
 

 

 

 

 
Regulated delivery controls Drosophila Hedgehog, Wingless and Decapentaplegic signaling 

 

Ryo Hatori and Thomas B. Kornberg 

Cardiovascular Research Institute 

University of California San Francisco 

San Francisco, CA  94143 

 

 

 

 

 

 

 

• Short title: Control of morphogen signaling 

• Summary: The extent of Hh, Wg, and Dpp signaling is independent of the amount of signal 

produced or the number of recipient cells. 

• Correspondence to: email - tkornberg@ucsf.edu 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.247759doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.247759
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract 

 

Morphogen signaling proteins disperse across tissues to activate signal transduction in target 

cells. We investigated dispersion of Hedgehog (Hh), Wingless (Wg), and Bone morphogenic 

protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc, and found that 

delivery to targets is regulated. Cells take up <5% Hh produced, and neither amounts taken up 

nor extent of signaling changes under conditions of Hh production from 50-200% normal 

amounts. Similarly, cells take up <25% Wg produced, and variation in Wg production from 50-

700% normal has no effect on amounts taken up or signaling. Similar properties were observed 

for Dpp. Wing disc-produced Hh signals to disc-associated tracheal and myoblast as well as an 

approximately equal number of disc cells, but the extent of signaling in the disc is unaffected by 

the presence or absence of the tracheal cells and myoblasts. These findings show that target cells 

do not take up signaling proteins from a common pool and that both the amount and destination 

of delivered morphogens are regulated.. 
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Introduction 

 

Signaling by morphogen proteins controls many aspects of development, homeostasis and 

disease (Garcia et al., 2018; Tabata and Takei, 2004; Taipale and Beachy, 2001). These signaling 

proteins are released from cells that produce them, and they distribute across the tissues they 

target, forming concentration gradients that induce signal transduction and activate gene 

expression in a concentration-dependent manner. The importance of regulation by morphogen 

gradients to growth, cell fate and patterning underlies the imperative to understand how 

morphogens disperse across tissues.  

 

For more than a century, it has been assumed that morphogens spread across tissues by passive 

diffusion in extracellular space (either “free” or “restricted”), and both experimental observations 

and theoretical modeling have been offered in support (Rogers and Schier, 2011). Spreading 

morphogen proteins have been proposed to exist in various forms, including as multimeric 

complexes or encapsulated in lipoprotein particles, exosomes, or micelles (Christian, 2012). 

Implicit in these models are the ideas that signaling is proportional to amounts of signaling 

proteins produced by designated groups of cells, and that release creates an extracellular pool of 

signaling protein that distributes in extracellular fluid in ways that are dependent on interactions 

with substances that are encountered or until they are removed from the pool by degradation or 

by receptor-mediated absorption. The pool is assumed to be formed by constitutive release from 

producing cells. 

 

An alternative mechanism of dispersion is direct exchange at cell-cell contacts made by 

specialized filopodia called cytonemes (Kornberg, 2016). Cytonemes link signaling and target 

cells with synaptic contacts, and provide conduits that transport signaling proteins between cells. 

Genetic conditions that impair cytonemes diminish both cytoneme contacts and signaling. 

Cytoneme synapses have features and attributes that are characteristic of neuronal synapses, 

including protein composition, close pre- and postsynaptic membrane apposition, voltage 

sensitivity, and calcium dependence (Huang et al., 2019; Roy et al., 2014). At a neuronal 

synapse, signaling is titrated by frequency and quantity of neurotransmitter release and on 

efficiency of neurotransmitter clearance from the synaptic gap (Blakely and Edwards, 2012). It is 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.247759doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.247759
http://creativecommons.org/licenses/by/4.0/


 4 

not known if cytoneme-mediated morphogen signaling at cytoneme synapses is also dependent 

on regulated release. 

 

Hh, Wg, and Dpp are evolutionarily conserved morphogen signaling proteins that have been 

implicated in organogenesis and stem cell maintenance, and their mis-regulation in mammals has 

been linked to inherited diseases and cancers (Briscoe and Thérond, 2013; Morikawa et al., 

2016; Nusse and Clevers, 2017). In the columnar cells of the Drosophila wing imaginal disc, Hh 

is expressed specifically and uniformly by posterior compartment cells (Fig. 1A). In the wing 

blade primordium of the wing disc, Hh released by posterior compartment cells is taken up by 

anterior compartment cells within 30 µm (ten cells) of the anterior/posterior (A/P) compartment 

border. Transfers of Hh from the posterior to anterior compartment cells is cytoneme-dependent 

(Bischoff et al., 2013; Chen et al., 2017). Hh in the anterior compartment distributes to form a 

concentration gradient that induces signal transduction and activates expression of target genes in 

partially overlapping stripes (Callejo et al., 2011; Chen et al., 2017). These domains of 

expression reflect graded responses to Hh, from highest and “short-range” (engrailed (en), 

patched (ptc), and dpp) to lowest and “long-range” (cubitus interruptus (ci). The spatial 

relationships of these domains are reproducible, with single cell resolution. 

