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Abstract

Neural mass models have been actively used since the 1970s to model
the coarse-grained activity of large populations of neurons. They have
proven especially fruitful for understanding brain rhythms. However, al-
though motivated by neurobiological considerations they are phenomeno-
logical in nature, and cannot hope to recreate some of the rich repertoire
of responses seen in real neuronal tissue. Here we consider a simple spik-
ing neuron network model that has recently been shown to admit to an
exact mean-field description for both synaptic and gap-junction interac-
tions. The mean-field model takes a similar form to a standard neural
mass model, with an additional dynamical equation to describe the evo-
lution of population synchrony. As well as reviewing the origins of this
next generation mass model we discuss its extension to describe an ide-
alised spatially extended planar cortex. To emphasise the usefulness of
this model for EEG/MEG modelling we show how it can be used to un-
cover the role of local gap-junction coupling in shaping large scale synaptic
waves.

1 Introduction

The use of mathematics has many historical successes, especially in the fields of
physics and engineering, where mathematical concepts have been put to good
use to address challenges far beyond the context in which they were originally
developed. Physicists in particular are well aware of the “The Unreasonable
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Effectiveness of Mathematics in the Natural Sciences” [63]. One recent break-
through in the field of large-scale brain modelling has come about because of
advances in obtaining exact mean-field reductions of certain classes of coupled
oscillator networks via the so-called Ott–Antonsen (OA) ansatz [46]. This is
especially important because the mathematical step from microscopic to macro-
scopic dynamics has proved elusive in all but a few special cases. Indeed, many
of the current models used to describe coarse-grained neural activity, such as
the Wilson-Cowan [65], Jansen-Rit [23], or Liley [34] model are phenomenolog-
ical in nature. Making use of the OA reduction Luke and colleagues [36, 52]
were able to obtain exact asymptotic dynamics for networks of pulse-coupled
theta neurons [13]. Although the theta-neuron model is simplistic, it is able
to capture some of the essential features of cortical firing pattern, such as low
firing rates. As such, this mean-field reduction is a candidate for a new type
of cortical neural mass model that makes a stronger connection to biological
reality than the phenomenological models mentioned above. The theta neuron
is formally equivalent to the quadratic integrate-and-fire (QIF) model [33], a
mainstay of many studies in computational neuroscience, e.g. [11]. Interest-
ingly an alternative to the OA approach has been developed by Montbrió et al.
[39] that allows for an equivalent reduction of networks of pulse-coupled QIF
neurons, and establishes an interesting duality between the two approaches.
In the OA approach the complex Kuramoto order parameter is a fundamental
macroscopic variable and the population firing rate is function of the degree
of dynamically evolving within-population synchrony. Alternatively in the ap-
proach of Montbrió et al. average voltage and firing rate couple dynamically
to describe emergent population behaviour. Given that both approaches de-
scribe the same overall system exactly (at least in the thermodynamic limit of
an infinite number of neurons) there must be an equivalence between the two
macroscopic descriptions. Montbrió et al. have further shown that this relation-
ship takes the form of a conformal map between the two physical perspectives.
This correspondence is very useful when dealing with different types of neu-
roimaging modality. For example, when looking at power spectrograms from
electro- or magneto-encephalograms (EEG/MEG), it is useful to contemplate
the Kuramoto order parameter since changes in coherence (synchrony) of spike
trains are likely to manifest as changes in power. On the other hand the local
field potential recorded by an extracellular electrode may more accurately reflect
the average population voltage. A model with a perspective on both simply by a
mathematical change of viewpoint is not only useful for describing experimental
data, it may also help the brain imaging community develop new approaches
that can exploit a non-intuitive link between seemingly disparate macroscopic
variables. Importantly, for this to be relevant to the real world some further
features of neurobiology need to be incorporated, as purely pulsatile coupling is
not expected to capture all of the rich behaviour seen in brain oscillations and
waves. In particular synaptic processing and gap-junction coupling at the level
of localised populations of neurons, and axonal-delays at the larger tissue scale
are all well known to make a major contribution to brain rhythms, both tempo-
ral and spatio-temporal. Fortunately, these biological extensions, that generalise
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the initial theta-neuron and QIF network models with pulsatile coupling, are
natural and easily accommodated. Work in this area has already progressed,
e.g. with theoretical work by Laing on how to treat gap-junctions [30] and by
Coombes and Byrne [10] on the inclusion of realistic synaptic currents (governed
by reversal potentials and dynamic conductance changes). Recent work in [9]
has also considered the inclusion of finite action potential speeds. In this paper
we consider a synthesis of modelling work to date on developing a new class
of mean-field models fit for use in complementing neuroimaging studies, and
present some new results emphasising the important role of local gap-junction
coupling in shaping brain rhythms and waves.

Even without the inclusion of gap-junction a first major success of this so-
called next generation neural mass and field modelling approach has been in
explaining the phenomenon of beta-rebound. Here a sharp decrease in neu-
ral oscillatory power in the 15 Hz EEG/MEG beta band is observed during
movement followed by an increase above baseline on movement cessation. Stan-
dard neural mass models cannot readily reproduce this phenomenon, as they
cannot track changes of synchrony within a population. On the other hand
the next-generation models treat population coherence as fundamental, and
are able to track and describe changes in synchrony in a way consistent with
movement-related beta decrease, followed by an increase above baseline upon
movement termination (post-movement beta rebound) [7]. Moreover, these
models are capable of explaining the abnormal beta-rebound seen in patients
with schizophrenia [8]. Beta decrease and rebound are special cases of event re-
lated synchrony/de-synchrony (ERS/ERD), as measured by changes in power at
given frequencies in EEG/MEG recordings [47], and as such this class of model
clearly has wider applicability than standard neural mass models that cannot
describe ERD/ERS because their level of coarse-graining does not allow one to
interrogate the degree of within-population synchrony. By merging this new dy-
namical model of neural tissue with anatomical connectome data it has also been
possible to gain a perspective on whole brain dynamics, and preliminary work
in [9] has given insight into how patterns of resting state functional-connectivity
can emerge and how they might be disrupted by transcranial magnetic stimu-
lation. Despite the success of the next generation models that include synaptic
processing it is well to recognise the importance of direct electrical communi-
cation between neurons that can arise via gap-junctions. Without the need for
receptors to recognise chemical messengers gap junctions are much faster than
chemical synapses at relaying signals. The communication delay for a chemical
synapse is typically in the range 1− 100 ms, while that for an electrical synapse
may be only about 0.2 ms. Gap-junctions have long been thought to be in-
volved in the synchronisation of neurons [2, 3] and are believed to contribute to
both normal [21] and abnormal physiological brain rhythms, including epilepsy
[58, 38].

