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ABSTRACT  12 

Impaired fear extinction is one of the hallmark symptoms of post-traumatic stress disorder 13 

(PTSD). The roles of αCaMKII have been not extensively studied in fear extinction and LTD. 14 

Here, we found PTSD susceptible mice exhibited significant up-regulation of αCaMKII in the 15 

lateral amygdala (LA). Consistently, increasing αCaMKII in LA profoundly not only caused 16 

PTSD-like symptoms such as impaired fear extinction and anxiety-like behaviors, but also 17 

attenuated NMDAR-dependent LTD at thalamo-LA synapses, reduced GluA1-Ser845/Ser831 18 

dephosphorylation and AMPAR internalization. Suppressing the elevated αCaMKII to normal 19 

level could completely reverse both PTSD-like symptoms and the impairments in LTD, GluA1-20 

Ser845/Ser831 dephosphorylation and AMPAR internalization. Intriguingly, deficits in AMPAR 21 

internalization and GluA1-Ser845/Ser831 dephosphorylation were detected not only after 22 

impaired fear extinction, but also after attenuated LTD Our results demonstrate for the first time 23 

GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization are molecular links 24 

between LTD and fear extinction, and suggest αCaMKII may be a potential molecular 25 

determinant of PTSD.  26 

27 
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 INTRODUCTION 1 

Although some progresses have been made in understanding the molecular and cellular 2 

mechanisms of post-traumatic stress disorder (PTSD) recently, effective treatment for PTSD is 3 

still lacking. Since impaired fear extinction is one of the core symptoms of PTSD (Michopoulos 4 

et al., 2014; Yehuda et al., 2015), and fear extinction is the basis for psychological exposure 5 

therapy (M. R. Milad & Quirk, 2012), a deeper understanding of the molecular and cellular 6 

substrates underlying fear extinction would have important implications for developing the more 7 

effective treatment for PTSD.  8 

At the synaptic level, long-term depression (LTD) has been implicated in fear extinction 9 

(Bennett, Arnold, Hatton, & Lagopoulos, 2017). N-methyl-D-aspartate (NMDA) GluN2B 10 

receptor antagonist can abolish both LTD at thalamo-lateral amygdala (T-LA) synapses and fear 11 

extinction (Dalton, Wu, Wang, Floresco, & Phillips, 2012). Moreover, deletion of kinesin 12 

superfamily proteins (KIFs) 21B impairs both hippocampal LTD and contextual fear extinction 13 

(Morikawa, Tanaka, Cho, Yoshihara, & Hirokawa, 2018). Besides, aquaporin-4 deficiency 14 

facilitates both NMDAR-dependent hippocampal LTD and fear extinction (Wu et al., 2017). 15 

Optogenetic delivery of LTD conditioning to the auditory input to LA facilitates cued fear 16 

extinction (Nabavi et al., 2014). Taken together, these findings indicate that there may be a link 17 

between LTD and fear extinction. NMDAR-dependent a-amino-3-hydroxy-5-methyl-4-18 

isoxazolepropionic acid receptor (AMPAR) internalization is involved in fear extinction (Bai, 19 

Zhou, Wu, & Dong, 2014; Dalton, Wang, Floresco, & Phillips, 2008; J. Kim et al., 2007; Lin, 20 

Mao, Su, & Gean, 2010). Notably, disruption of AMPAR internalization impairs fear extinction 21 

(Dalton et al., 2008; J. Kim et al., 2007). Conversely, the promotion of AMPAR internalization 22 

facilitates fear extinction (Bai et al., 2014; Lin et al., 2010). It has been well known that AMPAR 23 

internalization also participates in LTD (Brebner et al., 2005; Collingridge, Isaac, & Wang, 24 

2004). Thus, we wonder whether AMPAR internalization is a direct link between fear extinction 25 

and LTD. 26 

At the molecular level, CaMKII is the major kinase mediating NMDAR-dependent synaptic 27 

plasticity, AMPAR trafficking and memory (Collingridge et al., 2004). In mammals, CaMKII 28 

has four isoforms, α, β,  and  (Colbran & Soderling, 1990; Hell, 2014), and the α isoform is 29 

predominantly expressed in the forebrain (Kennedy, McGuinness, & Greengard, 1983). On the 30 
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one hand, αCaMKII plays a crucial role in long-term potentiation (LTP) and memory formation 1 

(Kerchner & Nicoll, 2008; J. Lisman, Yasuda, & Raghavachari, 2012). On the other hand, 2 

αCaMKII is also required for NMDAR-dependent hippocampal LTD. For example, both 3 

CaMKII inhibitor and αCaMKII knock out could block LTD in CA1 (Coultrap et al., 2014). 4 

Moreover, αCaMKII is activated during LTD expression (J. Y. Delgado et al., 2007; Lu, Isozaki, 5 

Roche, & Nicoll, 2010). In αCaMKII-F89G transgenic (TG) mice, αCaMKII overexpression in 6 

the forebrain impairs LTD in anterior cingulate and medial prefrontal cortices, and disrupts 7 

behavioral flexibility (J. Ma et al., 2015; Wei et al., 2006). However, whether and how αCaMKII 8 

in LA affect LTD at T-LA synapses and cued fear extinction are still unknown. 9 

To better illuminate the mechanism of cued fear extinction, thereby understanding the 10 

mechanism of PTSD, using the behavioral profiling approach (Ardi, Albrecht, Richter-Levin, 11 

Saha, & Richter-Levin, 2016), we identified PTSD susceptible mice with cued fear extinction 12 

deficit and anxiety-like behaviors from the trauma-exposed mice. It is worth noting that 13 

increased αCaMKII was detected in LA of PTSD susceptible mice. To determine whether 14 

increased αCaMKII can cause PTSD-like symptoms, we employed an inducible and reversible 15 

chemical-genetic technique to temporally and spatially manipulate αCaMKII level in the 16 

forebrain of αCaMKII-F89G TG mice, as well as using adeno-associated viral (AAV) vectors to 17 

elevate αCaMKII specifically in LA of C57BL/6J mice. Consistently, up-regulation of αCaMKII 18 

induced PTSD-like symptoms including cued fear extinction deficit and anxiety-like behaviors, 19 

which could be reversed by suppressing elevated αCaMKII to normal level. In addition, we 20 

prove that GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization are the links 21 

between cued fear extinction and NMDAR-dependent LTD at T-LA synapses. 22 

23 
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RESULTS 1 

PTSD susceptible mice exhibit increased αCaMKII and reduced AMPAR internalization in 2 

LA. 3 

PTSD susceptible individuals were identified in UWT-exposed group (23 male mice) and 4-4 

CS/US-exposed group (23 male mice) by employing the behavioral profiling approach described 5 

in MATERIALS AND METHODS section. PTSD susceptible mice had persistently higher level 6 

of cued freeze responses through extinction trials (Fig. 1B, PS-UWT vs Control, F(4, 85) = 6.33, P 7 

< 0.001; PS-4CS/US vs Control, F(4, 85) = 4.70, P < 0.01), spent significantly less time in the 8 

center area of open field (OF) chamber (Fig. 1C, PS-UWT vs Control, P < 0.01; PS-4CS/US vs 9 

Control, P < 0.001), in the light zone of light/dark box (LD) test (Fig. 1D, PS-UWT vs Control, P 10 

< 0.01; PS-4CS/US vs Control, P < 0.001), and in the open arms of water zero maze (OM) test 11 

(Fig. 1E, PS-UWT vs Control, P < 0.001; PS-4CS/US vs Control, P < 0.001) compared with 12 

control mice. Behavioral profiling revealed that only 7 mice each group showed PTSD-like 13 

symptoms in 23 mice exposed to UWT or 23 mice exposed repeatedly to US/CS.  14 

LA is a key brain region for fear extinction and anxiety-like behaviors (Erlich, Bush, & 15 

Ledoux, 2012; Forster, Novick, Scholl, & Watt, 2012; Grosso, Santoni, Manassero, Renna, & 16 

Sacchetti, 2018; Jacques et al., 2019; Jihye Kim et al., 2015; J. Kim et al., 2007; Krabbe, 17 

Gründemann, & Lüthi, 2018; Mahan & Ressler, 2012; Ressler, 2010; Schafe, Doyère, & LeDoux, 18 

2005). CaMKII has been shown to be important for memory extinction (Bevilaqua et al., 2006; 19 

Burgdorf et al., 2017; Szapiro, Vianna, McGaugh, Medina, & Izquierdo, 2003). Moreover, 20 

GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization contribute to fear 21 

extinction (Bai et al., 2014; Dalton et al., 2008; Hollis, Sevelinges, Grosse, Zanoletti, & Sandi, 22 

2016; J. Kim et al., 2007; S. Lee et al., 2013; Lin et al., 2010; Talukdar, Inoue, Yoshida, & Mori, 23 