 

In the wing blade primordium, cells that express dpp form a stripe of 6-8 cells adjacent to the 

A/P compartment border (Teleman and Cohen, 2000). wg is expressed in a two cell-wide stripe 

that is orthogonal to the Dpp stripe and straddles the dorsal/ventral (D/V) compartment border 

(Neumann and Cohen, 1997). Both Dpp and Wg disperse to form concentration gradients on 

both sides of their respective stripes of expressing cells. Transport of both Dpp and Wg is 

cytoneme-mediated (Huang and Kornberg, 2015; Roy et al., 2014; Stanganello and Scholpp, 

2016). 

 

Here, we asked if distributions of Hh, Wg and Dpp in cells of the wing disc that take up these 

signaling proteins are proportional to amounts the wing disc produces, and therefore consistent 

with constitutive release. We also asked if the three target tissues that respond to disc-produced 

Hh take up Hh from a common pool. Our data show that delivery of signaling proteins to target 

cells is regulated with respect to both amount and destination. 
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Results 

 

Relationship between Hh production and Hh signaling in the wing disc 

Neurotransmitters that are made, packaged, and stored in presynaptic compartments are 

functionally inert, their precisely controlled release and delivery for juxtacrine activation a 

signature property of synaptic signaling. In order to investigate whether release of Hh might be 

regulated at cytoneme synapses, we analyzed Hh signaling in genotypes that express different 

amounts of Hh. We tested whether amounts of Hh and of Hh signaling in recipient cells are 

proportional to Hh production, as might be expected of constitutive, unregulated release by 

producing cells, or if they are independent of production as might be expected of regulated 

release and delivery. 

 

We first monitored hh RNA in wing discs with genotypes that vary the number of wildtype (WT) 

hh genes and hh transgenes (Fig. 1B). The hh transgenes are BAC plasmids containing either the 

WT hh transcription unit in a genomic fragment of 40kb (HS) or 101 kb (HL), or HS, a 40kb 

genomic fragment into which GFP has been recombined in frame (Hh:GFP) (Chen et al., 2017). 

Flies without a functional hh gene die as embryos, but haploid flies with only one BAC 

transgene (encoding Hh (HS, HL, or HS) have normal appearance and wing discs have normal 

morphology (Chen et al., 2017). Hh:GFP encoded by this transgene is therefore presumed to be a 

functional surrogate for the normal, WT protein. We used qPCR to measure amounts of hh RNA 

in animals with 1, 2, 3, or 4 hh genes, and determined that the amount of hh RNA in wing discs 

scales with gene dosage (Fig. 1C). These results are consistent with the idea that hh RNA 

expression is directly proportional to gene copy number. 

 

To investigate how production and distribution of Hh protein scale in the wing disc and how Hh 

production correlates with signaling, we measured Hh amounts in the wing blade primordium by 

monitoring Hh immunohistochemically with a-Hh antibody. In discs with either one or three hh 

genes, the amount of Hh detected in the Hh-producing cells increases 2.9 times (Fig. 1C). This 

result is consistent with the qPCR analysis, and with the idea that both Hh RNA and protein scale 

with gene dosage.  
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To determine if different amounts of Hh expression alter growth and patterning, we examined 

several parameters that respond to and are sensitive to Hh signaling: expression of Hh gene 

targets, size and shape of the wing and wing disc, and wing vein pattern. Expression of the ptc 

gene in the wing disc is up-regulated by Hh signaling in a band of cells at the A/P compartment 

border. The width of this band decreases under conditions in which Hh signal transduction is 

reduced specifically in the responding cells (Molnar et al., 2011), and increases under conditions 

in which Hh signaling is elevated (Cheng et al., 2012; Wang and Holmgren, 1999). In discs with 

1, 2, 3, or 4 hh gene copies, we did not detect differences in the size of the Ptc band (Fig. 1 D,E). 

In the adult wing, the size of the intervein region between veins 3 and 4 is sensitive to Hh 

signaling, decreasing under conditions of low Hh signaling and increasing under conditions of 

elevated levels (Casso et al., 2011; Mullor et al., 1997; Strigini and Cohen, 1997). We did not 

detect changes in the size or shape of either the wing disc, adult wing or 3-4 intervein in flies 

with 1, 2, 3, or 4 hh gene copies (Fig. 1F,G). 

 

To characterize the apparent insensitivity of the disc and wing to different amounts of Hh 

production, we consider two possibilities. If the amount of Hh taken up by the recipient, target 

cells is proportional to production, each recipient cell might scale the outputs of Hh signal 

transduction relative to its neighbors. This mechanism might adjust relative responses 

independently of absolute amounts, determining growth and pattern by the slope of the 

concentration gradient across the field of cells. This type of mechanism was proposed for the 

morphogen gradient of Dpp in order to model the effects of mosaic ectopic activation induced by 

expression of a constitutively active Dpp receptor (Rogulja and Irvine, 2005). Alternatively, the 

amount of Hh released from producing cells might be regulated so that a recipient cell receives 

an amount of Hh that is not dependent on the amount produced. To distinguish between these 

mechanisms, we quantified Hh taken up by recipient cells in the wing blade primordium.  

 

We first monitored Hh histologically with a-Hh antibody in genotypes with 1 (1xWT), 2 

(2xWT), 3 (2xWT, 1xBAC), or 4 (2xWT, 2xBAC) hh genes. Images of small rectangular regions 

of the anterior and posterior compartments with these genotypes (Fig. 1A) show that Hh amounts 

increase proportionally with gene dosage in the posterior compartment where Hh is produced. 