In section 2 we introduce the mathematical description for the microscopic
spiking cell dynamics as a network of QIF neurons with both synaptic and gap-
junction coupling. We present the corresponding mean-field ordinary differential
equation model with a focus on the bifurcation properties of the model under
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variation of key parameters, including the level of population excitability and
the strength of gap-junction coupling. A simple cortical model built from two
sub-populations, one excitatory and the other inhibitory, is shown to produce
robust oscillations via a Hopf bifurcation. The derivation of the macroscopic
equations of motion is deferred to a technical appendix. This new class of neural
mass model is used as a building block in section 3 to construct a continuum
model of cortical tissue in the form of an integro-differential neural field model.
Here, long-range connections are mediated by action potentials giving rise to
space-dependent axonal delays. For computational ease we reformulate the neu-
ral field as a brain-wave partial differential equation, and pose it on idealised
one- and two-dimensional spatial domains. A Turing analysis is performed to
determine the onset of instabilities that lead to novel patterned states, including
bulk oscillations and periodic travelling waves. These theoretical predictions,
again with details deferred to a technical appendix, are confirmed against direct
numerical simulations. Moreover, beyond bifurcation we show that the tissue
model can support rich rotating structures, as well as localised states with dy-
namic cores. Finally, in section 4 we discuss further applications and extensions
of the work presented in this paper.

2 Neural mass model

Here we describe a new class of neural mass model that can be derived from
a network of spiking neurons. The microscopic dynamics of choice is the QIF
neuron model, which is able to replicate many of the properties of cortical cells,
including a low firing rate. In contrast to the perhaps more well studied linear
or leaky IF model it is also able to represent the shape of an action poten-
tial. This is important when considering electrical synapses, whereby neurons
directly “feel” the shape of action potentials from other neurons to which they
are connected. An electrical synapse is an electrically conductive link between
two adjacent nerve cells that is formed at a fine gap between the pre- and post-
synaptic cells known as a gap junction and permits a direct electrical connection
between them. They are now known to be ubiquitous throughout the human
brain, being found in the neocortex [15], hippocampus [14], the inferior olivary
nucleus in the brain stem [53], the spinal cord [48], the thalamus [22] and have
recently been shown to form axo-axonic connections between excitatory cells in
the hippocampus (on mossy fibers) [17]. It is common to view the gap-junction
as nothing more than a channel that conducts current according to a simple
ohmic model. For two neurons with voltages vi and vj the current flowing into
cell i from cell j is proportional to vj − vi. This gives rise to a state-dependent
interaction. In contrast, chemical synaptic currents are better modelled with
event-driven interactions. If we denote the mth firing time of neuron j by Tmj
then the current received by neuron i would be proportional to

∑
m∈Z s(t−Tmj ),

where s is a temporal shape that describes the typical rise and fall of a post
synaptic response. This is often taken to be the Green’s function of a linear
differential operator Q, so that Qs = δ where δ is a delta-Dirac spike. Through-
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out the rest of this paper we shall take s(t) = α2t exp(−αt)H(t), where H is a
Heaviside step function. In this case the operator Q is second order in time and
given by

Q =

(
1 +

1

α

d

dt

)2

, (1)

where α−1 is the time-to-peak of the synapse.
We are now in a position to consider a heterogeneous network of N quadratic

integrate-and-fire neurons with voltage vi and both gap-junction and synaptic
coupling:

τ v̇i = ηi + v2i +
κv
N

N∑
j=1

(vj − vi) +
κs
N

N∑
j=1

∑
m∈Z

s(t− Tmj ), (2)

i = 1, . . . , N , with vr ≤ vi ≤ vth. Here, firing times are defined implicitly by
vj(T

m
j ) = vth. The network nodes are subject to reset: vi → vr at times Tmi .

The parameter τ is the membrane time constant. The strengths of gap-junction
and synaptic coupling are κv and κs respectively. The background inputs ηi are
random variables drawn from a Lorentzian distribution with mean η0 and half
width γ. The value of η0 can be thought of as setting the level of excitability,
and γ as the degree of heterogeneity in the network. The larger η0 is, the easier
it is to fire, and the larger γ is, the more dissimilar the inputs are. A schematic of
a QIF network and its reduction to a neural field model is shown in Fig. 1, with
details of the neural field formulation described next in section 3. The mean-field

vi

s

t

t

r

w

Figure 1: Model schematic. At each point in a two-dimensional spatial con-
tinuum there resides a density of QIF neurons whose mean-field dynamics are
described by the triple (R, V, U), where R represents population firing rate, V
the average membrane potential, and U the synaptic activity. The non-local
interactions are described by a kernel w, taken to be a function of the distance
between two points. The space-dependent delays arising from signal propa-
gation along axonal fibres are determined in terms of the speed of the action
potential v.

reduction of (2) can be achieved by using the approach of Montbrió et al. [39].
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This is described in detail in Appendix A, and is valid for globally coupled cells in
the thermodynamic limit N →∞. The network behaviour can be summarised
by the instantaneous mean firing rate R(t) (the fraction of neurons firing at

time t), the average membrane potential V (t) (= limN→∞N−1
∑N
i=1 vi), and

the synaptic activity U(t). The synaptic activity U is driven by mean firing rate
according to QU = R, with the mean-field dynamical equations for (R, V ):

τṘ = −κvR+ 2RV +
γ

πτ
, (3)

τ V̇ = η0 + V 2 − π2τ2R2 + κsU. (4)

Interestingly this (R, V ) perspective on population dynamics can be mapped
to one that tracks the degree of within-population synchrony described by the
complex Kuramoto order parameter Z according to the conformal map [39]:

Z =
1−W ∗
1 +W ∗

, W = πτR+ iV. (5)

The corresponding dynamics for Z is given by equation (23) in Appendix A.
Alternatively, one can evolve the model for (R, V, U) and then obtain results
about synchrony |Z| by the use of (5).

