodialis    in   Ustilaginomycotina  

(Figure   1,   green   filled   circles),   representing   six   separate   massive   reductions   in   intron   number.   

Comparison   of   intron-containing   genes   with   intronless   genes   revealed   a   number   of  

differences.   We   found   that   intron-containing   genes   are   less   likely   to   have   undergone   recent   positive  

selection   on   their   protein-coding   meaning   ( Figure   4 A,   one-sided   Fisher’s   exact   tests,    p -value   <   0.05).   

We   also   found   an   association   with   gene   duplication.   Significantly   higher   proportions   of   the  

intron-containing   genes   in    S.   cerevisiae    and    U.   maydis    are   duplicated   ( Figure   4 B,   two-sided   Fisher’s  

exact   tests,    p -value   <   0.05).   While   this   finding   in    S.   cerevisiae    could   largely   be   explained   by   the  

previously-noted   concentration   of   introns   in   ribosomal   protein   genes,   in   which   introns   facilitate  

cross-regulation   among   paralogous   genes    (Pleiss   et   al.   2007;   Parenteau   et   al.   2011;   Petibon   et   al.  

2016;   Parenteau   and   Abou   Elela   2019) ,   it   cannot   explain   the   bias   in    U.   maydis .  

 

Concordance   of   the   presence   of   introns   in   orthologs   in   species   with   independent   massive   intron  

loss  

If   introns   carry   useful   functions,   we   hypothesize   that   they   should   be   maintained   in   the   orthologs   of   the  

intron-poor   species.   We   determined   ratios   of   the   intron-containing   orthologs   among   the   intron-poor  

species   and   compared   these   ratios   with   null   expectations   (i.e.   the   proportions   of   orthologs   with   introns  
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for   the   intron-poor   species;    Figure   5 A).   Indeed,   these   orthologs   tend   to   harbor   introns   concordantly  

( Figure   5 B).   Strikingly,   two   orthologous   genes,    RPL7B    and    NOG2    have   conserved   intron   positions   in  

all   eight   studied   intron-poor   species   (Figure   6).    RPL7B    encodes   a   ribosomal   60S   protein   whereas  

NOG2    encodes   a   putative   GTPase-associated   pre-60S   ribosomal   subunit,   in   which   their   introns   harbor  

a   box   C/D   and   a   box   H/ACA   snoRNAs,   respectively   [snR59   and   snR191   in    S.   cerevisiae ,  

respectively;    Saccharomyces    Genome   Database    (Cherry   et   al.   2012) ].   This   suggests   that   introns   with  

conserved   positions   have   functions   (e.g.   as   snoRNAs).   Interestingly,   this   conservation   may   not   be  

trackable   to   LECA   as   snoRNA   genes   are   mobile    (Weber   2006;   Luo   and   Li   2007;   Schmitz   et   al.   2008;  

Hoeppner   and   Poole   2012) ,   however   this   suggests   an   ancient   association   within   fungi.  

We   next   asked   whether   the   distances   of   introns   with   respect   to   translation   initiation   codons  

are   conserved.   We   compared   the   distribution   of   the   first   introns   in   the   coding   genes   with   two   null  

distributions   ( Figure   7 ).   Both   null   distributions   were   generated   using    S.   cerevisiae    genes.   The   first  

null   distribution   was   generated   based   on   our   observation   that    S.   cerevisiae    has   only   1   or   2   introns   in  

its   coding   genes   (GCA_000146045,   total   282   spliceosomal   introns,   273   of   6619   coding   genes   have  

introns).   Therefore,   the   expected   distances   of   the   first   introns   from   the   start   codons   are   either   half   or  

one-third   of   the   CDS   lengths   ( Figure   7 ,   dotted   lines   in   light   gray).   The   second   null   distribution   was  

generated   in   a   similar   way   but   including   UTR   introns   and   centering   at   the   transcription   start   or  

termination   sites   ( Figure   8 ,   dashed   lines   in   dark   gray).   We   then   divided   the   genes   into   two   groups,  

genes   related   to   translation   and   other   classes   of   genes   using   gene   ontology   (GO)   terms    (Cherry   et   al.  

2012) .   

We   observed   that   introns   are   closer   to   the   initiation   codons   than   these   null   distributions  

( Figure   7 ),   which   is   in   agreement   with   previous   studies    (Bon   et   al.   2003;   Mourier   and   Jeffares   2003;  

Russell   et   al.   2005;   Franzén   et   al.   2013) .   This   observation   is   consistent   irrespective   of   the   roles   of  

intron-containing   genes   in   translation,   supporting   the   idea   that   introns   may   have   regulatory   roles   in  

both   transcription   and   translation    (Lim   et   al.   2018) .  

 

Roles   of   introns   in   gene   expression  

Previous   studies   have   shown   that   introns   are   common   in   the   ribosomal   protein   genes   (e.g.    RPL7B )   of  

intron-poor   protozoa   and   saccharomycetous   yeasts    (Bon   et   al.   2003;   Russell   et   al.   2005;   Franzén   et   al.  