This result is consistent with the qPCR and histological analyses shown in Figure 1C, and with 
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the idea that both Hh RNA and protein scale with gene dosage. Images of the same small 

rectangular region in the anterior compartment with these genotypes show that Hh amounts in 

anterior compartments are not detectably different with 1, 2, 3, or 4 hh genes (Fig. 2A,B)., but 

that Hh amounts in anterior compartments are not detectably different with 1, 2, 3, or 4 hh genes 

(Fig. 2A,B). Quantification of Hh detected by antibody staining in the entire wing primordium of 

normal (2xWT) discs shows that approximately 5.2% is in the anterior compartment (n=7; 

standard deviation=1.2%). These results are consistent with the idea that most Hh produced in 

the posterior compartment is not released (and does not signal), and that Hh export is not linked 

directly to production. 

 

To characterize the relationship between Hh production and delivery further, we used a-GFP 

antibody to analyze genotypes with one Hh:GFP-encoding BAC transgene (HS) together with 

either zero, one, or two (untagged) WT Hh genes (Total genes: 1: HS ; -/-; 2: HS ; -/+; and 3: HS ; 

+/+) (Fig. 1B). As depicted in the Figure 2C drawing, a-GFP antibody staining of GFP-tagged 

Hh that is titrated with different amounts of untagged Hh distinguishes between constitutive and 

regulated delivery in these genotypes. If delivery of Hh to the anterior compartment is 

proportional to gene dosage and not regulated, Hh:GFP amounts in the anterior compartment are 

expected to be unaffected by co-production of untagged Hh so that the Hh:GFP remains constant 

as gene dosage and production increases. However, if delivery is regulated, the fraction of 

Hh:GFP in the anterior compartment is expected to decrease as the fraction of untagged Hh 

increases in proportion to total gene copy.  

 

Analysis of wing discs with one Hh:GFP BAC (HS) and 0, 1, or 2 WT hh genes shows that 

Hh:GFP in the producing cells of the posterior compartment is not diminished by the presence of 

hh genes that encode untagged Hh (Fig. 2D,E). This is consistent with the idea that production of 

both Hh RNA and protein are proportional to gene copy. In contrast, Hh:GFP amounts in the Hh-

receiving cells of the anterior compartment decreases in proportion to number of hh genes that 

encode untagged Hh. This shows that Hh:GFP was diluted by the presence of untagged Hh. This 

result is consistent with the amounts of Hh we detected in the anterior compartment with a-Hh 

antibody in genotypes with 1, 2, 3, or 4 hh genes (Fig. 2A,B). We conclude that the amount of 

Hh delivered to the anterior compartment is constant and does not scale with production. 
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Dpp production and signaling in the wing disc 

 

To investigate whether regulated export is also a feature of Dpp signaling, we monitored 

signaling and dispersion of Dpp in genotypes with different numbers of dpp genes. We created a 

Dpp-encoding BAC transgene (BD) that rescues dpp haploinsufficiency: animals with one WT 

dpp and one BD (+/dppH46 ; +/BD) are viable and their wing size is comparable to WT flies (Fig. 

3A,B), indicating that the Dpp BAC is a functional substitute for a WT dpp gene. To monitor 

different amounts of dpp expression, we compared wing discs with two or four copies of dpp 

gene (2 copies: +/+; 4 copies: +/+; BD/BD). First, to examine proportionality between dpp gene 

copy and Dpp protein, we stained wing discs with antibody that recognizes the prodomain of 

unprocessed Dpp (Akiyama and Gibson, 2015; Panganiban et al., 1990). Staining in cells that 

produce Dpp was approximately double in the four copy compared to the two copy genotype 

(Fig. 3C,D). Second, we examined wing size, which is sensitive to different amounts of Dpp 

signaling. Mutant conditions that decrease Dpp signal transduction reduce wing disc growth and 

mutant conditions that elevate signal transduction cause overgrowth (Capdevila and Guerrero, 

1994; Spencer et al., 1982). We found that wing size did not differ between genotypes with two 

or four dpp genes (Fig. 3A,B). Third, we asked if signal transduction increases with gene dosage 

and Dpp production. a-pMAD staining, a readout of Dpp signaling, forms a band that straddles 

and flanks dpp expressing cells in WT discs. The width of the pMAD-staining stripe was not 

significantly changed in wing discs with two or four gene copies (Fig. 3E,F), indicating that 

increased Dpp production does not increase signal transduction. In sum, these results show that 

the wing disc is insensitive to increased levels of Dpp production. 

 

To monitor Dpp distributions, we examined discs stained with a-Dpp antibody to compare 

genotypes with one Dpp:Cherry knock-in allele and either one or three dpp genes that encode 

untagged protein (Fig. 3G). The experimental setup and rationale are similar to the analysis of 

Hh:GFP depicted in Figure 2C. Evaluation of the two genotypes showed that Dpp:Cherry 

amounts in producing cells does not change (Fig. 3H,I), and that amounts of Dpp:Cherry in non-

producing, receiving cells decreased in proportion to the number of genes that encode untagged 

Dpp (Fig. 3I’). This finding, that the amount of Dpp:Cherry exported to target cells decreases as 
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the ratio of tagged:untagged Dpp declines, is consistent with the idea that transmission of Dpp to 

targets is regulated. 