0 25 50 75 100 125 150 175

time

0.114

1.320

R

(a)

0 25 50 75 100 125 150 175

time

−3.000

3.109

θ

(b)

−1.58

2.24

V

0.4700

0.6494

|Z|

Figure 2: Single population dynamics: (a) Oscillations in the population firing
rate R and average membrane voltage V , (b) Corresponding oscillations in the
complex Kuramoto order parameter Z = |Z|eiθ, where |Z| reflects the degree of
within-population synchrony, and θ a corresponding phase. Parameter values:
η0 = 1, κv = 1.2, κs = 1, τ = 1, α = 1, γ = 0.5.

2.1 Single population: bifurcation analysis

We first consider a single excitatory population (κs > 0). Unlike many tradi-
tional single population neural mass models, the activity of this next-generation
model can oscillate in time (Fig. 2). Examining the profile of these oscillations,
we observe that the peaks and troughs of the firing rate R and the synchrony |Z|
roughly coincide. This indicates, rather unsurprisingly, that when a population
is highly synchronised the population firing rate will be high.
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As the strength of gap-junction coupling κv is decreased the system under-
goes a Hopf bifurcation and oscillations disappear (Fig. 3). Note that to the
right of the Hopf bifurcation the amplitude of the oscillations increases with
κv. Increasing the level of excitability η0 also leads to oscillatory behaviour. A
continuation of the Hopf bifurcation in κv and η0 is shown for different values
of γ (Fig. 3). The system oscillates for parameter values to the right of these
curves. Remembering that γ sets the level of heterogeneity, we note the window
for oscillations gets smaller as the heterogeneity of network is increased.

0.25 0.50 0.75 1.00 1.25 1.50 1.75

κv

0.0

0.5

1.0

1.5

2.0

2.5

R

(a)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

κv

0.2

0.4

0.6

0.8

1.0

η0

(b)

γ = 0.3

γ = 0.5

γ = 0.7

Figure 3: Single population bifurcation diagrams. (a) A Hopf bifurcation is
found with an increase in the strength of gap junction coupling κv, giving rise
to limit cycle oscillations. Red (black) lines denote the stable (unstable) fixed
point, while the green lines show the minimum and maximum of the oscillation.
(b) A two parameter bifurcation diagram in the (κv, η0)-plane tracing the locus
of Hopf bifurcations for different values of γ. Oscillations emerge to the right of
each curve. Parameter values: η0 = 1, κs = 1, τ = 1, α = 1, γ = 0.5.

2.2 Excitatory-inhibitory network: bifurcation analysis

The single population model can be easily extended to a two population network,
consisting of an excitatory and an inhibitory population, labelled by E and I
respectively. Synaptic coupling is present both within and between populations,
while gap-junction coupling only exists between neurons in the same population.
The augmented system of equations, describing the mean firing rate R and the
average membrane potential V of each population, as well as 4 distinct synaptic
variables U for each of the synaptic connections, is presented in Appendix B.

The excitatory-inhibitory network possesses a rich repertoire of dynamics.
For example, it is possible to generate bursts of high frequency and high ampli-
tude activity at a slow burst rate (Fig. 4). This pattern of activity is typical
in epileptic seizures, e.g. [25]. Decreasing the gap-junction coupling strengths
κEv and κIv results in smoother lower amplitude oscillations, more in line with
healthy brain oscillations. We note that κEv and κIv are not the only parameters
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that can change the profile of the oscillations; reducing ηE0 (the mean back-
ground drive to the excitatory population) can also eradicate the seizure-like
oscillations.

Next we examine the bifurcation structure of the excitatory-inhibitory net-
work for different combinations of gap-junction coupling strengths κEv and κIv
(Fig. 5). With no gap junction coupling in either population ((a) κEv = κIv = 0),
intermediate values of the mean background drive to the inhibitory population
ηI0 result in oscillatory behaviour. Switching on the gap junction coupling in
the inhibitory population only ((b) κEv = 0, κIv = 0.5), we observe oscillations
for large ηI0 also. The firing rate of the excitatory population RE performs
low amplitude oscillations, while the firing rate of the inhibitory population
RI oscillates at a larger amplitude. Turning off the gap junction coupling in
the inhibitory population but switching it on for the excitatory population ((c)
κEv = 0.5, κIv = 0), a different set of oscillatory solutions emerge for low ηI0 . The
amplitude of these oscillations is high for the excitatory firing rate, but low for
the inhibitory population. Interestingly, the two oscillatory solutions co-exist
for η0 ≈ −10 to −5. Jansen and Rit [23] demonstrated that transitions between
seizures and healthy brain activity could be viewed as transitions between co-
existing oscillatory solutions. A similar approach for this model (without gap
junctions) can be found in [9]. With gap junctions switched on in both popula-
tions ((d) κEv = κIv = 0.5), the 3 oscillatory solution branches exist and we see
oscillations for nearly all values of ηI0 .

With a good understanding of how the spatially clamped system behaves,
we move on to the spatially extended neural field model.

3 Neural field model

Brain waves are inherently dynamical phenomena and come in a vast variety
of forms that can be observed with a wide range of neuroimaging modalities.
For example, at the mesoscopic scale it is possible to observe a rich repertoire
of wave patterns, as seen in voltage-sensitive dye imaging data from the pri-
mary visual cortex of the awake monkey [41], and local field potential signals
across the primary motor cortex of monkeys [50]. At the whole brain scale they
can manifest as EEG alpha oscillations propagating over the scalp [20], and as
rotating waves seen during human sleep spindles with intracranial electrocor-
ticogram recordings [40]. Waves are known to subserve important functions,
including visual processing [51], saccades [66], and movement preparation [50].
They can also be associated with dysfunction and in particular epileptic seizures
[38]. Computational modelling is a very natural way to investigate the mecha-
nisms for their occurrence in brain tissue, as well as how they may evolve and
disperse [18, 19, 35].