2018). Thus, we investigated levels of CaMKII, GluA1-Ser845/Ser831 phosphorylation and 24 

synaptic GluA1/2 expression in LA of PTSD susceptible mice and found αCaMKII and the 25 

phosphorylated (p)-αCaMKII at Thr286 (p-αCaMKII-Thr286) were significantly up-regulated in 26 

PTSD susceptible mice experienced either UWT or 4-CS/US exposure (Fig. 1FG, PS-UWT vs 27 

Control, αCaMKII, P < 0.01, p-αCaMKII-Thr286, P < 0.05; PS-4CS/US vs Control, αCaMKII, P 28 

< 0.05, p-αCaMKII-Thr286, P < 0.05). However, no significant difference was observed in 29 

βCaMKII among the three groups (Fig. 1F, PS-UWT vs Control, P > 0.05; PS-4CS/US vs 30 
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Control, P > 0.05). In addition, PTSD susceptible mice had a significant higher synaptic 1 

expression levels in the synaptic GluA1/2 expression and phosphorylated GluA1-Ser845/Ser831 2 

(Fig. 1F, PS-UWT vs Control, GluA1: P < 0.01, GluA2: P < 0.01, GluA1-Ser831: P < 0.01, 3 

GluA1-Ser845: P < 0.01; PS-4CS/US vs Control, GluA1: P < 0.001, GluA2: P < 0.05, GluA1-4 

Ser831: P < 0.01, GluA1-Ser845: P < 0.01). Taken together, these results suggest that PTSD 5 

susceptible mice display the significantly higher level of αCaMKII, the lower level of GluA1-6 

Ser845/Ser831 dephosphorylation and AMPAR internalization in LA. 7 

Increasing αCaMKII in LA is sufficient to cause PTSD-like phenotypes in both αCaMKII-8 

F89G TG and AAV-αCaMKII mice  9 

To further investigate whether elevated αCaMKII in LA cause PTSD-like phenotypes such 10 

as impaired fear extinction and anxiety-like behaviors, we temporally and spatially manipulated 11 

αCaMKII overexpression in αCaMKII-F89G TG mice by employing an inducible and reversible 12 

chemical-genetic technique described in MATERIALS AND METHODS section. The higher 13 

level of αCaMKII and normal morphology in LA were observed in TG mice (Supplemental 14 

information, Fig. S1). 15 

Then, cued fear memory recall and cued fear extinction were measured after only 1-CS / US 16 

for cued fear conditioning (Fig. 2A). Given that forebrain αCaMKII overexpression impairs fear 17 

memory retrieval in our previous study (Cao et al., 2008), to examine the effect of αCaMKII 18 

overexpression on cued fear extinction in TG mice, we designed the “normal αCaMKII level 19 

during cued fear memory retrieval but elevated αCaMKII level during cued fear extinction 20 

period” paradigm by a single i.p. injection of NM-PP1 into both TG mice and WT littermates 15 21 

mins before the first recall test of cued fear memory (Fig. 2A). Under this paradigm, TG mice 22 

exhibited normal retrieval of cued fear memory in comparison to that of wild-type littermate (Fig. 23 

2B, TG + i.p. vs WT + i.p., P > 0.05). However, during cued fear extinction trials, as shown in 24 

Fig. 2B, a significant declining freezing behavior was observed in WT mice but not in TG mice 25 

(Fig. 2B, TG + i.p. vs WT + i.p., F (3, 264) = 10.73, P < 0.001). A post hoc analysis revealed that 26 

TG mice exhibited significantly higher level of freezing response to the CS in cued fear 27 

extinction trial 2, 3 and 4 (Fig. 2B, TG + i.p. vs WT + i.p., P < 0.05), suggesting that elevated 28 

αCaMKII may impair cued fear extinction. In addition, TG mice spent significantly less time 29 

(Fig. 2C-E, TG + i.p. vs WT + i.p., P < 0.001) in the center area of OF chamber (Fig. 2C), in the 30 
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light zone of LD test (Fig. 2D), and in the open arms of elevated plus maze (EPM) test (Fig. 2E) 1 

compared with WT mice. Together, it indicates that increased αCaMKII in LA may cause PTSD-2 

like phenotypes.  3 

To further confirm whether PTSD-like phenotypes in TG mice are due to the 4 

overexpression of αCaMKII-F89G protein, we then designed the “normal αCaMKII level during 5 

both fear memory recall and extinction period” paradigm by i.p. injection of NM-PP1 15 min 6 

before recall test and oral (p.o.) administration throughout the entire fear extinction period (Fig. 7 

2B). Under this “normal αCaMKII level during both fear memory recall and extinction period” 8 

paradigm, TG mice had similar freezing response with that in WT mice during cued extinction 9 

trials (Fig. 2B, TG + i.p. + o.p. vs WT + ip, P > 0.05), suggesting impaired cued fear extinction 10 

was rescued by NM-PP1 treatment in TG mice. Moreover, NM-PP1 had no effect on cued fear 11 

extinction in WT mice (Fig. 2B, WT + i.p. + o.p. vs. WT + i.p., P > 0.05), excluding the 12 

possibility that the rescuing effects by NM-PP1 were due to „facilitating extinction‟ effects. In 13 

addition, TG mice with NM-PP1 treatments spent comparable amounts of time (Fig. 2C-E, TG + 14 

i.p. + p.o. vs. WT + i.p., P > 0.05) in the center area of OF chamber (Fig. 2C), in the light box of 15 

LD test (Fig. 2D) and in EPM test (Fig. 2E) compared with WT mice. Furthermore, TG mice 16 

without any treatment exhibited normal locomotor activity, exploratory behavior and pain 17 

threshold (Supplemental information, Fig. S2). Taken all together, we conclude that increased 18 

αCaMKII indeed is sufficient to produce PTSD-like phenotypes including impaired fear 19 

extinction and anxiety-like behaviors.  20 

To further examine whether increasing αCaMKII specifically in LA is also sufficient to 21 

cause PTSD-like phenotypes, we bilaterally injected viral vectors AAV-αCaMKII (pAAV-TRE-22 

αCaMKII-P2A-EGFP-CMV-rTA) into LA of C57BL/6J mice to overexpress αCaMKII 23 

specifically in LA (Fig. 3A). As expected, both αCaMKII and p-αCaMKII-Thr286 expression 24 

levels significantly increased in LA of AAV-αCaMKII mice (Fig. 3DE, αCaMKII, P < 0.001; p-25 

αCaMKII-Thr286, P < 0.001). 24 h after 1-CS/US pairing, we performed cued fear memory test. 26 

AAV-αCaMKII mice exhibited impairment of cued fear memory during recall test (Fig. 3C, P < 27 

0.001), which is consistent our previous finding that αCaMKII overexpression impairs the 28 

retrieval of fear memory (Cao et al., 2008). In addition, AAV-αCaMKII mice showed 29 

significantly impaired fear extinction (Fig. 3C, AAV-αCaMKII vs AAV-control, F(4, 81) = 2.63, P 30 
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< 0.05). A post hoc analysis revealed that AAV-αCaMKII mice exhibited the significant higher 1 

freezing responses than AAV-control mice on the 4th extinction trial (P < 0.05). In addition to 2 

deficits in cued fear extinction, AAV-αCaMKII mice showed anxiety-like behaviors (data not 3 

shown). These data suggest that elevated αCaMKII expression specifically in LA is also 4 

sufficient to result in PTSD-like symptoms. 5 

Increasing αCaMKII in LA impairs AMPAR internalization and GluA1-Ser845/Ser831 6 

dephosphorylation after cued fear extinction in both αCaMKII-F89G TG and AAV-7 

αCaMKII mice 8 

We quantified the expression of synaptic AMPAR composition subunits (GluA1/2) and 9 

GluA1-Ser845/Ser831 phosphorylation in LA before/after cued fear conditioning and extinction 10 

trials. After cued fear extinction trials, compared with cued fear conditioning trial, significant 11 

decreases in the GluA1/2 synaptic expression and GluA1-Ser845/Ser831 phosphorylation levels 12 

could be found only in WT mice (Fig. 2FG, WT + FC vs WT + Ext, GluA1: P < 0.001; GluA2: P 13 

< 0.01; pGluA1-Ser845: P < 0.05; pGluA1-Ser831: P < 0.01), but not in TG mice (TG + FC vs 14 

TG + Ext, GluA1/A2, pGluA1-Ser845/831: P > 0.05). Furthermore, the GluA1/2 synaptic 15 

expression and phosphorylated GluA1-Ser845/Ser831 in TG mice were significantly higher than 16 

that in WT mice after cued fear extinction trials (Fig. 2FG, TG + Ext vs WT + Ext , GluA1/A2: P 17 