 

Wingless production and signaling in the wing disc 

 

We investigated the nature of Wg export by monitoring expression of Wg and the Wg gene 

target Senseless (Sens) in three genotypes that have different numbers of functional wg genes: 1 

(wg+/wg-), 2 (wg+/wg+), and 2+over-expression (wg-Gal4 UAS-Wg:GFP ; wg+/wg+). α-Wg 

antibody staining shows that Wg production is proportional to gene copy number in the discs 

with 1 and 2 wg genes, and that the wg-Gal4 driver generates approximately seven times more 

Wg than a single endogenous gene Fig. 4A,A’,B). Despite the differences in expression between 

these genotypes, the amount of Wg in the neighboring cells that receive Wg was unchanged (Fig. 

4A,A’,B). The fraction of Wg present in the neighboring cells relative to the total produced in 

the wing blade therefore decreased with increasing functional gene dosage, from approximately 

41% (1 copy) to 24% (2 copies), and 3.5% (7 functional equivalents). a-Sens antibody detects 

two narrow, parallel stripes of expression that are immediately adjacent to but do not overlap the 

Wg-expressing cells (Fig. 4A”), and the patterns of Sens expression were not detectably different 

in these genotypes (Fig. 4C,C’). We conclude that Wg transmission is regulated. 

 

Relationship between cytonemes and Hh production 

 

Previous studies in several different systems show that the numbers of cytonemes that cells 

extend correlate with amount of signal transduction activity. Whereas cells with few cytonemes 

have low signaling activity, cells with more than normal numbers of cytonemes have elevated 

levels (Bischoff et al., 2013; Chen et al., 2017, 2017; Du et al., 2018; Huang and Kornberg, 

2016; Huang et al., 2019; Mattes et al., 2018; Roy et al., 2011, 2014). To investigate the 

relationship between cytonemes and Hh production, we monitored ASP cytonemes in genotypes 

with different numbers of hh genes. 

 

We first asked if delivery of Hh to ASP cells is sensitive to amounts of Hh production by 

monitoring two conditions that are dependent on Hh signaling in the ASP: tissue morphology 
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and expression of engrailed (en), which is a transcriptional target that is induced by Hh signaling 

in the wing blade and ASP (Guillén et al., 1995; Hatori, R. and Kornberg, 2020). In WT, the 

ASP has a proximal narrow stalk and distal bulb (Fig. 1A), and en expression is graded, with 

highest levels in the tip cells (Fig. 5A). In mutant conditions with elevated Hh signaling (e.g. 

ectopic over-expression of Hh in the ASP), the stalk is absent and En expression extends to more 

proximal tracheal cells (i.e. the transverse connective; Fig. 1A), whereas in mutant conditions 

with reduced Hh signaling (e.g. smoothened loss-of-function and Patched over-expression), the 

stalk is elongated and En expression is reduced (Fig. 5B). We found that in genotypes with 1-4 

hh genes, neither ASP morphology nor extent of En expression changed (Fig. 5A,C). These 

results show that the ASP is insensitive to different amounts of Hh production and are consistent 

with the idea that Hh delivery is regulated.  

 

We next investigated the relationship between Hh production and cytonemes. We analyzed the 

number of cytonemes in genotypes with 1, 2, 3, and 4 hh genes by marking ASP cytonemes with 

membrane-tethered Cherry (btl>CD8:Cherry). Cytonemes that extend from the distal tip of the 

ASP take up Hh and contain Ptc (Chen et al., 2017), and in the experimental genotypes, the 

number of distal tip cytonemes was not statistically different (Fig. 5D,E). We conclude that the 

number of cytonemes and amount of cytoneme-mediated Hh uptake are insensitive to conditions 

that reduce or increase Hh production by a factor of two. 

 

Expression of modulators of morphogen protein signaling 

 

In addition to the synthesis of signaling proteins by producing cells and pathways of signal 

transduction in receiving cells, morphogen signaling involves post-translational processes that 

prepare Hh, Dpp, and Wg in producing cells, feedback regulation in receiving cells, and 

extracellular proteins that influence activity. We investigated whether changes in the production 

of Hh, Dpp, or Wg affects the expression of genes that encode functions known to modulate 

signaling because the expression of these genes might provide feedback regulation that 

compensates for changes in the amounts of proteins that are released or taken up. We might 

expect, for example, that the expression of a gene that provides negative feedback increases 

under conditions of increased signaling protein production. Shifted (Shf) encodes an extracellular 
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factor that is required for the normal distribution of Hh, and Shf protein levels decrease in 

conditions of lowered signaling (Glise et al., 2005). We quantified shf transcripts in discs with 

one and four hh genes by qPCR, but detected no change in shf expression (Fig. 6A,B). This 

insensitivity to Hh amounts suggests that Shf does not control Hh release. brinker (brk), 

Pentagone (Pent), Short gastrulation (Sog), and Crossveinless-2 (Cv-2) negatively affect Dpp 

signaling. Brk is a transcriptional repressor of Dpp signal transduction whose expression is 

suppressed by Dpp. Pent, Sog, and Cv-2 encode extracellular proteins that bind Dpp and 

negatively affect spread and signaling (Raftery and Umulis, 2012) (Fig. 6A). Ectopic Dpp 

signaling suppresses brk, Pent and Sog and upregulates Cv-2 expression (Raftery and Umulis, 

2012; Yu et al., 1996). qPCR analysis detected no changes to expression of brk, Pent, Sog, or 

Cv-2 in genotypes with 2 or 4 dpp genes (Fig. 6B). Notum expression is induced by Wg signaling 

and encodes an extracellular deacylase of Wg that inhibits Wg signaling (Minami et al., 1999), 

but its expression is not influenced by changes to Wg gene number (Fig. 6B). In sum, these data 

do not support the idea that expression of known modulators of the Hh, Dpp, and Wg pathways 

compensate for changes in amounts of morphogen production and are consistent with the idea 

that release is regulated. 