2013) .   However,   the   abundance   of   introns   in   other   classes   of   genes   is   less   well-known.   We   examined  

the   GO   terms   of   the   orthologs   of   the   intron-poor   species.   We   found   that   introns   are   highly   abundant  

not   only   in   genes   involved   in   cytoplasmic   translation   (e.g.   ribosomal   proteins)   but   also   in   genes  

involved   in   Golgi   vesicle   transport   ( Figure   7 ).   In   contrast,   introns   are   depleted   in   genes   involved   in  

base-excision   repair   and   peptidyl-proline   modification.   The   reasons   for   these   biases   are   still   unclear.  
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These   findings   prompted   us   to   compare   the   transcription   level   and   translation   efficiency  

between   intron-containing   and   intronless   genes.   We   analyzed   the   matched   RNA-seq   and   ribosome  

profiling   datasets   for   the   fungal   species   that   are   publicly   available   —    S.   cerevisiae     (Heyer   and   Moore  

2016) ,    Candida   albicans     (Muzzey   et   al.   2014) ,   S.   pombe     (Subtelny   et   al.   2014) ,   and    Neurospora  

crassa     (Yu   et   al.   2015)    (Supplementary   Table   S3   and   Materials   and   Methods).  

Interestingly,   intron-containing   genes   tend   to   have   higher   mRNA   expression   and   translation  

efficiency   than   that   of   intronless   genes   ( Figure   9 ).   Overall,   our   results   provide   independent   evidence  

of   diverse   roles   of   fungal   introns   in   transcription   and   translation.  

 

DISCUSSION  

Widespread   intron   loss   in   the   fungal   kingdom  

This   study   has   shown   that   intron   loss   was   widespread   in   the   fungal   kingdom   during   evolution   ( Figure  

1 ).   The   most   extreme   cases   are   microsporidian   parasites,   which   have   lost   all,   or   nearly   all   introns.  

Microsporidian   parasites   have   the   smallest   eukaryotic   genomes   and   coding   capacities   known   to   date  

(Corradi   2015;   Han   and   Weiss   2017) .   Intriguingly,   Chytridiomycota   and   Mucaromycota,   two   other  

early-diverging   phyla,   are   instead   characterized   by   the   retention   of   ancestral   introns   and   maintain  

relatively   high   intron   densities.    Gonapodya   prolifera ,   a   chytrid   fungus,   has   the   highest   intron   density  

of   all   the   fungi   in   our   analysis   (4.8   introns/kbp),   73%   of   the   intron   density   of   humans    Homo   sapiens .   

As   previously   observed,   ascomycetes   have   lost   more   introns   than   basidiomycetes,   which   is   in  

agreement   with   a   study   of   99   eukaryotic   species    (Csuros   et   al.   2011) .   Many   ascomycetes   are  

unicellular   fungi   or   yeasts,   known   to   have   low   numbers   of   introns   (in   particular,   the   subphylum  

Saccharomycotina)    (Byrne   and   Wolfe   2005;   Neuvéglise   et   al.   2011;   Hooks   et   al.   2014) .   Our   analysis  

has   further   shown   substantial   intron   loss   in   Pezizomycotina,   notably   the    Cyphellophora    and  

Sporothrix    sp.   (below   10%   of   the   intron   densities   of   the   last   fungal   ancestor).   These   species   are  

conidia   producing   fungi   that   have   a   yeast   or   yeast-like   stage   as   part   of   their   life   cycle    (Barros   et   al.  

2011;   Feng   et   al.   2012) .   

In   contrast,   many   basidiomycetes   are   fruit-body   producing   fungi   that   are   known   to   have  

relatively   higher   numbers   of   introns.   However,   prominent   intron   loss   has   also   occurred   in  

Ustilaginomycotina    (Kämper   et   al.   2006;   Stajich   et   al.   2007) .   Many   of   these   smuts   and   allies   have  

evolved   into   plant   pathogens   and   evolved   a   yeast   state   as   part   of   their   life   cycle    (Rush   and   Aime  

2013;   Wang   et   al.   2015;   Benevenuto   et   al.   2018;   Kijpornyongpan   et   al.   2018) .   

However,   not   all   yeasts   or   yeast-like   fungi   have   low   intron   densities.   For   example,  

Pneumocystis     murina    and    Cryptococcus     neoformans ,   which   are   ascomycetous   and   basidiomycetous  

yeasts,   have   high   intron   densities   (3.7   and   3.6   introns/kbp).  
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‘Concerted   evolution’   of   introns   and   their   host   genes  

What   is   the   function   of   introns?   The   role   of   most   introns   is   unclear   as   they   are   mostly   dispensable  

(Niu   2008) .   To   address   this   we   chose   eight   ascomycetes   and   basidiomycetes   with   extensive   intron   loss  

for   in-depth   analysis.   These   intron-poor   species   all   have   a   yeast   or   yeast-like   stage   in   their   life   cycle.  