< 0.01; pGluA1-Ser845/Ser831: P < 0.05).  18 

Moreover, consistent with the above western blotting data from αCaMKII-F89G TG mice, 19 

synaptic GluA1/2 expression, phosphorylated GluA1-Ser845/Ser831 levels were significantly 20 

higher in LA of AAV-αCaMKII mice than that in AAV-control mice after cued fear extinction 21 

trials (Fig. 3DE, GluA1/2, pGluA1-Ser845/Ser831, P < 0.01). Taken all together, these results 22 

indicate that increasing αCaMKII specifically in LA disrupts GluA1-Ser845/Ser831 23 

dephosphorylation and AMPAR internalization, consequently may impair cued fear extinction in 24 

both αCaMKII-F89G TG and AAV-αCaMKII mice. 25 

Increasing αCaMKII impairs NMDAR-dependent LTD at T-LA synapses and NM-PP1 26 

can recover the impairments 27 

To investigate the cellular mechanism of impaired cued fear extinction, we measured the 28 

basal synaptic transmission and synaptic plasticity at T-LA synapses in TG mice. No significant 29 

difference was observed in input-output curves, synaptic and total GluA1/2 expression of LA 30 
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(Supplemental information, Fig. S3AB, TG vs WT, P > 0.05), paired-pulse depression (PPD) and 1 

synapsin expression (Fig. S3CD, TG vs WT, P > 0.05) in LA between TG and WT mice. 2 

Moreover, either tetanic or theta burst stimulations induced similar level of LTP at T-LA 3 

synapses (Fig. 4AB, TG vs WT, P > 0.05). These results indicate that αCaMKII overexpression 4 

does not affect basal synaptic transmission and LTP at T-LA synapses. 5 

We then analyzed the effects of the αCaMKII overexpression on LTD at T-LA synapses. 6 

1Hz-LTD in TG slices was significantly reduced (Fig. 4C, TG vs WT, P < 0.05) compared to that 7 

of WT slices, which could be recovered by 0.5 μM NM-PP1 (Fig. 4C, TG + NM-PP1 vs TG, P < 8 

0.05), while 1Hz-LTD in WT slices was not affected (Fig. 4C, WT + NM-PP1 vs WT, P > 0.05). 9 

Notably, LTD at the T-LA synapses could be blocked by application of APV (50 μM) and NM-10 

PP1 (0.5 μM) (Fig. 4D, TG vs WT, P > 0.05), suggesting the LTD at the T-LA synapses is 11 

NMDAR-dependent. Besides, 3Hz-LTD was blocked in TG slices (Fig. 4E; TG vs WT, P < 12 

0.001), which could also be recovered by NM-PP1 (Fig. 4E, TG + NM-PP1 vs TG, P < 0.01), 13 

while 3Hz-LTD in WT slices was not affected (Fig. 4E, WT + NM-PP1 vs WT, P > 0.05). 14 

Likewise, TG mice exhibited deficits in the depotentiation at T-LA synapses (Fig. 4F, TG vs WT, 15 

P < 0.01). In summary, our results show that αCaMKII overexpression impairs NMDAR-16 

dependent LTD and depotentiation at T-LA synapses in TG mice. 17 

Increasing αCaMKII impairs AMPAR internalization and GluA1-Ser845/Ser831 18 

dephosphorylation during NMDAR-dependent LTD and NM-PP1 can rescue the 19 

impairments  20 

Besides the low-frequency stimulation (LFS), brief NMDA exposure can chemically induce 21 

NMDAR-dependent LTD (H. K. Lee, K. Kameyama, R. L. Huganir, & M. F. Bear, 1998). In TG 22 

slices, NMDA application (30 μM, 3 min) could elicit a significantly weaker LTD at T-LA 23 

synapses than that in WT slices (Fig. 5A, TG + NMDA vs WT + NMDA, P < 0.01). Furthermore, 24 

0.5 μM NM-PP1 could rescue the reduced NMDA- induced LTD in TG slices to normal level 25 

(Fig. 5A, TG + NMDA + NM-PP1 vs WT + NMDA, P > 0.05; TG + NMDA + NM-PP1 vs TG 26 

+ NMDA, P < 0.01), but had no detectable effects on NMDA-induced LTD in WT slices (Fig. 27 

5A, WT + NMDA + NM-PP1 vs WT + NMDA, P > 0.05). These results suggest that increasing 28 

αCaMKII in LA attenuates NMDAR-dependent chem-LTD at T-LA synapses in TG mice. 29 
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NMDA-induced LTD could elicit more widespread depression of synapse strength and share 1 

the similar molecular mechanisms to LFS-LTD such as AMPAR internalization and GluA1-2 

Ser845/Ser831 phosphorylation (Jary Y. Delgado et al., 2007; He, Lee, Song, Kanold, & Lee, 3 

2011; Kollen, Dutar, & Jouvenceau, 2008; H.-K. Lee, K. Kameyama, R. L. Huganir, & M. F. 4 

Bear, 1998). To investigate the molecular mechanisms underlying deficit in NMDAR-dependent 5 

LTD in TG mice, we examined the amount of some synaptic proteins after NMDA-induced LTD. 6 

NMDA application significantly decreased the GluA1/2 synaptic expression and GluA1-7 

Ser845/Ser831 phosphorylation in WT slices (Fig. 5BC, WT+NMDA vs WT, GluA1, GluA2, 8 

pGluA1-Ser845: P < 0.01; pGluA1-Ser831: P < 0.001), but not in TG slice (Fig. 5BC, 9 

TG+NMDA vs TG, GluA1/A2, pGluA1-Ser845/831: P > 0.05). Besides, the synaptic expression 10 

of GluA1/2 and GluA1-Ser845/Ser831 phosphorylation in LA of TG slices were significantly 11 

higher than that in LA of WT slices (Fig. 5BC, TG + NMDA vs WT + NMDA, GluA1: P < 0.05; 12 

GluA2: P < 0.01; pGluA1-Ser845/Ser831: P < 0.05).Furthermore, NM-PP1 (0.5 µM) 13 

successfully rescued the impairments of AMPAR internalization and GluA1-Ser845/Ser831 14 

dephosphorylation of LA in TG slices (Fig. 5BC, TG+NMDA+NM-PP1 vs TG, GluA1/A2, 15 

pGluA1-Ser845/831: P < 0.01), with no effect on that of WT slices (Fig. 5BC, 16 

WT+NMDA+NM-PP1 vs WT+NMDA, GluA1/A2, pGluA1-Ser845/831: P > 0.05). Collectively, 17 

it indicates that αCaMKII overexpression leads to impairment of AMPARs internalization and 18 

dephosphorylation in LA, which consequently impairs NMDAR-dependent LTD at T-LA 19 

synapses. 20 

Increasing αCaMKII reduces protein phosphotase (PP) activitiy and enhances stargazin 21 

expression during NMDAR-dependent LTD and NM-PP1 can recover the abnormalities  22 

Activation of protein phosphatase 1 (PP1) contributes to LTD formation (Isabelle M. 23 

Mansuy & Shirish Shenolikar, 2006; Mauna, Miyamae, Pulli, & Thiels, 2011). Moreover, 24 

stargazin can be dephosphorylated by PP1 to induce the clathrin-dependent AMPAR endocytosis 25 

during NMDAR-dependent LTD (Bats, Groc, & Choquet, 2007; Matsuda et al., 2013). 26 

Dephosphorylation of the Thr320 residue on the C-terminal domain of PP1 can enhance PP1 27 

activity during NMDAR-dependent LTD (Dohadwala et al., 1994; Goldberg et al., 1995). 28 

Therefore, we investigated PP1-Thr320 phosphorylation (pPP1-Thr320) and stargazin expression 29 

in LA fractions of WT and TG slices with NMDA treatment. With NMDA exposure, significant 30 

reductions of pPP1-Thr320 and stargazin expression of LA could be found only in WT (Fig. 5DE, 31 
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WT+NMDA vs WT, pPP1-Thr320: P < 0.01; stargazin: P < 0.001) but not in TG slices 1 

(TG+NMDA vs TG, pPP1-Thr320, stargazing: P > 0.05). Moreover, the PP1-Thr320 2 

phosphorylation and stargazin expression in LA of TG slices were dramatically higher than that 3 

in WT slices (Fig. 5DE, TG + NMDA vs WT + NMDA, pPP1-Thr320, stargazing, P < 0.05), 4 

suggesting that the PP1 activity and stargazin expression were abnormal in TG mice during 5 

NMDA-induced LTD. Furthermore, NM-PP1 could recover the abnormalities in PP1 activity 6 

and stargazin expression in LA of TG slices (Fig. 5DE, TG + NMDA + NM-PP1 vs TG, pPP1-7 

Thr320: P < 0.01; stargazing: P < 0.01; TG + NMDA + NM-PP1 vs TG + NMDA, pPP1-Thr320: 8 