 

Hh gradients form independently in the wing disc, ASP, and myoblasts 

 

To characterize how signaling proteins are apportioned among the cells they target, we analyzed 

Hh signaling in a uniquely positioned group of Hh-responding cells near the Hh-producing cells 

of the wing disc notum primordium. Cells in this region include cells of the wing disc anterior 

compartment, the ASP and myoblasts, and because of the close proximity of these cells to Hh-

producing cells in the disc, and because no other Hh-producing cells are as close, we presume 

that the Hh they receive originates from this one source (Hatori, R. and Kornberg, 2020). We 

designated an area 150 µm x 150 µm that includes all the Hh-responding cells in the notum, 

ASP, and myoblasts, as a Hh “microenvironment” (Fig. 7A-C). We monitored Hh signaling in 

this region by Ptc expression and determined that  

 

We investigated the behavior of Hh that the three cell populations in this microenvironment 

share, testing if signaling in one tissue is influenced by the amount of Hh the others take up. The 
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experiment distinguishes whether regulated Hh export creates a common pool of signaling 

protein that is shared among target cells, or if export is independently directed to target cells. If 

uptake is from a common pool, reducing the number of target cells is expected to increase uptake 

and signaling in the target cells that remain. Experimental addition of pools of extracellular and 

diffusible morphogens show that target cells are capable of responding to increases in 

morphogen available for uptake. Examples include both overexpression of a nonlipidated form 

of Hh (HhN) in the wing disc and addition of FGF-soaked beads in the chick limb bud increases 

signaling in the target cells (Callejo et al., 2006; Cohn et al., 1995). 

 

We ablated the ASP and myoblasts genetically, and monitored Ptc expression as a readout of Hh 

signaling in the remaining tissues. The ASP does not develop when tracheal cells overexpress 

BtlDN (Du et al., 2018; Sato and Kornberg, 2002), a dominant negative mutant FGFR protein 

(Reichman-Fried and Shilo, 1995), but the presence of BtlDN in the tracheal cells has no apparent 

effect on the growth and morphogenesis of the disc or myoblasts (Fig. 7Supp A,B,E). In the 

absence of an ASP and therefore of the Hh target cells in the ASP, the amounts of Ptc in the disc 

and myoblasts were indistinguishable from controls (Fig. 7E-G, Fig. 7Supp G). We also ablated 

the ASP by ectopically over-expressing Cut, a transcription factor that negatively regulates FGF 

signaling (Du et al., 2018; Pitsouli and Perrimon, 2013). Ablation of the ASP by Cut expression 

similarly has no effect on the growth of the disc or myoblasts (Fig. 7Supp A,B), and it does not 

alter amounts of Ptc in the disc or myoblasts (Fig. 7H, Fig 7Supp G). To ablate myoblasts, we 

ectopically expressed moleskin (msk) RNAi. Msk is a nuclear importer of the FGF transcriptional 

activator ERK (Vishal et al., 2017). mskRNAi expression in the myoblasts reduced the number of 

myoblasts (Fig. 7D,I-K, Fig 7Supp D), and decreased the size of the ASP. This ASP phenotype 

is consistent with our previous findings that ASP growth and morphogenesis is dependent on 

Notch signaling from the myoblasts (Huang and Kornberg, 2015). Whereas the total amount of 

Ptc in the reduced population of myoblasts decreased under conditions of msk expression, disc 

growth and morphogenesis were unchanged, and Ptc expression in the disc was indistinguishable 

from controls (Fig. 7K, Fig. 7Supp F).  

 

These results show that in the disc and myoblasts, Hh signaling is not dependent on Hh uptake 

by the ASP, and despite the fact that the number of Hh-responding myoblasts in the 
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microenvironment was 20% greater than the number of Hh-responding disc cells at the stage 

these experiments were conducted, Hh signaling in the disc was not dependent on Hh uptake by 

myoblasts. We conclude that the number of Hh target cells in the ASP and myoblasts does not 

change the delivery of Hh to wing disc cells, and therefore that the spatial patterns of Hh 

signaling and Hh transport in the disc form independently of the presence or absence of other 

target cells. 

 

 

Discussion 

 

This work shows that delivery of morphogen signaling proteins to target cells is controlled 

independently of both production amounts and target field size. In other systems, protein 

secretion has been characterized as either constitutive such that synthesis and discharge are 

concurrent and linked, or regulated such that synthesized proteins are made and stored until a 

stimulus instigates expulsion (Kelly, 1985). Antibody-producing lymphocytes are examples of 

constitutive secretory cells (Holodick et al., 2010). Examples of cells that regulate secretion 

include endocrine pancreatic cells that secrete hormones into the circulatory system and neurons 

that pass signals to target cells at synapses. The findings described here demonstrate that the 

distribution of Hh, Dpp, and Wg to target tissues has key attributes of regulated, targeted 

secretion.  