Our   evolutionary   and   statistical   approaches   have   shown   that   remaining   introns   are   unlikely   to   be  

conserved   by   chance   (Figure   4,   5   and   6).   

Several   studies   have   shown   that   the   5′   splice   sites   of   intron-poor   species   are   more   conserved  

than   that   of   intron-rich   species    (Irimia   et   al.   2007;   Skelly   et   al.   2009;   Neuvéglise   et   al.   2011) .   In  

addition,   previous   studies   have   shown   that   deleting   most   introns   in    S.   cerevisiae    does   not   significantly  

compromise   growth   but   starvation   resistance    (Parenteau   et   al.   2008;   Parenteau   et   al.   2011;   Parenteau  

et   al.   2019) .   These   support   our   idea   that   introns   are   retained   because   of   their   useful   functions.  

Interestingly,    S.   cerevisiae    and    U.   maydis    have   significantly   higher   proportions   of   duplicated  

genes   with   introns   ( Figure   4 ).   Functional   divergence   might   have   occurred   in   one   of   the   paralogs   (and  

their   introns)   as   shown   in    S.   cerevisiae     (Kellis   et   al.   2004;   Pleiss   et   al.   2007;   Parenteau   et   al.   2011;  

Petibon   et   al.   2016;   Parenteau   and   Abou   Elela   2019) .   It   would   be   interesting   to   see   whether   the  

introns   of   duplicated   genes   in    U.   maydis    have   similar   roles   as   that   of    S.   cerevisiae .  

 

Regulatory   roles   of   introns   in   transcription   and   translation  

Notably,   most   of   the   first   introns   are   located   near   the   translation   initiation   codons   ( Figure   7 ).   Indeed,  

intron   loss   near   the   3′   end   of   a   gene   was   previously   found   to   be   prevalent   in   some   protozoa   and   fungi,  

probably   due   to   reverse   transcriptase-mediated   intron   loss    (Fink   1987;   Roy   and   Gilbert   2005;   Russell  

et   al.   2005;   Lee   et   al.   2010;   Zhang   et   al.   2010;   Franzén   et   al.   2013;   Koonin   et   al.   2013;   Zhu   and   Niu  

2013a;   Zhu   and   Niu   2013b;   Irimia   and   Roy   2014) .   This   location   bias   of   introns   has   also   been   found   in  

intron-rich   metazoa   and   plants    (Lim   et   al.   2018) .  

Introns   are   also   more   abundant   in   ancient   genes,   in   particular,   ribosomal   protein   genes   ( Figure  

8 ).   This   is   in   agreement   with   a   previous   study   on   seven   saccharomycetous   yeasts    (Bon   et   al.   2003) .   In  

addition,   introns   are   more   abundant   in   genes   that   have   higher   mRNA   expression   and   translation  

efficiency,   irrespective   of   their   cellular   functions   ( Figure   9 ).   This   extends   previous   analyses   of   global  

gene   expression   of    S.   cerevisiae     (Juneau   et   al.   2006;   Hoshida   et   al.   2017) .   In   metazoa   and   plants,  

introns   may   enhance   transcription   or   translation,   in   part,   through   EJCs    (Wiegand   et   al.   2003;   Diem   et  

al.   2007;   Chazal   et   al.   2013;   Le   Hir   et   al.   2016) .   EJCs   deposit   at   about   20-24   bases   upstream   of   the  

exon-exon   junctions   upon   splicing,   carrying   over   the   ‘memory’   of   splicing   events   to   cytoplasmic  

translation.   However,    S.   cerevisiae    has   no   EJCs,   unlike   complex   eukaryotes   or   even   the   fission   yeast  

S.   pombe .   It   remains   unclear   how   intron   enhances   transcription   and   translation   in    Saccharomycetes  

(Moabbi   et   al.   2012;   Hoshida   et   al.   2017) .  
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We   propose   that   highly   conserved   intron   positions   are   indicative   of   functional   importance,  

e.g.   the   ncRNA   gene   snR191   embedded   in   the   intron   of    NOG2    gene   ( Figure   6 ).   This   intron   was  

previously   found   to   be   highly   conserved   in   the   family    Saccharomycetaceae     (Hooks   et   al.   2014;   Hooks  

et   al.   2016) .   Some   other   introns   may   harbor   functional   structured   RNA   elements,   such   as   the   introns  

of    RPL18A    and    RPS22B    pre-mRNAs   that   promote   RNAse   III-mediated   degradation,   and   the    GLC7  

intron   that   modulates   gene   expression   during   salt   stress    (Danin-Kreiselman   et   al.   2003;   Juneau   et   al.  