The study of cortical waves (at the scale of the whole brain) is best advanced
using a continuum description of neural tissue. The most common of these are
referred to as neural fields, and are natural extensions of neural mass mod-
els to incorporate anatomical connectivity and the associated delays that arise
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Figure 4: Excitatory-inhibitory network dynamics: (a) Oscillations in the
excitatory population firing rate RE , as well as the average membrane potential
VE . (b) Corresponding oscillations for the inhibitory population, RI and VI . (c)
Kuramoto order parameters for the excitatory population ZE = |ZE |eiθE . (d)
Corresponding traces for |ZI | and θI of the inhibitory population. Parameter
values: ηE0 = 5, ηI0 = −6, κEv = κIv = 0.5, κEEs = 5.0, κIEs = 15, κEIs = −10.2,
κIIs = −4.2, τE = 2τI = 1, αEE = 1, αIE = 1.4, αEI = 0.7, αII = 0.4,
γE = γI = 0.5.

through wiring up distant regions using axonal fibres. The study of waves, their
initiation, and their interactions is especially pertinent to the study of epileptic
brain seizures and it is known that gap junctions are especially important in this
context [38]. Phenomenological neural field models with gap-junction coupling
have previously been developed and analysed by Steyn-Ross et al. [56, 54], and
more principled ones derived from θ-neuron models by Laing [29, 30]. In the lat-
ter approach it was necessary to overcome a technical difficulty by regularising
the shape of the action potential. However, with the approach used in section
2 this is not necessary and the neural field version of (3)-(4) is constructed by
replacing full temporal derivatives by partial temporal derivatives and replacing
the temporal dynamics for U with the dynamics QU = Ψ, where Ψ denotes a
spatio-temporal drive. For example, in the plane we might consider

Ψ(r, t) =

∫
R2

w(|r− r′|)R(r′, t− |r− r′|/v)dr′, (6)

where r ∈ R2 and v represents the speed of an action potential, as illustrated
in Fig. 1. Typical values for cortico-cortical axonal speeds in humans are dis-
tributed, and appear to peak in the 5 − 10 m/s range [44]. Here, w represents
structural connectivity as determined by anatomy. For example, long-range
corticocortical interactions are predominantly excitatory whilst inhibitory in-
teractions tend to be much more short-ranged, suggesting a natural choice for
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Figure 5: Two population bifurcation diagrams: Continuations in the mean
background drive to the inhibitory population ηI0 for different combinations
of gap junction coupling strengths κEv and κIv. (a) No gap junction coupling,
κEv = 0, κIv = 0 (b) Gap junctions in the inhibitory population only, κEv = 0,
κIv = 0.5 (c) Gap junctions in the excitatory population only, κEv = 0.5, κIv = 0
(d) Gap junction coupling in both populations, κEv = 0.5, κIv = 0.5. Other
parameter values: ηE0 = 10, κEEs = 2.5, κEEs = 5.0, κIEs = 15, κEIs = −10.2,
κIIs = −4.2, τE = 2τI = 1, αEE = 1, αIE = 1.4, αEI = 0.7, αII = 0.4,
γE = γI = 0.5, θE and θI .

the shape of w as an inverted Mexican hat. A similar equation would hold in
one spatial dimension. In this section we shall work with the explicit choice
w(x) = (|x| − 1)e−|x| in 1D and w(r) = (r/2 − 1)e−r/(2π) in 2D. For conve-
nience we have chosen spatial units so that the scale of exponential delay is
unity, though note that typical values for the decay of excitatory connections
between cortical areas (at least in macaque monkeys) is ∼ 10mm [37]. Both of
the above kernel shapes have an inverted wizard hat shape and are balanced in
the sense that the integral over the whole domain is zero. They also allow for
a reformulation of the neural field model as a partial differential equation, as
detailed in Appendix C. The resulting brain-wave equation is very amenable to
numerical simulation using standard (e.g. finite difference) techniques. Before
we do this, it is first informative to determine some of the patterning properties
of the neural field model using a Turing instability analysis. Below we outline
the results of the analysis and discuss the ensuing patterns for the neural field
model in both 1D and 2D.
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3.1 One spatial dimension

Turing instability analysis, originally proposed by Alan Turing in 1952 [57], is a
mechanism for exploring the emergence of patterns in spatio-temporal system,
including neural fields. Similar to the bifurcation analysis for the neural mass
model, it allows us to determine the parameter values for which oscillations
and patterns occur. Bulk oscillations, whereby synchronous activity across the
spatial domain varies uniformly at the same rate, emerge at a Hopf bifurcation.
Static patterns, which do not change with time, emerge at a Turing bifurcation.
Dynamic patterns, that oscillate in time and space, emerge at a Turing-Hopf
bifurcation.

Figure 6: Turing instability analysis for the one-dimensional neural field model.
The left panel shows the Hopf and Turing-Hopf curves as a function of the action
potential speed v and gap junction coupling strength κv. Above these curves
patterned states emerge. The three right hand panels show simulations near
Hopf, and two Turing-Hopf points: (I) Bulk oscillation with v = 0.7, κv = 0.9,
(II) Periodic travelling wave with v = 3, κv = 1.2, (III) Standing wave with
v = 0.9, κv = 1. Other parameter values: η0 = 0.3, κs = 5, τ = 1, α = 3,
γ = 0.5.

The 1D neural field model, given in Appendix B by (36), supports both
bulk oscillations and spatio-temporal patterns. Using the inverted wizard hat
connectivity kernel (long-range excitation and short-range inhibition), we find
Hopf and Turing-Hopf bifurcations (Fig. 6 left). See Appendix D for details
of the analysis. For the chosen parameter values and weak gap-junction cou-
pling (κv . 0.8), the spatially-uniform steady state is always stable and neither
patterns or oscillations exist. Increasing the mean background drive η0 moves
the Hopf and Turing-Hopf curves down in the v-κV plane, allowing for oscilla-
tions and patterns in the absence of gap junctions (κv = 0). For slow action
potential speeds (v . 1), the system first undergoes a Hopf bifurcation as κv
is increased and bulk oscillations emerge (Fig. 6 I). For faster action potential
speeds (v & 1), the Turing-Hopf bifurcation occurs before the Hopf, and we see
periodic travelling and standing waves between the two bifurcations (Fig. 6 II).
For lower action potential propagation speeds v we see standing waves close to
the Turing-Hopf bifurcation (Fig. 6 III).
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Figure 7: Simulations of the one-dimensional neural field model under variation
in κv: (I) Standing wave with κv = 1, (II) Standing wave (increased synchrony)
with κv = 1.2, (III) Irregular dynamics (deformation of standing wave) with
κv = 1.7, and (IV) Spatially synchronous oscillation with κv = 2. Other pa-
rameter values: v = 1, η0 = 0.3, κs = 5, τ = 1, α = 3, γ = 0.5.