 

Our previous work identified and highlighted many features of cytoneme-mediated signaling that 

are analogous to neuronal signaling. These include signal exchange at synapses that connect cells 

at distances of <40 nm (Roy et al., 2014), synaptic localization of proteins such as the Voltage-

gated calcium channel and Synaptotagmin, essential roles for the glutamate receptor and 

glutamate transporter, and trans-synaptic stimulation of calcium transients (Huang et al., 2019). 

Cytoneme synapses are glutamatergic and calcium-dependent release of glutamate is essential 

for signaling by target cells. We consider the new properties of cytoneme-mediated Hh, Dpp, and 

Wg signaling that this work discovered in the context of this neuronal model. Single neurons 

produce and are sources of particular neurotransmitters. Neuronal signaling is spatially specific 

because neurotransmitters transfer to target cells at synapses that directly link neurons to pre-
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selected targets. And neuronal signaling is quantitatively precise because neurotransmitter 

release is controlled by regulated voltage-dependent discharge and programmed elimination after 

secretion. The distribution of neurotransmitter between signaling cells is asymmetric: most 

neurotransmitter is present inside neurons and is localized to presynaptic terminals poised for 

release. For example, the concentration of the neurotransmitter glutamate in vertebrate brain 

neurosecretory vesicles is 100-300 mM, but the fraction released in response to an action 

potential is small and extracellular concentrations are nanomolar (Burger et al., 1989; Chiu and 

Jahr, 2017; Riveros et al., 1986).  

 

Our findings indicate that signaling proteins are also not released in amounts that are 

proportional to production. In the wing disc, Hh and Wg are made in greater quantities than are 

present in the cells they target (~20x and 5x, respectively), the amounts of Hh, Dpp and Wg in 

target cells are insensitive to changes in the amounts of signaling protein that are generated by 

producing cells. We interpret this finding to indicate that these signaling proteins are not released 

constitutively, and from the perspective of the neuronal model, that their release is likely gated. 

Morphogen signaling protein production is cell-type specific, although it is generally spatially 

confined to contiguous groups of cells (“signaling centers”) that collectively express a signaling 

protein under temporal control. Signaling proteins distribute to nearby target cells as 

concentration gradients that decline with increasing distance from signaling center source cells. 

Although the capacity of cells to take up and respond to signaling protein is uniform over the 

target field in which the gradient forms, feedback regulation may influence the shape of a 

gradient. Hh signaling, for example, enhances expression of Ptc, a receptor protein that binds and 

sequesters Hh, and by reducing its spread, Ptc shapes the contour and extent of the Hh gradient. 

Importantly, we found that Ptc expression and the Hh gradient are insensitive to changes to the 

amount of Hh production (Fig. 1D,E). This implicates release as the step that controls the amount 

of Hh that distributes to target fields. 

 

We consider several possible steps in the producing cell that might be regulated and rate-

limiting. Post-translational modifications of Hh, Wg, and Dpp include proteolysis and lipidation, 

and are possibilities (Farzan et al., 2008; Künnapuu et al., 2009; Parchure et al., 2018). In 

addition, Hh and Wg traffic intracellularly between the apical and basolateral compartments and 
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are sequestered in intracellular vesicles prior to release (Callejo et al., 2011; Gradilla et al., 2018; 

Yamazaki et al., 2016). Any of these and other steps that prepare signaling proteins for 

engagement with their respective receptors on a target cell might in principle be rate-limiting. 

Such mechanisms place the gating of delivery at a step at or prior to release, but do not 

distinguish if release is constitutive but rate-limited, or controlled. The context of release – 

whether it is at a site of a synaptic cell-cell contact or into extracellular fluid – is relevant to this 

question. The setting of Hh signaling in the wing disc that involves producing cells in the disc 

and recipient signaling cells in the ASP, myoblasts, and disc (Fig. 7) provided a way to answer it. 

 

In the late third instar, the ASP extends posteriorly across the disc basal surface, from the far 

anterior to the A/P compartment border in the region just dorsal to the wing blade primordium. 

Myoblasts cover most of the disc A compartment in this region and extend over a portion of the 

P compartment as well. The myoblasts adhere to the disc and the ASP cells are juxtaposed 

directly to the disc in some places and in others are juxtaposed to myoblasts that adhere to the 

disc. All ASP, myoblast, and disc cells that are within approximately 62 µm of the Hh-

expressing, P compartment disc cells activate Hh signaling (Hatori, R. and Kornberg, 2020). 

Thus, despite the differences in cell cycle, shape, constitution, and fate between the cells in this 

microenvironment, the primary determinant of Hh signaling is distance from source cells. If Hh 

were released into the extracellular space within this microenvironment and if the ASP, myoblast 

and disc cells in this microenvironment shared available Hh, we would expect that the distance 

over which Hh spreads as well as the extent of Hh signaling would depend on the number of 

recipient ASP, myoblast, and disc cells. It does not. Genetic ablation conditions that eliminate 

the myoblasts and reduce the number of cells in the target field by more than one-half does not 

increase the area in which disc cells activate Hh signaling (Fig. 7I-K). This indicates that the 

amount of Hh available to remaining cells does not increase, that Hh release is not rate-limiting, 

and that Hh is not released to a common pool that supplies Hh to cells in the microenvironment. 