2006;   Parenteau   et   al.   2008;   Hooks   et   al.   2016) .  

 

Concluding   remarks  

By   encompassing   an   unprecedented   number   of   species,   from   a   single   group   of   eukaryotes   with   a  

range   of   very   different   evolutionary   histories,   these   results   allow   us   to   better   understand  

commonalities   of   intron   evolution.    We   find   a   remarkable   trend   towards   intron   number   reduction  

across   lineages,   as   well   as   highly   predictable   patterns   of   intron   retention   in   intron-poor   species   at   the  

level   of   gene   function,   specific   gene,   specific   intron,   and   genic   position.   These   results   provide  

explanations   for   long-observed   patterns,   while   revealing   previously   unknown   patterns   to   be   explained  

by   future   studies.  

 

MATERIALS   AND   METHODS  

Genome   sequences   and   annotations  

We   retrieved   633   fungal   genomes   (FASTA   and   GTF   files)   from   the   Ensembl   Fungi   release   34  

(Zerbino   et   al.   2018) .   In   addition,   the    L.   starkeyi    and    Neolecta   irregularis    genomes   were   retrieved  

from   Ensembl   Fungi   42   and   NCBI   Genome,   respectively,   whereas   seven   Ustilaginomycotina   and   two  

Taphrinomycotina    genomes   from   JGI   MycoCosm    (Cissé   et   al.   2013;   Grigoriev   et   al.   2014;   Riley   et   al.  

2016;   Mondo   et   al.   2017;   Nguyen   et   al.   2017;   Kijpornyongpan   et   al.   2018) .   Detailed   information   can  

be   found   in   Supplementary   Table   S1.  

Redundant   species   were   filtered   by   assembly   level  

(ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/assembly_summary_genbank.txt)    (Kitts  

et   al.   2016) .   Complete   genomes   were   retained,   otherwise   the   assemblies   at   the   chromosome,   scaffold,  

or   contig   levels.   For   redundant   assemblies,   only   the   assemblies   with   the   highest   numbers   of   CDS  

were   retained.   For   outgroups,   the   genomes   of    Homo   sapiens    and   the   cellular   slime   mold    Fonticula  

alba    were   downloaded   from   Ensembl   95   and   Ensembl   Protists   42,   respectively.  

 

The   annotation   of   the   UTR   and   UTR   introns   of    S.   cerevisiae    was   retrieved   from   YeastMine  

(Balakrishnan   et   al.   2012) .   The   GO   terms   of    S.   cerevisiae    were   retrieved   from   the    Saccharomyces  

Genome   Database    (Cherry   et   al.   2012) .  
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Taxonomic   and   phylogenetic   trees  

We   chose   a   subset   of   263   fungi   for   the   inference   of   ancestral   introns   then   pruned   an   1100   taxa   tree  

from   concatenated   analyses   (J.   Stajich,   personal   communication,   December   24,   2018).    Homo   sapiens  

and    Fonticula   alba    were   included   as   outgroups.   For   visualization,   the   tips   and   nodes   were   color-coded  

by   inferred   intron   densities   using   the   R   package   ggtree   v1.16.6    (Yu   et   al.   2017) .   

For   phylogenetic   independent   contrasts   analysis,   we   retrieved   a   phylogenetic   tree   from   the  

SILVA   database   release-111    (Yarza   et   al.   2017) .   The   tip   labels   were   replaced   using   AfterPhylo.pl   and  

the   tree   was   pruned   using   filter_tree.py    (Caporaso   et   al.   2010;   Zhu   2014) .  

 

Orthology   analysis  

For   the   inference   of   ancestral   introns,   orthologous   genes   were   identified   using   HMMER   v3.1b2  

(Johnson   et   al.   2010) .   Profile   hidden   markov   models   (HMMs)   were   retrieved   from   the   1000   Fungal  

Genomes   Project   (1KFG)   and   fuNOG   (eggNOG   v4.5)    (Huerta-Cepas,   Szklarczyk,   et   al.   2016;  

Bewick   et   al.   2019) .   A   HMM   database   was   built   using   hmmpress.   Homology   sequences   were   detected  

using   hmmsearch.   For   species   that   have   multiple   hits   per   HMM,   only   the   top   hit   was   retained.   To  

remove   false   positives,   hits   with   bit   scores   over   276.48   were   retained.   This   threshold   was   estimated  

from   the   distribution   of   bit   scores   (bimodal   lognormal)   using   the   R   package   cutoff   v0.1.0    (Choisy  

2015) .   Only   the   orthologs   that   captured   over   80%   (212/265)   of   the   species   were   used   in   the  

subsequent   analyses   (1445   orthologs).  