To assess the role of gap junctions, we fixed the action potential speed v = 1
and explore the dynamics of the synchrony variable |Z| for different gap-junction
coupling strengths κv (Fig. 7). For weak gap-junction coupling (I), there is a
regular standing wave and the level of synchronisation oscillates between roughly
0.1 and 0.68. As κv is increased the amplitude of the oscillations increases,
with the peak in synchrony reaching to about 0.85 for κv = 1.4 (II), 0.96 for
κv = 1.7 (III) and 0.98 for κv = 2 (IV). Increasing κv further deforms the
periodic standing wave pattern (III) and for κv = 2 the spatial pattern breaks
down entirely (IV) in favour of synchronised spatially uniform oscillations. Note
also that for strong gap-junction coupling (IV) the fluctuations in synchrony no
longer reach down to |Z| ∼ 0, suggestive of highly synchronised seizure like
activity.

For a standard wizard hat coupling kernel (long-range inhibition and short-
range excitation) the neural field model can undergo a Turing bifurcation, as
well as Hopf and Turing-Hopf bifurcations (see Supplemental information 1
panel (a)). Changing the sign of the synaptic coupling strength κS changes
the coupling to long-range inhibition and short-range excitation. When Turing
and Hopf instabilities occur simultaneously, interesting patterns emerge. In
particular, we see stationary bumps where the activity at the centre of the bump
oscillates in both space and time (see Supplemental information 1 panel (b)).
This is akin to a chimera, some parts of the tissue are synchronised with one
another while the bumps are incoherent. We will discuss the two dimensional
version of such patterns in more detail below.

3.2 Two spatial dimensions

A Turing analysis was also performed for the 2D neural field equation, given
in Appendix B by (35), and a very similar bifurcation structure was found
when the mean background drive η0 = 0.5 (see Supplemental information 2
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panel (a)). Increased η0, the Hopf and Turing-Hopf curves move down in the
v-κv plane, and they switch, such that the Turing-Hopf occurs first for low
action potential propagation speeds v as the gap junction coupling strength κv
is increased (see Supplemental information 2 panel (b)). As expected, close
to the Hopf bifurcation the activity of the tissue oscillates in time, but no
spatial pattern emerges (see Supplemental information 3). Near the Turing-
Hopf bifurcation we see both travelling and standing waves, depending on initial
conditions (Supplemental information 4 (planar waves), 5 (radial waves) and 6
(standing waves)) . Away from bifurcation, more interesting patterns emerge.
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Figure 8: Simulations of the two-dimensional neural field model showing that,
beyond a dynamic Turing instability, rotating waves with source and sink dy-
namics may emerge. Top: a snapshot of a patterned state in the (R, V ) and
(|Z|, θ) variables. Bottom: the corresponding time-series for the point marked
by the small green circle in the top panel. A movie illustrating how this pat-
tern evolves in time is given in Supplemental information 7. Parameter values:
v = 2, η0 = 6, κv = 0.35, κs = 12, τ = 1, α = 5, γ = 0.5.

We fix the action potential speed v = 2 and vary the gap junction coupling
strength κv to assess how gap junction coupling affects patterning. For weak
gap junction coupling, we observe rotating waves with source and sink dynamics
where the waves collide with each other (Fig. 8). The domain shown contains
8 rotating cores. Periodic boundary conditions were used. Hence, the cores at
the edge of the domain wrap around to those on the other side. Supplemental
information 7 shows the temporal evolution of the synchrony variable |Z|, from
which the cores and rotations are readily observed. The direction of rotation
alternates, such that every second core rotates clockwise/anti-clockwise.

As the gap junction coupling strength κv is increased robust spirals emerge
at the centre of the rotating cores. The spiral is tightly wound with a diffused
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tail of high amplitude activity that propagates into the rest of the domain and
interacts with the other rotating waves (Fig. 9). The time course of a point close
to the centre of a rotating core (green dot) depicts higher amplitude oscillations
for the firing rate R, mean membrane potential V and level of synchronisation
|Z| when compared to the simulations for lower gap junction coupling strength
κv (Fig. 8). In addition, the peaks in R are sharper and the minimum level of
synchrony |Z| is substantially higher. The temporal evolution for the full tissue
can be seen in Supplemental information 8.
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Figure 9: Simulations of the two-dimensional neural field model with moderate
gap junction coupling strength. In this case robust spiral waves emerge at the
centre of rotating cores. The spiral is tightly wound with a diffused tail of high
amplitude activity that propagates into the rest of the domain and interacts with
the other rotating waves. The full spatio-temporal can be seen in Supplemental
information 8. Parameter values: v = 2, η0 = 6, κv = 0.6, κs = 12, τ = 1,
α = 5, γ = 0.5.

Increasing κv further, results in a ring of incoherence forming between the
tightly wound spiral core and the diffused tail (Fig. 10). In addition, radial
waves appear to emanate from the outer edge of the ring towards the spiral
core. The ring of incoherenc and the radial waves are difficult to distinguish in
Fig. 10, but can be seen clearly in Supplemental information 9. Examining the
heatmap for the firing rate R (top left), we see that the tissue is predominantly
silent, with a narrow rotating front of high firing. The temporal dynamics at
the green dot, shown in the time course below, reveal highly synchronised burst
of activity every 10 to 15 ms. The peaks in firing rate get progressively larger,
before reducing again. When an area is silent, the level of synchronisation is still
high. This indicates that the neurons are primed to be simultaneously excited
when the wave of high activity arrives. If the neurons were desynchronised the
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wave of high activity would dissipate upon arrival, as the neurons would reach
threshold at different times and the peak in firing rate would not be as sharp.

We again note that increasing the gap junction coupling strength increases
the level of synchronisation across the tissue. For κv = 0.35, the synchrony
variable oscillates between 0 and 0.75. For κv = 0.6, it oscillates between 0 and
0.88. While for κv = 3, the peak synchrony value is almost 1 and the minimum
value is roughly 0.80. This supports the hypothesis that gap junction coupling
lends to more synchronous activity.
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Figure 10: Simulations of the two-dimensional neural field model with large gap
junction coupling strength. Note that compared to Fig. 9 the ring of incoherence
becomes thicker and radial waves appear to emanate from the outer edge of the
ring towards the spiral core. A ring of incoherence exists between the tightly
wound spiral and diffused tail, which can be seen more clearly in Supplemental
information 9. Parameter values: v = 2, η0 = 6, κv = 3.0, κs = 12, τ = 1,
α = 5, γ = 0.5.