P < 0.05, stargazing: P < 0.05) but not affecting that of WT slices (Fig. 5DE, WT + NMDA + 9 

NM-PP1 vs WT + NMDA, pPP1-Thr320: P > 0.05; stargazing: P > 0.05). 10 

Protein phosphatase 2A (PP2A) and calcineurin (PP2B) play important roles in LTD 11 

maintenance and induction (Pi & Lisman, 2008; Winder & Sweatt, 2001). A significant augment 12 

of PP2A/2B activity could be found in LA of WT slices (Fig. 5F, WT+NMDA vs WT, PP2A: P 13 

< 0.01; PP2B: P < 0.001), but not in LA of TG slices during LTD formation (Fig. 5F, 14 

TG+NMDA vs TG, PP2A, PP2B: P > 0.05). Besides, PP2A/2B activity was dramatically lower 15 

in LA of TG slices than that of WT slices (Fig. 5F, TG + NMDA vs WT + NMDA, PP2A: P < 16 

0.01; PP2B: P < 0.001), during NMDA-induced LTD. Furthermore, NM-PP1 (0.5 µM) could 17 

also recover PP2A/2B activity down-regulation in LA of TG slices (Fig. 5F, TG + NMDA + 18 

NM-PP1 vs TG, PP2A, PP2B: P < 0.001; TG + NMDA + NM-PP1 vs TG + NMDA, PP2A, 19 

PP2B: P < 0.01) without affecting that of WT slices (Fig. 5F, WT + NMDA + NM-PP1 vs WT + 20 

NMDA, PP2A, PP2B: P > 0.05). Taken together, all these results suggest that αCaMKII 21 

overexpression can weaken PP1, PP2A/2B activity and increase stargazin expression in LA 22 

fractions during NMDAR-dependent LTD, which may be potential mechanisms of AMPAR 23 

internalization and NMDAR-dependent LTD impairments. 24 

 25 

26 
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DISCUSSION 1 

In the present study, we reveal that PTSD susceptible mice exhibits significant up-regulation 2 

of αCaMKII, down-regulation of GluA1-Ser845/Ser831 dephosphorylation and AMPAR 3 

internalization in LA. Consistently, increasing αCaMKII specifically in LA can cause PTSD-like 4 

phenotypes such as fear extinction deficit and anxiety-like behaviors, and impairs AMPAR 5 

internalization and dephosphorylation, NMDAR-dependent LTD and depotentiation at T-LA 6 

synapses. Furthermore, deficits in AMPAR internalization and dephosphorylation are observed 7 

not only after impaired cued fear extinction in vivo, but also after attenuated NMDA-induced 8 

LTD in TG slices in vitro. Additionally, the deficits in AMPAR internalization and 9 

dephosphorylation are due to down-regulation of PP1/2A, PP2B activity and increased stargazin 10 

in TG mice. Importantly, NM-PP1, a specific inhibitor of the exogenous αCaMKII-F89G, could 11 

rescue the above deficits in αCaMKII-F89G TG mice. These data suggest up-regulation of 12 

αCaMKII may weaken activity of PP1/2A and PP2B, increase stargazing, thereby impairing 13 

AMPAR internalization and dephosphorylation, which consequently impairs LTD and fear 14 

extinction. 15 

αCaMKII and memory extinction 16 

CaMKII has been shown to play an important role in the extinction of different memories. 17 

Pharmacological inhibition of CaMKII by KN-62 blocked the extinction of step-down passive 18 

avoidance performance (Bevilaqua et al., 2006; Szapiro et al., 2003). Similarly, α/βCaMKII 19 

inhibitor KN93 significantly attenuated the extinction of cocaine conditioned place preference 20 

(Burgdorf et al., 2017). Furthermore, partial reduction of αCaMKII function due to the T286A
+/–

 21 

mutation impaired the extinction of contextual fear and spatial memories (Kimura, Silva, & 22 

Ohno, 2008). On the contrary, reduction of αCaMKII by phosphorylation at serine 331 in LA 23 

enhances cocaine memory extinction (Rich et al., 2016). Besides, increased activation of 24 

CaMKIIα in the CPEB3-knockout hippocampus reduced the extinction of spatial memories 25 

(Berger-Sweeney, Zearfoss, & Richter, 2006; Huang, Chao, Tsai, Chung, & Huang, 2014). In 26 

our study, we found that mouse models of PTSD with cued fear extinction deficit exhibited 27 

significant up-regulation of αCaMKII in LA. Furthermore, increasing αCaMKII in LA can cause 28 

PTSD-like phenotypes including impaired cued fear extinction.  29 

 30 
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The causal relationship between elevated αCaMKII and impaired LTD 1 

CaMKII is a major kinase mediating AMPAR trafficking and NMDAR-dependent synaptic 2 

plasticity (Collingridge et al., 2004). Specifically, CaMKII can phosphorylate AMPA receptors 3 

GluA1 subunits at Ser845/Ser831, which can promote the integration of new AMPA receptors at 4 

the postsynaptic density (Barria, Muller, Derkach, Griffith, & Soderling, 1997), further 5 

enhancing synaptic transmission. On the contrary, CaMKII has been found to interact with 6 

Arc/Arg3.1 gene product to weaken synapses by promoting AMPA internalization (Okuno et al., 7 

2012). Recently, CaMKII has been also shown to phosphorylate GluA1 subunits at Ser567 site to 8 

promote P2X2-mediated AMPAR internalization and drive synaptic depression (Pougnet et al., 9 

2016). In our study, we found that PTSD susceptible mice with blocked fear extinction exhibited 10 

significantly higher αCaMKII, lower GluA1-Ser845/Ser831 dephosphorylation and lower 11 

AMPA internalization in LA. To investigate whether elevated αCaMKII led to PTSD-like 12 

symptoms including impaired fear extinction, changed NMDAR-dependent LTD, GluA1 13 

dephosphorylation and AMPA internalization in LA, we then up-regulated αCaMKII expression 14 

in αCaMKII-F89G TG and AAV-αCaMKII infected mice. We found that αCaMKII 15 

overexpression in LA caused impairments in GluA1-Ser845/Ser831 dephosphorylation, AMPA 16 

internalization, NMDAR-dependent LTD at T-LA synapses and cued fear extinction in TG mice, 17 

which could be completely rescued by a specific inhibitor (NM-PP1) of exogenous αCaMKII-18 

F89G. These results suggest there is causality between up-regulated αCaMKII and impaired 19 

GluA1-Ser845/Ser831 dephosphorylation, defective AMPA internalization, NMDAR-dependent 20 

LTD and cued fear extinction. 21 

The molecular links between LTD and fear extinction  22 

NMDAR mediates both LTD and fear extinction (Bai et al., 2014; Brebner et al., 2005; 23 

Dalton et al., 2008; Fox, Russell, Titterness, Wang, & Christie, 2007; Radulovic, Ren, & Gao, 24 

2019). It has been reported that a GluR2-derived peptide (Tat-GluR23Y) blocked AMPAR 25 

internalization and impaired NMDAR-dependent LTD both in vitro (Bai et al., 2014; Brebner et 26 

al., 2005; Dalton et al., 2008) and in vivo (Fox et al., 2007). Moreover, NMDA NR2B receptors 27 

antagonist (Ro25-6981) blocked AMPAR internalization and disrupted fear extinction (J. Kim et 28 

al., 2007). Conversely, systemic administration of d-serine enhanced both AMPAR 29 

internalization and fear extinction (Bai et al., 2014). In addition, GluA1-Ser845/Ser831 30 
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dephosphorylation also played important roles in NMDAR-dependent LTD (Diering, Heo, 1 

Hussain, Liu, & Huganir, 2016) and fear extinction (Hollis et al., 2016; Talukdar et al., 2018). 2 

Although the above findings indicate AMPAR internalization and dephosphorylation may be 3 

links between fear extinction and LTD, supporting evidence is still lacking. In our current study, 4 

deficits in GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization were observed 5 

not only after impaired cued fear extinction in vivo, but also after attenuated NMDA-induced 6 

LTD in αCaMKII-F89G TG slices in vitro. Furthermore, a specific inhibitor of the exogenous 7 

αCaMKII-F89G (NM-PP1) could completely rescue the deficits in cued fear extinction, NMDA-8 

induced  LTD, GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization. Thus, our 9 

data demonstrate that deficits in Ser845/GluA1-Ser831 dephosphorylation and AMPAR 10 

internalization by elevated αCaMKII are molecular links between impaired NMDAR dependent-11 

LTD and fear extinction. In other words, we demonstrate for the first time that GluA1-12 

Ser845/Ser831 dephosphorylation and AMPAR internalization are molecular links between 13 