Eight   intron-poor   species   were   selected   for   analysis   of   intron   functions,   including    S.  

cerevisiae    and    C.   dubliniensis    in    Saccharomycotina,   C.   europaea    and    S.   schenckii    in     Pezizomycotina ,  

and    U.   maydis,   P.   hubeiensis,   M.   miltonrushii    and    M.   sympodialis    in   Ustilaginomycotina.   The  

orthologs   of   these   intron-poor   species   were   identified   using   proteinortho5   (using   parameter   -synteny)  

(Lechner   et   al.   2011) .   A   total   of   1302   orthologs   were   identified.   In   contrast   to   the   above   approach,   this  

approach   is   less   scalable   but   unrestricted   by   a   predefined   set   of   orthologs   (HMMs).  

Duplicated   genes   were   identified   using   SkewGD   v1    (Tian   2018) .   This   pipeline   includes  

sequence   clustering   and   ‘age’   estimation   using   K s    (the   number   of   synonymous   substitutions   per  

synonymous   site)    (Blanc   and   Wolfe   2004;   Vanneste   et   al.   2013) .  

 

Intron   alignment  

For   the   inference   of   ancestral   introns,   protein   sequences   were   aligned   using   Clustal   Omega   v1.2.4  

(using   parameter   --hmm-in)    (Sievers   and   Higgins   2018) .   Annotations   of   intron   positions   were  

extracted   from   GTF/GFF   files   using   ReSplicer   (by   calling   the   splice.extractAnnotations   class)    (Sêton  

Bocco   and   Csűrös   2016) .   The   alignments   were   realigned   using   IntronAlignment    (Csurös   et   al.   2007) .  
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The   orthologs   of   the   intron-poor   species   were   aligned   using   MUSCLE   v3.8.31    (Edgar   2004) .  

The   protein   sequences   were   realigned   using   ReSplicer   and   IntronAlignment   as   above.   Intron   positions  

were   then   re-annotated   using   ReSplicer,   by   calling   a   series   of   java   classes   splice.extractAnnotations,  

splice.collectStatistics,   and   splice.checkSites.   Realignment   was   repeated   using   re-annotated   intron  

positions.  

 

Inference   of   ancestral   introns  

We   inferred   ancestral   introns   from   1445   orthologs   of   263   fungal   genomes   using   Malin    (Csurös   2008) .  

Firstly,   we   generated   a   table   of   intron   presence/absence   in   the   orthologs   using   Malin.   It   included  

46,381   intron   sites   allowing   a   maximum   of   53   ambiguous   characters   per   site.  

Failure   to   account   for   variation   in   intron   loss   rate   across   sites   can   lead   to   an   underestimation  

in   intron   density   of   eukaryotic   ancestors    (Stajich   et   al.   2007) ,   and   previous   experiments   with   rate  

variation   models   across   sites   in   Malin   showed   that   model   fit   was   significantly   impacted   solely   by  

variation   in   loss   rate   across   intron   sites    (Csuros   et   al.   2011) .    Here,   intron   gain   and   loss   rates   were  

optimized   in   Malin   using   maximum   likelihood   using   the   constant   rate   and   rate-variation   models  

starting   from   the   standard   null   model   and   running   1000   optimization   rounds   (likelihood   convergence  

threshold   =   0.001).   For   the   constant   rate   model,   each   intron   site   has   only   a   branch-specific   gain   and  

loss   rate.   In   contrast,   for   the   rate-variation   model,   intron   sites   additionally   belong   to   one   of   two  

discrete   rate   loss   categories.  

Malin   calculates   gain/loss   rates   and   intron   density   at   the   root   by   numerical   optimization   of   the  

likelihood.   For   both   the   constant   rate   and   rate-variation   models,   we   used   100   bootstrap   replicates   of  

the   intron   table   to   assess   uncertainty   about   inferred   rate   parameters   and   intron   site   history   for   every  

node.   For   model   comparison,   the   likelihood-ratio   test   statistic   calculated   as   ,   where 2✕(L1 2)Δ = − − L  

L1   is   the   log-likelihood   of   the   constant   rate   model   (L1   =   -402882)   and   L2   is   the   log-likelihood   of   the  

rate-variation   model   (L2   =   -397548).   The   likelihood-ratio   test   statistic   is   10,668,   which   was   then  

compared   to   a   𝝌 2    distribution   with   one   degree   of   freedom.   In   this   comparison,   we   obtained   a    p -value  

of   0.0.   Therefore,   we   rejected   the   constant   rate   results   and   chose   the   more   complex   rate-variation  

model.   Finally,   we   inferred   ancestral   densities   by   using   Dollo   parsimony    (Farris   1977) .   