Hh uptake in the microenvironment is determined by distance and not by production amounts or 

cell type. 

 

If morphogen release is controlled and not constitutive, if release is not dependent on the number 

of target cells, if cells in the target field are equally capable of uptake and signaling, and if 
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uptake is not from a common pool, how do spatial concentration gradients form? Contact-

dependent, cytoneme-mediated spread is a likely mechanism because recipient cells that are 

closer to source cells make more cytoneme contacts (Du et al., 2018). Short cytonemes that 

connect nearby cells are more frequent than are long cytonemes that connect more distant cells, 

the consequence being that the number of synaptic contacts decreases with increasing distance. 

For FGF signaling in the ASP, positive feedback that increases the number of cytonemes of 

signaling cells and negative feedback that decreases the number of cytonemes in cells that do not 

signal may contribute to a spatial gradient of cytoneme number (Du et al., 2018). We suggest 

that similar feedback systems may sculpt the cytoneme gradients that disperse Hh and Dpp. 
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Figure Legends 

 

Figure 1. Signal transduction is constant in conditions that vary amounts of Hh production  

(A) Schematic of the wing disc and ASP indicating anterior (A) and posterior (P) compartments 

and showing domains of expression for Hh (blue), Dpp (green), and Wg (magenta). Rectangles 

(dashed lines, 40 µm x 20 µm) indicate regions that were imaged at high magnification in (D) 

and in Fig. 2 (A,D). (B) Bar graph showing the number of hh genes in genotypes with different 

combinations of WT hh and hh BAC transgenes; gray and green bars represent genes encoding 

Hh and Hh:GFP, respectively. (C) Bar graph showing the amount of Hh RNA (blue) in wing 

discs and Hh protein (red) in wing disc posterior compartments, measured by qPCR and a-Hh 

antibody staining, respectively, with indicated genotypes and with the number of hh genes 

indicated by numbers in the bars; values normalized to the amount of hh RNA and Hh protein in 

genotype with 1 copy of WT hh (0,+). (D) α-Ptc antibody staining in region indicated in (A) by 

rectangle in A compartment for indicated genotypes. Scale bar, 20μ. (E) Bar graph showing 

width of the antibody stained Ptc domain in (D). No statistically significant differences (P 

values>0.05), n = 6-8 for each genotype. (F) Adult wings for indicated genotypes. Scale bar: 

100µm. (G) Bar graph showing the measured distance (magenta lines) between 3-4 intervein for 

adult wings for indicated genotypes. No statistically significant differences (P values>0.05), n = 

12-18 for each genotype. (H) Wing discs for each indicated genotype. Error bars in (D,G) 

indicate Standard Deviation (SD) Scale bar: 100µm. Genotypes: Black letters denote untagged 

Hh and green letters denote Hh:GFP; HS- 40k Hh BAC; HL- 100k Hh BAC; +- WT hh gene; 0- 

absence of hh gene. 0,+ (hhAC/+); HS,0 (Hh:GFP 40k BAC ; hhAC/hhAC); 0,+,+ (+ / +); HS,+ (Hh:GFP 

40k BAC ; hhAC/+); 0,HS,+,+ (Hh 40k BAC ; +/+); HL,+,+ (Hh 100k BAC ; +/+); HS,+,+ (Hh:GFP 

40k BAC ; +/+); 0,HS,HL,+,+ (Hh 40k BAC / Hh 100k BAC +/+). 

 

Figure 2. Hh delivery is constant in conditions that vary amounts of Hh production  (A) α-

Hh antibody staining in regions indicated in Fig. 1A for indicated genotypes. (B) Bar graph 

showing the intensity of α-Hh antibody staining in A and P compartments of wing blades for 

indicated genotypes. No statistically significant differences for A compartment (P values>0.05); 

for P compartment, staining was statistically different for genotypes with different numbers of hh 

genes (1, 2, 3, or 4; student’s t-test, P<0.05), but not between equivalent numbers (3 and 3; 
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P>0.05), n = 5-7 discs for each genotype. (C) Schematic portraying the predicted differences 

between constitutive release and regulated release for different genotypes, Hh and Hh:GFP 

indicated by gray and green dots, respectively. (D) Images of α-GFP antibody staining in regions 

indicated in Fig. 1A for indicated genotypes. (E) Bar graphs showing α-GFP antibody staining 

for indicated genotypes. **- P value<0.005, n.s.-P value>0.05; n = 4-6 for each genotype. 

Abbreviations as in Fig. 1. Scale bars: 20 µm. 

 

Figure 3. Dpp delivery and signal transduction are constant in conditions that vary 

amounts of Dpp production  (A-A”’) Adult wings for indicated genotypes. Scale bar: 100μm. 