NMDA dependent-LTD and fear extinction. 14 

How does excessive αCaMKII impair AMPAR internalization and dephosphorylation 15 

during NMDAR-dependent LTD? 16 

LTD formation requires PPs (PP1, PP2A and PP2B) activation (Kameyama, Lee, Bear, & 17 

Huganir, 1998; H. K. Lee et al., 1998). Activated PPs dephosphorylate GluA1-Ser845/Ser831 18 

(Hu, Huang, Yang, & Xia, 2007; I. M. Mansuy & S. Shenolikar, 2006; Winder & Sweatt, 2001), 19 

which cause a reduction of open probability or conductance for AMPAR channels and finally 20 

contribute to LTD formation. Specifically, PP1 is activated through a Ca
2+

-PP2B-I1 pathway and 21 

has a more predominant role in depressing potentiated synapses, whereas PP2A is activated 22 

through PP2B/PP1 cascade or pathways independent on PP2B and mainly depresses naive 23 

synapses (Winder & Sweatt, 2001). However, in αCaMKII-F89G TG mice, αCaMKII 24 

overexpression could exhibit higher potency in the competition with PP2B for Ca
2+

/CaM, which 25 

might decrease the accessibility of PP2B to Ca
2+

/CaM and inhibit the activity of the PP2B-I1-26 

PP1 pathway, thereby inhibiting PP1 activity. In addition, high concentration of phosphorylated 27 

αCaMKII could saturate the dephosphorylation ability of PP1, and thereby weaken PP1 28 

dephosphorylating GluA1-Ser845 or GluA1-Ser831 (Hu et al., 2007; H. K. Lee, Barbarosie, 29 

Kameyama, Bear, & Huganir, 2000; J. E. Lisman & Zhabotinsky, 2001; I. M. Mansuy & S. 30 
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Shenolikar, 2006; Winder & Sweatt, 2001). Unlike PP1, PP2A can be directly inactivated by 1 

CaMKII through phosphorylating its B‟ α subunits (Fukunaga et al., 2000; Pi & Lisman, 2008), 2 

so excessive CaMKII can weaken PP2A activity. Collectively, one explanation for impairment of 3 

NMDAR-dependent LTD is that the excessive αCaMKII can lower activity of PPs, thereby 4 

reduce GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization, and consequently 5 

impair LTD. 6 

It has been shown that stargazin can be dephosphorylated by PP1 through Ca
2+

-PP2B-I1 7 

pathway and form a ternary complex with APs to promote AMPAR internalization during 8 

NMDAR-dependent LTD (Matsuda et al., 2013; Tomita et al., 2003). Conversely, stargazin can 9 

be directly phosphorylated by activated CaMKII and bind to PSD-95 to immobilize AMPARs at 10 

synapses, which contributes to LTP (Bats et al., 2007; Opazo et al., 2010). In αCaMKII-F89G 11 

TG mice, more stargazin is expressed at the synaptic sites during NMDAR-dependent LTD. 12 

Therefore, another explanation for impairment of NMDAR-dependent LTD is that excessive 13 

CaMKII weakens AMPAR internalization through directly increasing stargazin phosphorylation 14 

and indirectly reducing stargazin dephosphorylation caused by lower PP1 activity, and finally 15 

impairs LTD. 16 

CONCLUSION 17 

We have found that PTSD-susceptible mice exhibit the higher αCaMKII expression, and 18 

lower GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization in LA. Increasing 19 

αCaMKII leads to PTSD-like phenotypes such as impaired fear extinction and anxiety-like 20 

behaviors, and impairs LTD at T-LA synapses. Furthermore, diminished GluA1-Ser845/Ser831 21 

dephosphorylation and AMPAR internalization were observed not only after impaired fear 22 

extinction in vivo, but also after attenuated NMDA-induced LTD in TG slices in vitro. Further 23 

data suggest that the impairment of NMDAR-dependent LTD is caused by the defective PPs 24 

activity and the excessive synaptic stargazin in αCaMKII-F89G TG mice. In summary, αCaMKII 25 

may be identified as a powerful regulator of the core symptoms of PTSD and LTD at T-LA 26 

synapses, and may be a key molecular determinant of PTSD. 27 

 28 

 29 
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MATERIALS AND METHODS 1 

Animals 2 

Biochemical Characterizations of αCaMKII-F89G TG mice.  3 

αCaMKII-F89G TG mice were donated by Dr. Tsien's lab (Wang et al., 2003). Mutant 4 

αCaMKII-F89G was generated with silent mutation (i.e. replacing the Phe-89 with Gly in 5 

αCaMKII), so that the ATP-binding pocket of αCaMKII-F89G kinase was enlarged. To 6 

selectively block exogenous αCaMKII-F89G and leave endogenous αCaMKII intact, NM-PP1 7 

was designed to fit only this enlarged pocket but not the unmodified pocket of native αCaMKII. 8 

By using αCaMKII promoter-driven construct, we were able to overexpress αCaMKII-F89G in 9 

the forebrain neurons. The αCaMKII-F89G could be rapidly and selectively manipulated in the 10 

mouse forebrain by intraperitoneal (i.p.) injection or noninvasive oral intake of 1-11 

Naphthylmethyl (NM)-PP1. Specifically, a single i.p. injection of NM-PP1(16.57 ng/g) into 12 

freely behaving TG mice could completely suppress αCaMKII-F89G in the forebrain regions of 13 

TG mice within 15 minutes and the complete suppression could be maintained for 40 min. The 14 

oral intake (5 µM NM-PP1 in drinking water) could result in partial inhibition of αCaMKII-15 

F89G in the TG mice by 6 h (no inhibition for the initial 3 h) and complete inhibition by 24 h. 16 

Bath application of 0.5 µM NM-PP1 in the slices of TG mice could inhibit αCaMKII-F89G but 17 

had no effect on native αCaMKII (Wang et al., 2003). 18 

All experimental procedures were conducted according to Animals Act, 2006 (China) and 19 

approved by the Institutional Animal Care and Use Committee (IACUC approval ID #M09018) 20 

of the East China Normal University. All mice were male and 3-4 months old. C57BL/6J mice 21 

were used for Figure 1 and 3. αCaMKII-F89G transgenic mice and wild-type littermates were 22 

used for the rest of Figures. The mice were housed in 12 h light/12 h dark cycle (lights on at 7 23 

a.m.) with free access to food and water. 24 

Behavior experiments 25 

Behavioral profiling for identification of PTSD susceptible mice 26 

We applied a behavioral profiling approach (Ardi et al., 2016) to identify PTSD susceptible 27 

mice in either underwater trauma (UWT)-exposed mice (G. Ritov, Boltyansky, & Richter-Levin, 28 

2016) or 4 conditioned stimulus /unconditioned stimulus (4-CS/US)-exposed mice (Borghans & 29 

Homberg, 2015; Dębiec, Bush, & LeDoux, 2011; Fenster, Lebois, Ressler, & Suh, 2018; Ji et al., 30 
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2014a, 2014b; Mahan & Ressler, 2012; Mohammed R. Milad & Quirk, 2011; Radulovic et al., 1 

2019).  2 

In detail, the C57BL/6J mice were randomly divided into three groups: control group (n = 3 

12), UWT-exposed group (n = 23) and 4-CS/US-exposed group (n = 23).  4 

The control mice without any treatment were kept in home cages for 4 weeks. The UWT-5 

exposed mice were individually allowed to swim freely for 5 s in a water-filled plastic tank, then 6 

submerged under water for 35 s using a metal net, next kept in their home cages for 4 weeks 7 

(Ardi et al., 2016; G. Ritov et al., 2016).  8 

The 4-CS/US-exposed mice were individually placed in the chamber and allowed to explore 9 

the environment freely for 2 min, and then exposed to the conditioned stimulus (CS: 75 dB 10 

sound at 2800 Hz) for 30 s. At the last 2 s of tone stimulus, the unconditioned stimulus (US: 0.50 11 

mA footshock, 2 s) was delivered. After 4-CS/US pairings with 2 min intertrial interval, mice 12 

were kept in the chamber for 2 min and then stayed in their home cages for 4 weeks.  13 

Three groups were examined in the open field (OF) test, light/dark (LD) test, water zero 14 

maze (OM) test, fear conditioning and extinction experiments. The freezing behavior was 15 

monitored by Freeze Frame system (Coulbourn Instruments, USA).  16 

We calculated six parameters: two parameters represent the level of locomotor activity and 17 

four parameters represent anxiety-like performances from the four experiments. To create the 18 

behavior profiles, firstly we referred to the performances of the control group as the behavior of 19 

the normal population and determined the distribution of values in the control group. Standard 20 

deviations were used to calculate the upper and lower “cut-off values” for each chosen parameter. 21 