As mentioned in Section 3.1, for a regular wizard hat connectivity ker-
nel (short-range excitation and long-range inhibition) the neural field supports
static Turing patterns, periodic bumps of high activity in 1D and a periodic
lattice of high-activity spots in 2D. When the Turing bifurcation intersects with
the Hopf bifurcation, patterns form at the centre of these localised states. In 2D,
patterns of concentric circles can appear within spots when the two bifurcations
coincide (Fig. 11). Activity within a localised state can oscillate in time, while
the activity in the surround is constant with a low firing rate. These patterns
are reminiscent of chimeras [1, 26, 27, 28, 45], as seen in networks of coupled
oscillators, where a fraction of the oscillators are phase-locked or silent while
the others oscillate incoherently. Note how the peaks in firing rate coincide with
peaks in synchrony. However, in the surround synchrony is high, but the firing
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rate is minuscule. This indicates that the neurons are also synchronised at rest.
A video illustrating how these exotic patterns evolve on the entire spatial do-
main is provided in Supplemental information 10 and the bifurcation diagram
is given in Supplemental information 2 panel (c).

Figure 11: Simulations of the two-dimensional neural field model with short-
range excitation and long-range inhibition, showing the emergence of a spatially
localised spot solution (top panel). Note that the core of the spot has a rich
temporal dynamics, as indicated in the bottom panel showing the time course
for a point within the core (green dot in top panel). A movie showing the
full spatio-temporal can be found in Supplemental information 10. Parameter
values: v = 10.0, η0 = 0.1, κv = 1.0, κs = −25, τ = 1, α = 5, γ = 0.5.

4 Discussion

Mean-field models have proven invaluable in understanding neural dynamics.
Although phenomenological in nature, coarse-grained neural mass/field mod-
els have proven particularly useful in describing neurophysiological phenomena,
such as EEG/MEG rhythms [67], cortical waves [64, 49], binocular rivalry [31, 6],
working memory [32] and visual hallucinations [12, 5]. The exclusion of syn-
chrony in standard neural mass/field models prohibits them from describing
event-related synchronisation and desynchronisation; the increase and decrease
of oscillatory EEG/MEG power due to changes in synchrony within the neural
tissue. Here we presented and analysed a recently developed neural mass/field
model that incorporates within population synchrony. The main benefit of such
a model is that it is derived from a population of interacting spiking neurons.
This allows for the inclusion of realistic gap junctions at the cellular level. Gap
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junctions are known to promote synchrony within neural tissue [61, 4] and the
strength of these connections has been linked to the excessive synchronisation
driving epileptic seizures [42, 60]. Nonetheless, it is also important to recognise
the important effects that the extracellular space has on seizure dynamics, as
discussed in [62]. Recent work by Martinet et al. [38] has emphasised the use-
fulness of bringing models to bear on this problem, and coupled the Steyn-Ross
neural field model [55] to a simple dynamics for local extracellular potassium
concentration. Here, gap-junctions are modelled by appending a diffusive term
to a standard neural field and increases in the local extracellular potassium
concentration act to decrease the inhibitory-to-inhibitory gap junction diffusion
coefficient (to model the closing of gap junctions caused by the slow acidification
of the extracellular environment late in seizure). A more refined version of this
phenomenological approach would be to replace the Steyn-Ross model with the
neural field described here. This would allow a more principled study of how
slow changes in the extracellular environment could initiate wave propagation,
leading to waves that travel, collide, and annihilate. Indeed, simulations of the
next-generation neural field model (without coupling to the extracellular space)
have already shown such rich transient dynamics including seizure-like oscilla-
tions (and their dependence on the strength of gap-junction coupling). It would
be interesting to explore this further, and in particular the transitions whereby
spatio-temporal wave patterns are visited in sequence. This has already been
the topic of a major modelling study by Roberts et al. [49] who considered a va-
riety of more traditional neural mass models in a connectome inspired network
using the 998-node Hagmann et al. dataset [16] with a single fixed axonal delay.
A similar computational study, with a focus on spiral waves and sinks/sources
from which activity emanates/converges, could similarly be undertaken using
the alternative neural mass model presented here, and with the further inclu-
sion of space-dependent axonal delays. All of the above are topics of ongoing
investigation and will be reported upon elsewhere.

Data availability

Code for running the 1D and 2D neural field simulations can be found at https:
//github.com/Jamesafross/Neural_Field_with_gaps

Appendix A: Mean field reduction

Consider a heterogeneous network of N quadratic integrate-and-fire neurons
with voltage vi and both gap-junction and synaptic coupling:

τ v̇i = ηi + v2i +
κv
N

N∑
j=1

(vj − vi) +
κs
N

N∑
j=1

∑
m∈Z

s(t− Tmj ), (7)

i = 1, . . . , N , with vr ≤ vi ≤ vth. Here, the mth firing time of the jth neuron
is defined implicitly by vj(T

m
j ) = vth. The network nodes are subject to reset:
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vi → vr at times Tmi . The strengths of gap-junction and synaptic coupling are
κv and κs respectively. The function s(t) represents the shape of a post synaptic
response (to a delta-Dirac spike) and will be taken to be the Green’s function of
a linear differential operator Q. For an alpha-function s(t) = α2t exp(−αt)H(t),
where H is a Heaviside function, Q = (1 +α−1d/dt)2, whilst for an exponential
response s(t) = α exp(−αt)H(t), Q = (1 + α−1d/dt). In (7) the ηi are random
variables drawn from a Lorentzian distribution:

g(η) =
1

π

γ

(η − η0)2 + γ2
, (8)

with mean η0 and half-width γ. For simplicity we shall take vr → −∞ and
vth →∞.