 

For   all   analyses,   we   scaled   the   number   of   inferred   intronsto   intron   density   by   multiplying   by  

0.37   and   dividing   by   322,   where   0.37   and   322   are   intron   density   and   the   number   of   introns   in  

Schizosaccharomyces   pombe    in   the   orthologous   dataset,   respectively.     S.   pombe    was   used   as   a  

reference   because   it   has   a   high-quality   annotation   and   over   an   order   of   magnitude   higher   intron  

density   than    S.   cerevisiae (Csuros   et   al.   2011;   Lock   et   al.   2018) .  
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Phylogenetic   independent   contrasts   analysis  

Three   features   (intron   density,   genome   size,   and   the   number   of   CDS)   were   first   examined   for  

normality   using   different   transformation   functions   in   the   R   package   bestNormalize   v1.4.3    (Peterson  

2018) .   Ordered   quantile   transformation   was   chosen.   Phylogenetic   independent   contrasts   analysis   was  

carried   out   using   the   R   package   caper   v1.0.1    (Orme   et   al.   2018) .  

 

Branch-site   test  

The   orthologous   protein   sequences   were   aligned   using   PRANK   v.150803    (Löytynoja   and   Goldman  

2008;   Jeffares   et   al.   2015) .   The   aligned   protein   sequences   were   converted   to   aligned   DNA   sequences  

using   PAL2NAL    (Suyama   et   al.   2006) .   These   aligned   DNA   sequences   were   used   to   build  

phylogenetic   trees   using   RaxML   v8.2.9   (using   parameters   -f   a   -x   1181   -N   1000   -m   GTRGAMMA)  

(Stamatakis   2014) .   To   identify   positively   selected   genes,   branch-site   tests   were   performed   using   both  

the   aligned   DNA   sequences   and   phylogenetic   trees   using   ETE   toolkit   v3.1.1   (ete-evol,   a   CodeML  

wrapper)    (Yang   2007;   Huerta-Cepas,   Serra,   et   al.   2016) .   The   positive   selection   (bsA,   alternative  

hypothesis)   and   relaxation   (bsA1,   null   hypothesis)   evolutionary   models   were   fit   to   the   orthologous  

dataset.   This   involved   modeling   each   branch   by   recursively   marking   the   remaining   branches   as   the  

foreground   branches,   and   comparing   them   using   likelihood-ratio   tests   (using   parameters   --models   M0  

bsA   bsA1   --leaves   --tests   bsA,bsA1).  

 

snoRNA   prediction  

The   Stockholm   alignment   files   of   fungal   snoRNA   families   were   downloaded   from  

http://www.bioinf.uni-leipzig.de/publications/supplements/17-001     (Canzler   et   al.   2018) .   These   files  

were   used   to   build   HMMs   or   covariance   models   using   Infernal   v1.1.2    (Nawrocki   and   Eddy   2013) .  

These   models   were   used   to   detect   the   snoRNA   genes   encoded   by   introns.   The   functional   elements   in  

the   snoRNAs   were   predicted   using   snoscan   v0.2b   and   the   snoGPS   web   server    (Lowe   and   Eddy   1999;  

Schattner   et   al.   2005) .  

 

Gene   ontology   analysis  

Functional   annotation   of    S.   cerevisiae    genes   was   performed   using   the   Bioconductor   packages  

clusterProfiler   v3.0.5   and   org.Sc.sgd.db   v3.4.0    (Yu   et   al.   2012;   Huber   et   al.   2015;   Carlson   2017) .  

Redundant   GO   terms   were   removed   using   the   simplify   function   with   default   settings.   Genes   were  

grouped   by   GO   terms   and   normalized/plotted   using   the   R   package   massageR   v0.7.2    (Stanstrup   2017) .  

 

RNA-seq   and   ribosome   profiling   data   analyses  
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List   of   RNA-seq   and   ribosome   profiling   datasets   used   are   available   in   Supplementary   Table   S3.   The  

genome   and   annotation   files   of    Candida   albicans    and    Schizosaccharomyces   pombe    were   downloaded  

from   the    Candida    Genome   Database   assembly   22   and   PomBase   release   30,   respectively    (Skrzypek   et  

al.   2017;   Lock   et   al.   2018) .  

Reads   were   aligned   to   ncRNAs   using   STAR   v2.5.2b    (Dobin   et   al.   2013) .   Unmapped   reads  

were   then   aligned   to   the   genome   with   transcript   annotation.   Uniquely   mapped   reads   were   counted  

using   featureCounts   v1.5.0-p3    (Liao   et   al.   2014) .   

For   RNA-seq,   count   data   were   normalized   to   Reads   Per   Kilobase   per   Million   (RPKM)  

mapped   reads.   RPKM   =   read_counts/(gene_length/1000)/(total_read_counts/10 6 ).   For   ribosome  

profiling,   count   data   were   used   to   calculate   translation   efficiency.   Translation   efficiency   =  

(ribosome_footprints/total_footprint_counts)/(RNA-seq_read_counts/total   RNA-seq_read_counts).  

We   detected   the    S.   cerevisiae    orthologs   in   other   species   using   proteinortho5   (using   parameter  

-synteny)    (Lechner   et   al.   2011) .   We   found   3063,   2506,   and   2541    S.   cerevisiae    orthologs   in    C.  

albicans ,    S.   pombe ,   and    N.   crassa ,   respectively.   The   orthologs   were   grouped   by   introns  

presence/absence   and   GO   terms.   These   data   were   then   mapped   to   the   RNA-seq   and   ribosome  

profiling   results   by   gene.  