Secondly, the performances of each mouse in the UWT-exposed group or 4-CS/US-exposed 22 

group were compared to the distribution curve of the control group. Each susceptible mouse 23 

must exhibit values that are under or above the lower and upper cut-off values in at least four out 24 

of the six parameters. “Cut-off values” of six parameters: the center time in the OF test, 560.32 ± 25 

34.25 s; the time in the light box in the LD test, 788.60 ± 58.92 s; the time in the open arms in 26 

the OM test, 111.43 ± 8.88 s; the freezing percentage in the last day of cued fear extinction, 27 

31.98% ± 3.91%; total distance in the OF test, 7059.99 ± 427.80 cm; total distance in the LD test, 28 

9124.67 ± 220.50 cm. 29 
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Cued fear extinction  1 

4 weeks after 4-CS/US parings or 24 h after the 1-CS/US paring, each mouse was placed 2 

into a novel chamber and monitored for 2 min (in the absence of the tone). For the recall test, the 3 

cued freezing responses to a 3 min tone (75 dB sound at 2800 Hz) without footshock were 4 

measured. Then, 4 cued fear extinctions trials were conducted like the recall test in the next 4 5 

following days. Data were presented as the mean ± s.e.m. Two-way ANOVA was used for 6 

statistical analysis. 7 

Open field  8 

As described previously (Yan et al., 2015), briefly, each mouse was placed in an acrylic 9 

open-field chamber (27 cm long × 27 cm wide × 38 cm high) for 30 min. The amount of moving 10 

distance, the time in the center area, and the number of rearing were measured using a Tru-scan 11 

DigBahv-locomotion Activity Video Analysis System (Coulbourn Instruments, USA). Data were 12 

presented as the mean ± s.e.m. One-way ANOVA was used for statistical analysis in Fig. 1C, 2C 13 

and Student‟s t-test in Fig. S2A. 14 

Light/dark test 15 

The box（27 cm long × 27 cm wide × 38 cm high） was divided into two equal zones - 16 

light zone and dark zone. The light zone was painted white and illuminated by the white light 17 

while the dark zone was painted black and not illuminated. These two zones were connected by a 18 

door in the middle divider. Mice could shuttle freely between two boxes. The total distance and 19 

the time stayed in light zone were delineated by the Tru-scan DigBahv-locomotion Activity 20 

Video Analysis System (Coulbourn Instruments, USA) for 30 min. Data were presented as the 21 

mean ± s.e.m. One-way ANOVA was used for statistical analysis in Fig. 1D and 2D. 22 

Water-associated zero maze task 23 

Experimental protocol and device were similar as described previously (Gilad Ritov & 24 

Richter-Levin, 2014).This device was composed of an annular platform and a plastic bucket. The 25 

annular platform was divided into four equal quadrants - two open arms and two closed arms. 26 

The plastic bucket was full of water for 40 cm deep. After 5 min habituation, mouse was put into 27 

one of the open arms facing the closed arm for 5 min. The time spent in the open arms and 28 
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closed arms were measured by Any-maze system (USA, Stoelting). Data were presented as the 1 

mean ± s.e.m. One-way ANOVA was used for statistical analysis. 2 

Elevated plus maze test 3 

The apparatus consists of two opposed open arms (30 cm × 5 cm), two opposed closed arms 4 

(30 cm × 5 cm) and one open square (5 cm × 5 cm) in the center, which was elevated above the 5 

floor (50 cm). Each mouse was placed in the center of the plus maze with its face directing to an 6 

open arm and allowed to explore for 5 min. The time spent and moving distances in open and 7 

closed arms were automatically recorded by Any-maze system (USA, Stoelting). Data were 8 

presented as the mean ± s.e.m. One-way ANOVA was used for statistical analysis. 9 

Animal surgery  10 

To elevate αCaMKII specifically in LA of C57BL/6J mice, we injected pAAV-TRE- 11 

αCaMKII-P2A-EGFP-CMV-rTA (AAV-αCaMKII) or pAAV-TRE-P2A-EGFP-CMV-rTA 12 

(AAV-control) virus (2.45 × 10
-12 

and 2.38 × 10
-12

 vector genomes/ml, respectively, Obio 13 

Technology, China) bilaterally into LA (AP, -1.60 mm; ML, ±3.35 mm; DV, -4.80 mm) of 14 

C57BL/6J mice. After the injection, mice were put back into home cages to recover for one 15 

month before experiments. AAV-αCaMKII mice were fed with doxycycline solution (1g/L in 16 

drinking water) to induce the virus expression throughout the behavior tests. 17 

Dendritic spine analysis 18 

Dendritic spine analysis were performed as previously described (Ming et al., 2018). Briefly, 19 

mice were deeply anaesthetized and transcardially perfused. 200 μm coronal brain sections were 20 

cut and collected in 0.1 M PBS. LA neurons were loaded iontophoretically with a 5% Lucifer 21 

Yellow solution. Images of basal and apical dendrites of LA pyramidal neurons were scanned 22 

using a Leica SP2 confocal microscope at 63× under oil immersion. The number of spines per 23 

micrometer along the dendritic longitudinal axis was counted as spine density. Data were 24 

presented as the mean ± s.e.m. Student‟s t-test was used for statistical analysis. 25 

Sensitivity to foot shock 26 

This test was performed according to the methods as published (Duan, Zhou, Ma, Yin, & 27 

Cao, 2015). Mice were individually placed in the conditioning chamber to receive 1 s shocks of 28 

gradually increasing current intensity by an increment of 0.01 mA (flinching, 0.05-0.1 mA; 29 
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vocalization, 0.1-0.2 mA; jumping, 0.45-0.6 mA) with 20 s intervals. The minimum current 1 

required to elicit flinching, vocalization and jumping in mice were measured. Data were 2 

presented as the mean ± s.e.m. Student‟s t-test was used for statistical analysis. 3 

Amygdala slice electrophysiology 4 

Protocols were similar as described previously (J. Kim et al., 2007; T. F. Ma et al., 2013). 5 

Mice (3-4 months old) were anaesthetized with sodium pentobarbital and sacrificed by 6 

decapitation. Whole brain coronal slices (370 μm thick for fEPSPs recording) containing the 7 

amygdala were cut using a vibroslicer (vibratome 3000) with the cold (4°C) and oxygenated 8 

(95% O2 /5% CO2) modified artificial cerebrospinal fluid (ACSF) containing (in mM): Choline 9 

choloride, 110; KCl, 2.5; CaCl2, 0.5; MgSO4, 7; NaHCO3, 25; NaH2PO4, 1.25; D-glucose, 25; 10 

pH 7.4. The slices were recovered in an incubation chamber with normal ACSF containing (in 11 

mM): NaCl, 119; CaCl2, 2.5; KCl, 2.5; MgSO4, 1.3; NaHCO3, 26.2; Na2HPO4, 1.0; D-glucose, 12 

11, pH 7.4; 95% O2 and 5% CO2 for 60 min at 31°C, and then returned to room temperature for 13 

at least 1 h before recording.  14 

Field excitatory postsynaptic potential recording 15 

A stimulating electrode was placed in the fibers from the internal capsule to activate the 16 

thalamic input to the lateral amygdala (T-LA) synapses. A recording electrode was positioned in 17 

LA to record field excitatory postsynaptic potential (fEPSP). Test responses were elicited at 18 

0.033 Hz. After obtaining a stable baseline response for at least 15 min, LTP or LTD was 19 

induced. LTP was induced by applying 2 trains high frequency stimulation (100 Hz for 1 s) with 20 

10 s interval or 3 trains theta burst stimulation (10 bursts delivered every 200 ms, each burst 21 

consisted of 4 pulses at 100 Hz) with 10 s interval. For LTD induction, the standard 1 Hz 22 

protocol (1 Hz for 15 min) and 3 Hz protocol (3 Hz for 5 min) were used. Depotentiation was 23 

induced by applying 2 trains of high frequency stimulation (100 Hz for 1s) with 10 s interval 24 

followed by the standard 1 Hz protocol (1 Hz for 15 min) after 20 min. For chemical-LTD 25 

induction, NMDA (Sigma, 30 μM in ACSF) was infused into the slice chamber for 3 min. Data 26 

were presented as the mean ± s.e.m. Student‟s t-test (for comparing two different groups with 27 

Gaussian distribution) and one-way ANOVA followed by HSD post-hoc test with Bonferroni‟s 28 

correction (for comparing more than two different groups) were used for statistical analysis. 29 
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Proteins sample preparation 1 