To derive the mean field equations we follow closely the exposition by Mont-
brió et al. [39]. Consider the thermodynamic limit N →∞ with a distribution
of voltage values ρ(v|η, t). The continuity equation for ρ is

∂ρ

∂t
+
∂(ρv̇)

∂v
= 0, (9)

where

τ v̇ = η + v2 − κvv + κvV + κsU, (10)

QU = R, (11)

and

V (t) = lim
N→∞

1

N

N∑
j=1

vj , (12)

R(t) = lim
N→∞

1

N

N∑
j=1

∑
m∈Z

δ(t− Tmj ), (13)

which represent the average voltage and population firing rate respectively. We
now assume a solution ρ(v|η, t) of the form

ρ(v|η, t) =
1

π

x(η, t)

(v − y(η, t))2 + x2(η, t)
. (14)

For a fixed η the firing rate r(η, t) can be calculated as ρ(v → ∞|η, t)v̇(v →
∞|η, t), from which we may establish that

x(η, t) = πτr(η, t). (15)

By exploiting the structure of (14), with poles at v± = y ± ix, a contour inte-
gration shows that

y(η, t) = PV

∫ ∞
−∞

vρ(v|η, t) dv, (16)
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where PV denotes the Cauchy principal value. After averaging over the distri-
bution of single neuron drives given by (8) we obtain

R(t) =
1

πτ

∫ ∞
−∞

dη x(η, t)g(η), (17)

V (t) =

∫ ∞
−∞

dη y(η, t)g(η). (18)

For fixed η, substitution of (14) into the continuity equation and balancing
powers of v shows that x and y obey two coupled differential equations that can
be written as

τ
∂ω

∂t
= −κvω + i

[
η + κvV + κsU − ω2

]
, (19)

where ω(η, t) = x(η, t) + iy(η, t). After evaluating the integrals in (42) and (18)
using contour integration (and using the fact that ρ has poles at η± = η0 ± iγ)
the coupled equations for (R, V ) can be found as

τṘ = −κvR+ 2RV +
γ

πτ
, (20)

τ V̇ = η0 + V 2 − π2τ2R2 + κsU. (21)

The complex quantity W = πτR+ iV is known to be related to the Kuramoto
order parameter Z by the conformal map [39]:

Z =
1−W ∗
1 +W ∗

. (22)

The evolution equation for Z is given by the complex differential equation

τŻ =
κv
2

(1− Z2)− γ

2
(1 + Z)2 − i

2
(1− Z)2

+
i

2
(1 + Z)2 [η0 + κvV (Z) + κsU ] , (23)

where QU = R(Z) and

R(Z) =
1

πτ
Re

(
1− Z∗
1 + Z∗

)
, (24)

V (Z) = Im

(
1− Z∗
1 + Z∗

)
. (25)

Appendix B: Interacting sub-populations

Consider an excitatory population labelled by E coupled to an inhibitory one
labelled by I. In this case there are four distinct synaptic inputs with connection
strengths κabs , a, b ∈ {E, I}, with κa,Es > 0 and κa,Is < 0. Each population has
a background drive drawn from a Lorentzian with mean ηa0 and half-width γa,
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a ∈ {E, I}. Generalising the mean field model derived in section Appendix A,
we have that

τaṘa = −κavRa + 2RaVa +
γa
πτa

, (26)

τaV̇ = ηa0 + V 2
a − π2τ2aR

2
a +

∑
b∈{E,I}

κabs Uab, (27)

QabUab = Rb, a, b ∈ {E, I}. (28)

For a second order synapse with time-scale α−1ab we would set

Qab =

(
1 +

1

αab

d

dt

)2

. (29)

Appendix C: Brain wave equation

A simple continuum model for an effective single population dynamics can be
written in the form

τ
∂R

∂t
= −κvR+ 2RV +

γ

πτ
, (30)

τ
∂V

∂t
= η0 + V 2 − π2τ2R2 + κsU (31)

QU = Ψ, (32)

where Ψ = w ⊗R. The symbol ⊗ is used to describe spatial interaction within
the neural field model, while w represents structural connectivity. For example,
in the plane we might consider
(R, V, U) = (R(r, t), V (r, t), U(r, t)), with r ∈ R2 and t ≥ 0 with

[w ⊗R] (r, t) =∫
R2

w(|r− r′|)R(r′, t− |r− r′|/v)dr′, (33)

where v represents the speed of an action potential. We note that (33) can be
written as a convolution:

Ψ(r, t) =

∫
R

dt′
∫
R2

dr′G(r− r′, t− t′)R(r′, t′), (34)

where G(r, t) = w(r)δ(t− r/v). For certain choices of w it is possible to exploit
this convolution structure to obtain a PDE model, often referred to as a brain-
wave equation [43, 24].

For the choice of an inverted balanced wizard hat function with w(r) =
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(r/2− 1)e−r/(2π) this approach yields the following brain-wave equation:[(
1 +

1

v

∂

∂t

)2

− 3

2
∇2

]2
Ψ =

−
{

1

v

∂

∂t

(
1 +

1

v

∂

∂t

)
− 3

2
∇2

}
R. (35)

Note that (35) is only strictly valid for describing long-wavelength solutions. In
one spatial dimension and using w(x) = (|x| − 1)e−|x| the brain-wave PDE is[(

1 +
1

v

∂

∂t

)2

− ∂2

∂x2

]2
Ψ =

− 2

{
1

v

∂

∂t

(
1 +

1

v

∂

∂t

)2

− ∂2

∂x2

(
2 +

1

v

∂

∂t

)}
R, (36)

and is an exact reduction of Ψ = w ⊗R [59].

Appendix D: Turing instability analysis

Consider the homogeneous steady state of (35) given by (U(r, t),Ψ(r, t), R(r, t), V (r, t)) =
(0, 0, R0, V0) where (R0, V0) are given by the simultaneous solution of the alge-
braic equations

0 = −κvR0 + 2R0V0 +
γ

πτ
, (37)

0 = η0 + V 2
0 − π2τ2R2

0. (38)

We linearise around the steady state and consider perturbations of the form
(U(r, t),Ψ(r, t), R(r, t), V (r, t)) = (0, 0, R0, V0)+ε(U,Ψ, R, V )eλteik·r for |ε| � 1
and λ = µ+ iω. Substitution into (35) and working to first order in ε gives the
linear relationship[(

1 +
λ

v

)2

+
3

2
k2

]2
Ψ = −

{
λ

v

(
1 +

λ

v

)
+

3

2
k2
}
R, (39)

where k = |k|. A linearisation for the dynamics of (R, V ) gives

A(λ)

[
R
V

]
=

[
0
κsU

]
, A(λ) = τλI2 − J, (40)

where I2 is the 2× 2 identity matrix and J is the Jacobian

J =

[
−κv + 2V0 2R0

−2π2τ2R0 2V0

]
. (41)
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We may solve (40) using Cramer’s rule to yield

R =
1

|A(λ)|

∣∣∣∣ 0 −2R0

κsU τλ− 2V0

∣∣∣∣ =
2κsR0

|A(λ)|(1 + λ/α)2
Ψ, (42)

where we have used the fact that (1 +λ/α)2U = Ψ (from (32)). Substitution of
(42) into (39) and demanding a non-trivial solution for Ψ leads to the condition
E(λ, k) = 0, where

E(λ, k) = |A(λ)|
(

1 +
λ

α

)2
[(

1 +
λ

v

)2

+
3

2
k2

]2
+ 2κsR0

[
λ

v

(
1 +

λ

v

)
+

3

2
k2
]
. (43)

Thus, the continuous spectrum λ = λ(k) is given by the roots of an eight order
polynomial.