 

Statistical   analysis  

Statistical   analysis   and   plotting   were   performed   using   R   ≥3.4    (R   Core   Team   2018) .   Fisher’s   exact   test,  

the   chi-square   test,   Welch   two   sample   t-test   and   Spearman’s   rank   correlation   were   calculated   using   the  

base   R   system.   Computation   of   binomial   confidence   intervals   using   Bayesian   inference   was  

performed   using   the   binom   package    (Dorai-Raj   2014) .   All    p -values   obtained   from   multiple   testing  

were   adjusted   using   the   Bonferroni   correction   to   avoid   false   positives    (Armstrong   2014) ,   unless  

otherwise   mentioned.   Plots   were   constructed   using   ggplot2   v2.2.1    (Wickham   2016) ,   unless   otherwise  

stated.  

 

Data   availability  

Code   and   data   for   this   study   are   available   at  

https://github.com/Brookesloci/fungi_intron_paper_2020/ .  
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Table   1.    Intron   densities   of   the   ancestral   and   current   states   of   fungal   clades.   See   also   Figure   1   and   2.  

Clade  

 

Number   of  

Species  

 

Ancestral   state a  

Current   state b  

Mean  Median  

Cryptomycota   

( Rozella   allomyces)  1  NA  2.70  2.70  

Microsporidia  15  0.06  0.01  0.00  

Chytridiomycota  2  5.92  4.25  4.25  

Blastocladiomycota  

( Allomyces   macrogynus)  1  NA  1.43  1.43  

Entomophthoromycotina  

(Conidiobolus   coronatus)  1  NA  1.70  1.70  

Mucaromycota  5  6.05  2.67  2.20  

Pucciniomycotina  8  4.20  3.09  3.03  

Ustilaginomycotina  20  2.93  0.56  0.16  

Agaricomycotina  39  4.67  3.57  3.79  

Taphrinomycotina  13  4.51  1.45  1.24  

Saccharomycotina  36  1.68  0.05  0.01  

Pezizomycotina  122  1.06  0.52  0.52  

a    Obtained   from   the   inference   of   intron   gain/loss.  
b    Arithmetic   mean   or   median   inferred   introns/kbp   of   the   species   within   a   clade.  

Introns/kbp,   the   number   of   introns   per   one   kbp   of   protein-coding   sequence;   NA,   not   applicable.  
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Figure   1 .   Widespread   loss   of   introns   during   the   evolution   of    Fungi .    Ancestral   introns   were  

inferred   from   1445   orthologs   in   263   fungal   species   using   Malin   (Csuros,   2008),   a   Markov   model   with  

rates   across   sites   and   branch-specific   gain   and   loss   rates.   Branches   are   color-coded   with   intron  

densities   from   the   median   posterior   distribution   for   each   node.   A   list   of   full   names   and   intron   densities  

are   available   in   Supplementary   Table   S2.   See   also   related   Table   1   and   Figure   2.   Introns/kbp,   the  

number   of   introns   per   one   kbp   of   protein-coding   sequence.   Green   filled   circles   denote   eight   intron  

poor   species   selected   for   additional   analysis.  
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Figure   2 .   Intron   densities   of   the   fungal   ancestral   states   derived   from   a   Monte-Carlo  

approximation   of   100   bootstrap   distributions.    Dotted   lines   denote   the   ancestral   intron   densities  

inferred   from   Dollo   parsimony   (blue)   and   maximum   likelihood   (ML,   green)   models.   See   also   related  

Figure   1   and   Table   1.   Introns/kbp,   the   number   of   introns   per   one   kbp   of   protein-coding   sequence.  
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Figure   3 .   Intron   density   weakly   correlates   with   genome   size.    Phylogenetic   independent   contrasts  

analysis   of   genome   size   versus   intron   density   and   the   number   of   protein-coding   genes.   CDS,   coding  

sequence;   introns/kbp,   the   number   of   introns   per   one   kbp   of   protein-coding   sequence;    r s ,   Spearman’s  

rho.  

 

 

 

 

Figure   4 .   Features   of   intron-containing   genes   in   intron-poor   fungal   species.    Proportion   of  

intronless   and   intron-containing   genes   that   have   undergone    (A)    positive   selection   and    (B)    gene  

duplication.   *,    p    <   0.05   (Fisher’s   exact   test,   adjusted   using   the   Bonferroni   correction);   Cdub ,   Candida  

dubliniensis ;   Ceur ,   Cyphellophora   europaea ;   Mmil ,   Meira   miltonrushii ;   Msym ,   Malassezia  

sympodiali ;   Phub ,   Pseudozyma   hubeiensis ;   Scer ,   Saccharomyces   cerevisiae ;   Ssch ,   Sporothrix  

schenckii ;   Umay ,   Ustilago   maydis .  
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Figure   5 .   Orthologous   genes   harbor   introns   concordantly.   (A)    Schematic   example   of   a   pairwise  

comparison   of   intron-containing   orthologs   among   three   species.    (B)    The   ratios   of   intron-containing  

orthologs   in   a   pairwise   comparison   in   contrast   to   null   expectations   (solid   horizontal   colored   lines).  