Combined with the previous protocol (Cui et al., 2011; Yin et al., 2013), synaptosomes were 2 

prepared as follows. LA tissues were homogenized in 1.5 ml homogenate-buffer (320 mM 3 

sucrose, 5 mM HEPES, pH 7.4) containing freshly added PMSF, PIC and PIC3. Homogenates 4 

were centrifuged at 500 g for 5 min to yield insoluble components. Then the supernatant fraction 5 

was collected and centrifuged at 10,000 g for 10 min to yield precipitation. The precipitation 6 

pellet was resuspended in 2 ml of 0.32 M sucrose, layered onto 2.25 ml of 0.8 M sucrose, and 7 

centrifuged at 98,000 g for 15 min using a swinging bucket rotor. Synaptosomes were collected 8 

from the 0.8 M sucrose layer and concentrated by centrifugation at 20,800 g for 45 min. Then the 9 

precipitation was resuspended in synaptosome lysis buffer (30 mM Tris (pH 8.5), 5 mM 10 

magnesium acetate, 8 M Urea, and 4% W/V CHAPS). For total proteins preparation, the LA 11 

areas were homogenized with RIPA buffer containing freshly added PMSF, PIC and PIC3 and 12 

lysed on ice for 30 min, centrifuged at 10,000 g at 4°C for 5 min, and total proteins were taken as 13 

supernatant. Then the protein samples were stored in a -80℃ freezer until used. Protein samples 14 

were quantified us by a Pierce BCA Protein Assay kit (Thermo Scientific) after which protein 15 

was stored at -20℃. 16 

Western blot 17 

Each sample of protein (5 μg/lane) was separated by 10% SDS-PAGE (P40650, NCM Biotech) 18 

and separated at 120 V for 120 minutes. Then the separated proteins were transferred onto a 19 

polyvinylidene fluoride (PVDF) membrane. The PVDF membranes were blocked in blocking 20 

solution (5% skim milk and 1% BSA) at room temperature for 1h. A reversible Ponceau S 21 

staining of the membranes was done to normalize the relative amount of each protein on the 22 

membrane (just for synaptosomes). After washing with TBST buffer, the PVDF membranes 23 

were immunoblotted with following antibodies: GluA1 antibody (1:2,000, Santa Cruz), GluA2 24 

antibody (1:2,000, Millipore), pGluA1-Ser845 antibody (1:500, Abcam), pGluA1-Ser831 25 

antibody (1:500, Abcam), αCaMKII antibody (1:3,000, Abcam), p-αCaMKII-Thr286 antibody 26 

(1:20,000, Santa Cruz), βCaMKII antibody (1:2,000, Invitrogen), β-actin antibody (1:20,000, 27 

Sigma), GAPDH antibody (1:20,000, Proteintech), synapsin (SYP) antibody (1:2,000, Proteintech), 28 

TfR antibody (1:2,000, Abcam),Tubulin antibody (1:1,000, Millipore) at 4℃ for 12h. After 29 

washing with TBST buffer, the blots were reacted with an HRP-conjugated secondary antibody 30 
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at room temperature for 1 hour. Band intensity on the blot was quantified by the ECL 1 

immunoblotting detection system (Bio-rad). Data were shown as mean ± s.e.m.. Statistical 2 

differences were analyzed using post hoc test with Bonferroni‟s correction following one-way 3 

ANOVA. 4 

PP2A activity measurement 5 

PP2A activity was measured by using immunoprecipitation phosphatase assay kit according 6 

to the manufacturer‟s instructions (Catalog # 17-313, Millipore). Statistical differences were 7 

analyzed using post hoc test with Bonferroni‟s correction following one-way ANOVA. Data 8 

were shown as mean ± s.e.m. 9 

PP2B activity measurement 10 

The activity of calcineurin (PP2B) was assayed by using a calcineurin cellular activity assay 11 

kit (207007, Millipore) by following the manufacturer‟s instructions.  Statistical differences were 12 

analyzed using post hoc test with Bonferroni‟s correction following one-way ANOVA. Data 13 

were shown as mean ± s.e.m. 14 

Statistical analysis 15 

Statistical significance was assessed by one-way ANOVA, two-way ANOVA analysis of 16 

variance or two-tailed, unpaired and paired t-tests, where appropriate. Significant effects in 17 

analysis of variances were followed up with Bonferroni post-hoc tests. Results were considered 18 

significantly different when P < 0.05. All data were presented as means ± s.e.m. The detail 19 

information about statistical analysis was provided in legends. 20 

21 
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FIGURE LEGENDS: 1 

 2 

Figure 1. PTSD susceptible mice with cued fear extinction deficit and anxiety-like 3 

behaviors exhibited significant up-regulation of αCaMKII and down-regulation of AMPAR 4 

internalization in LA.  5 

(A1-2) Schematic illustration for identifying PTSD susceptible mice following UWT (A1, PS-6 

UWT) or 4-CS/US pairings (A2, PS-4CS/US) exposure. (B-E) PTSD susceptible mice exhibited 7 

the higher level of freezing responses in the fear extinction (B), and anxiety-like behaviors in 8 

OF(C), DL(D), OM(E) tests. PTSD susceptible mice spent significantly more time freezing 9 

during extinction (B, two-way ANOVA followed by multiple comparisons with Bonferroni‟s 10 

correction), less time in center area of OF chamber, in the light box of DL test and in the open 11 

arms of OM tests (C-E, one-way ANOVA followed by multiple comparisons with Bonferroni‟s 12 

correction) compared to control mice (control, n = 12; PS-UWT, n = 7; PS-4CS/US, n = 7). (F1) 13 

Representative blottings of LA synaptosomal region illustrating significant higher expression in 14 

αCaMKII, p-αCaMKII-Thr286, GluA1/2, GluA1-Ser831 /Ser845 phosphorylation in PTSD 15 

susceptible mice following stress exposure, but no significant change in βCaMKII expression. 16 

(F2) Ponceau S staining was used as a loading control. (G) Quantifications were based on the 17 

average of independent experiment (n = 5 per group). Western blotting in “Control”, “PS-UWT” 18 

or “PS-4CS/US” groups was performed after fear extinction and all the anxiety-like behavior 19 

tests. One-way ANOVA followed by multiple comparisons with Bonferroni‟s correction. n.s.: 20 

not significant, * P < 0.05, ** P < 0.01, *** P < 0.001. Error bars represent s.e.m. 21 
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Figure 2. αCaMKII-F89G TG mice exhibited PTSD-like behaviors and impairments in 1 

AMPAR internalization.  2 

(A) The schematic of behavioral procedure for cued fear conditioning and extinction trials. 3 

(B) Impaired cued fear extinction in TG mice ( two-way ANOVA followed by multiple 4 

comparisons with Bonferroni‟s correction). Intraperitoneal (i.p.) injection and oral (p.o.) 5 

administration with NM-PP1 could rescue the cued extinction deficits of TG mice ( two-way 6 

ANOVA followed by multiple comparisons with Bonferroni‟s correction). (C-E) The higher 7 

level of anxiety-like behaviors in TG mice in the OF(C), DL(D) and EPM(E) tests after cued fear 8 

conditioning and extinction (one-way ANOVA followed by multiple comparisons with 9 

Bonferroni‟s correction). (F) Up: Representative blottings of LA synaptosomal fractions 10 

illustrating an increase in GluA1/2, phosphorylation level of GluA1-Ser845/Ser831 in both WT 11 

and TG mice after cued fear conditioning. Down: Ponceau S staining was used as a loading 12 

control. A decrease in GluA1/2, phosphorylation level of GluA1-Ser845/Ser831 in WT mice, but 13 

not in TG mice after cued fear extinction (n = 5 per group). (G) Quantifications were based on 14 

the average of independent experiment. Western blotting in “WT/TG + FC” or “WT/TG + Ext” 15 

groups was performed after fear conditioning or fear extinction following with anxiety-like 16 

behavior tests, respectively (one-way ANOVA followed by Bonferroni‟s multiple comparisons 17 

test). n.s.: not significant, * P < 0.05, ** P < 0.01 and *** P < 0.001 versus WT group; $ P < 18 

0.05, $$ P < 0.01 and $$$ P < 0.001 versus WT + FC group; # P < 0.05, ## P < 0.01 and ### P < 19 

0.001 versus TG group;  P < 0.05 and  P < 0.01. Error bars represent s.e.m. 20 
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Figure 3. Increasing αCaMKII specifically in LA impaired the cued fear extinction and 1 

AMPAR internalization in AAV-αCaMKII mice. 2 

(A) Images of coronal brain slice showing the expression of eGFP (green-colored) 6 weeks after 3 

bilateral injections of pAAV-TRE-αCaMKII-P2A-EGFP-CMV-rTA virus into LA. Numbers 4 

indicate coordinates relative to bregma. Scale bar, 500 µm. (B) The schematic of behavioral 5 

procedure for cued fear extinction trials. (C) Elevating αCaMKII in LA could impair cued fear 6 

memory and fear extinction (two-way ANOVA followed by multiple comparisons with 7 

Bonferroni‟s correction). (D1) Representative blottings of LA synaptosomal fractions illustrating 8 

an increased expression of αCaMKII, p-αCaMKII-Thr286, GluA1/2, phosphorylated GluA1-9 