A similar analysis of (36) gives

E(λ, k) = |A(λ)|
(

1 +
λ

α

)2
[(

1 +
λ

v

)2

+ k2

]2

+ 4κsR0

[
λ

v

(
1 +

λ

v

)2

+ k2
(

2 +
λ

v

)]
. (44)

The system undergoes a bifurcation when a branch of solutions λ(k) to
E(λ, k) = 0 touches the imaginary axis, µ(kc) = 0, where kc is the critical wave
number. By the implicit function theorem, this occurs when

∂M
∂k

∂N
∂ω
− ∂M

∂ω

∂N
∂k

= 0, (45)

where M = Re (E) and M = Im (E).
A Hopf bifurcation of the spatially uniform can be found by solving E(iω, 0) =

0 for ω. A static Turing bifurcation is found by solving E(0, kc) = 0 and (45)
for kc non-zero. While a dynamic Turing-Hopf bifurcation is found by solving
E(iω, kc) = 0 and (45) for non-zero ω and kc. Interesting patterns tend to
emerge when a Hopf and Turing-Hopf intersect at a codimension-2 point. Such
a bifurcation can be found by solving E(iω1, 0) = 0, E(iω2, kc) = 0 and (45)
simultaneously for ω1, ω2 and kc.
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List of Supplemental information

Supplemental information 1
Chimeras in the one-dimensional neural field model. (a) Bifurcation diagram for
a standard wizard hat coupling kernel. (b) Simulation close to the Turing and
Hopf curves η0 = −0.1 and κv = 1. Other parameter values: v = 2, κs = −15,
τ = 1, α = 3, γ = 0.5.

Supplemental information 2
Turing analysis for two-dimensional neural field model. (a) Hopf and Turing-
Hopf curves for an inverted wizard hat coupling kernel (κs = 12) with η0 = 0.5.
(b) Hopf and Turing-Hopf curves when η0 is increased to 0.6 and κs remains
unchanged. (c) Bifurcation diagram for a standard wizard hat coupling kernel
(κs = −25), with v = 10. Other parameter values: τ = 1, α = 5, γ = 0.5.

Supplemental information 3
Bulk oscillations appear in the 2D neural field model when we simulate close to
the Hopf bifurcation. The entire tissue oscillates coherently and there are no
spatial patterns. Here we show the oscillations for the synchrony variable |Z|.
Parameter values: κv = 0.1, v = 4, η0 = 6, κs = 12, τ = 1, α = 5, γ = 0.5.

Supplemental information 4
When close to the Turing-Hopf bifurcation, perturbing the 2D neural field model
with horizontal bars of high activity results in planar waves. A high activity
source forms at the centre of the domain and the waves propagate up and down
from it. The evolution of the synchrony variable |Z| is shown here. Parameter
values: κv = 0.35, v = 2, η0 = 6, κs = 12, τ = 1, α = 5, γ = 0.5.

Supplemental information 5
The uniform steady state of the 2D neural field model was perturbed with a
Gaussian to initiate radial waves. The temporal evolution of the waves is shown
for the synchrony variable |Z|. A source of high activity emerges at the centre of
the domain and the waves emanate from it. Periodic boundary conditions were
used, and as such, the waves interfere when they reach the edge of the domain.
Parameter values: κv = 0.35, v = 2, η0 = 6, κs = −15, τ = 1, α = 3, γ = 0.5.

Supplemental information 6
Standing waves emerge in the 2D neural field model when we are close to the
Turing-Hopf bifurcation and the uniform steady state is perturbed with a spa-
tially periodic lattice pattern. We show the temporal dynamics of the synchrony
variable |Z| in this movie. The minima and maxima alternate in time, but the
lattice pattern remains unchanged. Parameter values: κv = 0.35, v = 2, η0 = 6,
κs = 12, τ = 1, α = 5, γ = 0.5.

Supplemental information 7
Simulation of the 2D neural field model corresponding to the weak gap junction
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coupling regime shown in Fig. 8. The temporal evolution of synchrony variable
|Z| is shown here. The steady state was perturbed with a spatially periodic lat-
tice and rotating waves emerge. We observe source and sink dynamics were the
waves interact with one another. Parameter values: κv = 0.35, v = 2, η0 = 6,
κs = 12, τ = 1, α = 5, γ = 0.5.

Supplemental information 8
Spatio-temporal dynamics of the synchrony variable |Z| in the 2D neural field
model with an intermediate value of gap junction coupling strength. The sim-
ulation corresponds to Fig. 9, where tightly wound spirals appear the centre of
the rotating waves. Parameter values: v = 2, η0 = 6, κv = 0.6, κs = 12, τ = 1,
α = 5, γ = 0.5.

Supplemental information 9
Simulation the 2D neural field model with strong gap junction coupling, as seen
in Fig. 10. We show the temporal dynamics of the synchrony variable |Z|,
which varies between ∼ 0.8 and 1. A ring of incoherence emerges between the
tightly wound spiral and diffused tail, with radial waves propagating from the
edge of the ring toward the centre of the rotating core. Parameter values: v = 2,
η0 = 6, κv = 3.0, κs = 12, τ = 1, α = 5, γ = 0.5.

Supplemental information 10
Simulation of the chimera dynamics in the 2D neural field model with a reg-
ular wizard hat coupling kernel. Movie corresponds to Fig. 11 and shows the
dynamics of the synchrony variable |Z|. Parameter values: v = 10.0, η0 = 0.1,
κv = 1.0, κs = −25, τ = 1, α = 5, γ = 0.5.
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