Non-significant   chi-square   tests   (dotted   circles,   Bonferroni   adjusted    p -value   >   0.01)   suggest   that  

introns   can   be   retained   in   any   genes.   As   a   result,   34   of   56   comparisons   between   species   are  

statistically   significant.   The   binomial   confidence   intervals   (95%)   were   estimated   from   these   ratios  

using   Bayesian   inference   with   1000   iterations   (vertical   colored   lines).   Cdub ,   Candida   dubliniensis ;  

Ceur ,   Cyphellophora   europaea ;   Mmil ,   Meira   miltonrushii ;   Msym ,   Malassezia   sympodiali ;   Phub ,  

Pseudozyma   hubeiensis ;   Scer ,   Saccharomyces   cerevisiae ;   Ssch ,   Sporothrix   schenckii ;   Umay ,   Ustilago  

maydis .  
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Figure    6.   Introns   of    RPL7B    and    NOG2    have   conserved   positions.    The   introns   of    RPL7B    and  

NOG2    encode   box   C/D   and   box   H/ACA   snoRNAs   (snR59   and   snR191   in    S.   cerevisiae ,   respectively).  

The   predictions   of   stem-loop   2   and   antisense   element   (ASE)   of   the    M.   miltonrushii    box   H/ACA  

snoRNA   are   of   low   confidence.   5′   SS   and   3′   SS   denote   5′   and   3′   splice-sites,   respectively.   Cdub ,  

Candida   dubliniensis ;   Ceur ,   Cyphellophora   europaea ;   Mmil ,   Meira   miltonrushii ;   Msym ,   Malassezia  

sympodiali ;   Phub ,   Pseudozyma   hubeiensis ;   Scer ,   Saccharomyces   cerevisiae ;   Ssch ,   Sporothrix  

schenckii ;   Umay ,   Ustilago   maydis .  

 

 

Figure    7.   First   introns   are   located   near   the   translation   initiation   codons.    Plus   and   minus   signs  

denote   translation-associated   genes   and   other   classes   of   genes,   respectively.   Gene   counts   are   shown   in  

the   right   panel.   Dotted   lines   in   light   gray   denote   a   null   distribution   of   the   first   CDS   introns   of    S.  

cerevisiae .   Dashed   lines   in   dark   gray   denote   a   null   distribution   of   the   actual   first   introns   (including  

UTR   introns)   of     S.   cerevisiae    centered   at   the   transcription   start   or   termination   sites.   CDS,   coding  
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sequence;   Cdub ,   Candida   dubliniensis ;   Ceur ,   Cyphellophora   europaea ;   GO,   gene   ontology;   Mmil ,  

Meira   miltonrushii ;   Msym ,   Malassezia   sympodiali ;   Phub ,   Pseudozyma   hubeiensis ;   Scer ,  

Saccharomyces   cerevisiae ;   Ssch ,   Sporothrix   schenckii ;   Umay ,   Ustilago   maydis ;   UTR,   untranslated  

regions.  

 

 

Figure    8.   Introns   are   more   abundant   in   specific   classes   of   genes.    Cdub ,   Candida   dubliniensis ;  

Ceur ,   Cyphellophora   europaea ;   Mmil ,   Meira   miltonrushii ;   Msym ,   Malassezia   sympodiali ;   Phub ,  

Pseudozyma   hubeiensis ;   Scer ,   Saccharomyces   cerevisiae ;   Ssch ,   Sporothrix   schenckii ;   Umay ,   Ustilago  

maydis .  

 

 

Figure   9 .   Intron-containing   genes   have   higher   mRNA   expression   and   translation   efficiency.     (A)  

RNA-seq   and    (B)    ribosome   profiling   results   of    S.   cerevisiae    orthologs.   Translation   efficiency   was  

determined   by   the   ratio   of   ribosome-protected   fragments   and   mRNA   read   counts   normalized   to  

respective   library   sizes.    C.   albicans ,    Candida   albicans ;    N.   crassa ,    Neurospora   crassa ;    p ,   the    p -values  

of   Welch   two   sample   t-tests   were   adjusted   with   Bonferroni   correction;   RPKM,   Reads   Per   Kilobase  

per   Million   mapped   reads;    S.   cerevisiae ,    Saccharomyces   cerevisiae ;    S.   pombe ,    Schizosaccharomyces  

pombe .  
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