Ser845/Ser831 in LA of AAV-αCaMKII mice than that in AAV-control mice. (D2) Ponceau S 10 

staining was used as a loading control. (E) Quantifications were based on the average of 11 

independent experiment (n = 6 per group). Western blotting was performed after fear extinction 12 

and all the anxiety-like behavior tests. Statistical differences were evaluated with Student‟s t test. 13 

* P < 0.05, ** P < 0.01, *** P < 0.001 Error bars represent s.e.m. 14 
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Figure 4. Increasing αCaMKII impairs NMDAR-dependent LTD at T-LA synapses of 1 

αCaMKII-F89G TG mice and NM-PP1 can rescue the impairments.  2 

(A) Similar LTP induced by high frequency stimulations (2 trains of 100 Hz stimulation for 1 s, 3 

10 s interval) in TG slices and WT slices. In this and the subsequent figures, insets show sample 4 

traces taken at baseline (1) and the last 10 min recording (2). (B) Normal LTP induced by three 5 

trains of theta burst stimulations (TBS, each train consisted of 10 bursts delivered at 5 Hz, each 6 

burst consisted of 4 pulses at 100 Hz) in TG slices. (C) Significantly weaker LTD induced in TG 7 

slices than that in WT slice after 1 Hz (15 min) stimulation. NM-PP1 (0.5 μM) recovered the 8 

reduced LTD in TG slice to normal level. (D) LTD was abolished in WT and TG slices exposed 9 

to both NM-PP1 (0.5 μM) and APV (50 μM). The solid line shows the duration of both NM-PP1 10 

and APV application. (E) Strong LTD could be induced by 3 Hz (5 min) stimulation in WT 11 

slices but not in TG slices, NM-PP1 (0.5 μM) rescued the impaired LTD in TG slice. (F) 12 

Impaired depotentiation can be observed in TG slices. All of the bar graph summarizing data 13 

obtained during last 10 min recording. Statistical differences were evaluated with Student‟s t test 14 

(A, B, D and F) and one-way ANOVA followed by Bonferroni‟s multiple comparisons test (C 15 

and E). n.s.: not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.  All values are mean ± s.e.m. 16 

17 
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Figure 5. Increasing αCaMKII impairs AMPAR internalization / dephosphorylation, 1 

reduces protein phosphotase (PP) activity, and increases stargazin expression during 2 

NMDAR-dependent LTD and NM-PP1 can rescue all impairments.  3 

(A) Attenuated chem-LTD induced by 30 μM NMDA for 3 min in TG slices. This deficit could 4 

be rescued by 0.5 μM NM-PP1. Right-up panel: bar graph summarizing data obtained during 5 

last 10 min recording in the different groups depicted. The following Western blotting was 6 

performed 1 hour later after NMDA application. (B) Representative blottings of LA 7 

synaptosomal fractions illustrating a reduction in GluA1/2, phosphorylation level of GluA1-8 

Ser845/831 in WT slices after NMDA treatment but not in TG slices. NM-PP1 could rescue 9 

these deficits in TG slices. Down: Ponceau S staining was used as a loading control. (C) 10 

Quantifications were based on the average of independent experiments (n = 5 per group). (D) 11 

Up: Representative blottings of LA synaptosomal fractions illustrating a reduction in 12 

phosphorylation level of pPP1-Thr320, indicating an increase in PP1 activity in WT mice 13 

after NMDA treatment but not in TG. NM-PP1 rescued such deficit in TG mice. Down: 14 

Quantifications were based on the average of independent experiments (n = 4 per group). (E) 15 

A remarkably higher level of stargazin in amygdala synaptosomal fractions in TG slices than 16 

that in WT slices after NMDA application, NM-PP1 rescued the deficit in TG mice (n = 5 17 

per group). Down: Ponceau S staining was used as a loading control. (F) An increased 18 

activity of PP2A and PP2B in WT slices were exhibited after NMDA application but not in 19 

TG slices, and NM-PP1 rescued these deficits in TG mice (n = 4 per group). Statistical 20 

differences were evaluated with one-way ANOVA followed by multiple comparisons with 21 

Bonferroni‟s correction. n.s.: not significant, * P < 0.05, ** P < 0.01 and *** P < 0.001 22 

versus WT group; # P < 0.05, ## P < 0.01 and ### P < 0.001 versus TG group;  P < 0.05, 23 

 P < 0.01 and  P < 0.001. Error bars represent s.e.m. 24 
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Supplemental information 1 

Higher level of αCaMKII but normal morphology in LA of αCaMKII-F89G TG mice 2 

First, we examined the αCaMKII expression level in LA of both αCaMKII-F89G TG and 3 

WT mice. Western blotting quantification revealed the expression of synaptic αCaMKII protein 4 

in LA of TG mice was 136% of WT littermates (Supplementary Fig. S1A, 1B, P < 0.05). 5 

Strikingly, the p-αCaMKII-Thr286 in LA of TG mice was 195% of WT littermates (P < 0.001). 6 

However, no obvious change in βCaMKII expression was observed in LA of TG mice 7 

(Supplementary Fig. S1A, B). Moreover, Nissl staining showed no detectable morphological 8 

abnormalities in LA of TG mice (Supplementary Fig. S1C). Normal shapes and architecture of 9 

dendritic spines could also be found in LA of TG mice (Supplementary Fig. S1D, S1E). These 10 

results suggest that the transgenic expression of αCaMKII-F89G increase αCaMKII expression 11 

in LA.  12 

Normal locomotor activity and acute pain threshold to footshock in αCaMKII-F89G TG 13 

Mice. 14 

Then, to investigate whether αCaMKII overexpression influences basal motor, exploratory 15 

behaviors and the foot shock sensitivity, we performed open field and pain threshold tests. No 16 

significant difference was observed between TG and WT mice in both locomotor activity (Fig. 17 

S2A, P > 0.05; Student‟s t-test) and rearing behavior (Fig. S2A, P > 0.05), showing that TG mice 18 

exhibit normal locomotor activity and exploratory behavior. Moreover, we quantified the 19 

minimum current intensity of foot shock required to induce flinching, vocalizing and jumping in 20 

two groups of mice. There was also no significant difference in the threshold of current intensity 21 

to trigger flinching, vocalizing and jumping behaviors in TG mice and WT littermates (Fig. S2 B, 22 

P > 0.05). Taken all together, we can conclude that αCaMKII overexpression indeed impairs 23 

cued fear extinction.  24 
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Fig S1. Higher level of αCaMKII but normal morphology in LA of αCaMKII-F89G TG 1 

mice.  2 

(A) Immunoblottings of αCaMKII protein in LA from WT and TG mice (p-αCaMKII-Thr286: p 3 

<  0.001; αCaMKII: p < 0.05; βCaMKII: p > 0.05). (B) Densitometric analysis shows a 4 

significantly higher expression of αCaMKII and p-αCaMKII-Thr286 in TG than that in WT mice. 5 

(C) Parts of Nissl stained coronal slices showing the amygdala of both WT and TG mice. Note 6 

no detectable morphological differences between WT and TG mice in the amygdala. Scale bars, 7 

100 μm. (D) Dendritic spine of LA pyramidal neurons in WT and TG mice. Scale bar，5 μm. 8 

The spine density (spines / 20 µm) was comparable between WT and TG mice ( p > 0.05). 9 

Statistical differences were evaluated with Student‟s t test, * P < 0.05, ** P < 0.01, *** P < 0.001. 10 

All data are shown as mean ± s.e.m. 11 
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Fig S2. Normal locomotor activity and acute pain threshold to footshock in αCaMKII-1 

F89G TG Mice.  2 

(A) Similar moving distance (P > 0.05) and rearing behavior (P > 0.05) in TG and WT mice 3 

during a 15 min of the open field test. (B) Normal pain sensitivity to an increasing electric 4 

footshock in TG mice (P > 0.05). All values are mean ± s.e.m. Statistical differences were 5 

evaluated with Student‟s t-test.  6 
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Fig S3. Normal basal synaptic transmission at T-LA synapses in αCaMKII-F89G TG mice. 1 

(A) No significant difference in the input/output curve at T-LA synapses between WT and TG 2 

slices (two-way ANOVA followed by multiple comparisons with Bonferroni‟s correction). (B) 3 

Comparable synaptic or total GluA1/2 expression in LA of WT and TG slices (Statistical 4 

differences were evaluated with Student‟s t-test). (C) Similar paired-pulse depression at different 5 

interpulse intervals in WT and TG amygdala slices (two-way ANOVA followed by multiple 6 

comparisons with Bonferroni‟s correction). (D) Comparable expression levels of synapsin in LA 7 

of WT and TG amygdala slices (Statistical differences were evaluated with Student‟s t-test). All 8 

data are shown as mean ± s.e.m. 9 
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