((B) Bar graph showing size of adult wings for genotypes in (A-A”’); error bars indicate SD, N 

indicates number of wings analyzed; no statistically significant differences indicated by student’s 

t-test (P values>0.05). (C) Wing discs with two (WT) and four dpp genes: WT (+/+); four 

(BD/BD ; +/+) stained with α-Dpp prodomain (α-DppPD) antibody; scale bar: 100μm. (D) Bar 

graph quantifying α-DppPD antibody staining for wing discs with indicated genotypes, n = 7 (2 

genes) and 8 (4 genes). Difference is statistically significant (student’s t-test P value<0.005). (E) 

Images of wing discs with indicated genotypes stained with α-pMAD antibody; yellow line 

marks the width of pMAD band; scale bar: 50μm. (F) Bar graph quantifying α-pMAD antibody 

staining for wing discs with indicated genotypes; n = 7 (two genes) and 3 (four genes). No 

statistically significant differences indicated by student’s t-test (P values>0.05) (G) Wing blades 

with (upper panel) one untagged Dpp (+) and one Dpp:Cherry encoding gene, or (lower panel) 

three untagged Dpp and one Dpp:Cherry encoding gene stained with α-Cherry antibody; scale 

bar: 50μm. (H) High magnification image of boxed regions in (J); scale bar: 25μm. (I) Bar graph 

quantifying α-Cherry antibody staining in sending and receiving regions for indicated genotypes; 

error bars indicate SD, no statistically significant differences indicated by student’s t-test 

(P>0.05); n = 7 for each genotype. (M) Same as (J) for receiving cells. Difference is statistically 

significant (P<0.05). Abbreviations: BD (Dpp-encoding BAC transgene), Dpp:Cherry 

(Dpp:Cherry knock-in allele). 

 

Figure 4. Wg signal transduction is constant in conditions that vary amounts of Wg 

production  (A-A’) Wing blades for indicated genotypes stained with α-Wg antibody (cyan) and 

phalloidin (grey); one gene (wg-/+), two genes (+/+), over-expression (wgGal4>UAS-wg ; +/+). 
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Scale bar: 100μm.  (A’) higher magnification images of boxed regions (30 µm x 90 µm) in (A), 

dashed white lines mark boundary between producing and receiving cells. Scale bar: 10μm. (A’’) 

Optical section of region similar to (A’) stained with α-Wg (cyan) and α-Sens antibodies 

(magenta). (B) Bar graphs quantifying α-Wg staining for indicated genotypes; n = 5-6 for each 

genotype. Values are normalized to the intensity of α-Wg staining for wgRF/wg+ (1 copy of wg 

gene). # gene equivalents indicate approximate Wg production functionality for each genotype. 

Difference in the producing cells are statistically significant (student’s t-test P value <0.005), 

while difference in the receiving cells are not (student’s t-test P value >0.05). (B’) Bar graph 

quantifying fraction of Wg in the receiving cell as % of total wing blade α-Wg antibody intensity 

in receiving cell. Statistical significance indicated by P<0.0005. (C) Wing blades with two WT 

genes or Wg over-expression (wgGal4>UAS-Wg:GFP ; +/+) stained with α-Sens antibody. 

Scale bar: 100μm. (C’) Bar graph quantifies width of α-Sens antibody stained band in maximum 

intensity projections of optical sections for entire apical-basal depth; ten length measures were 

taken for each disc; no statistically significant differences (P>0.05); n = 4 for each genotype. 

Genotypes: wg-/+ (wgRF/+); +/+ (WT); wg-Gal4>wg (wg-Gal4; UAS-Wg:GFP / +/+). 

 

Figure 5. Neither signal transduction nor cytoneme number scales with Hh production in 

the ASP  (A)  Schematic showing En expression (green) in WT ASP (left), ASP with no stalk 

and high levels of Hh signal transduction (top right), or ASP with elongated stalk and low levels 

of Hh signal transduction (bottom right). (B) α-En staining (green) of ASPs (bulb within white 

dashed line) for indicated genotypes (number of hh genes indicated in upper left). (C) Bar graph 

quantifying the distance of α-En antibody staining from the tip of the ASP toward the stalk for 

indicated genotypes (numbers of genes indicated in bars); no statistically significant differences 

indicated by P>0.05); n = 5-7 for each genotype. (D) Cytonemes marked by the expression of 

Cherry:CAAX (btl-lexA>lexO-Cherry:CAAX) in the ASP for indicated genotypes (number of 

genes indicated in upper left). (E) Number of cytonemes for indicated genotypes (number of 

genes indicated in bars). Statistically significant differences indicated by P >0.05; n = 5 for each 

genotype. Abbreviations as in Fig. 1.  

 

Figure 6. Expression of morphogen signaling modulators is not affected by varying 

amounts of morphogen production (A) Schematic showing where morphogen signaling 
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modulators are predicted to function in the context of cytoneme-mediated exchange. Shf, an 

extracellular factor that facilitates Hh dispersion; Pent, Sog, and Cv-2, extracellular inhibitors of 

Dpp signaling; Brk, a transcriptional repressor of Dpp signal transduction; Notum, an 

extracellular inhibitor of Wg signaling. (B) Bar graph showing the levels of morphogen signaling 

modulator mRNA as determined by qPCR. Bars represent ratio between change in mRNA levels 

relative to predicted RNA increase that scales with gene copy. 

 

Figure 7. Hh distributions in the ASP, myoblast, and the notum primordium are not inter-

dependent  (A) Schematic showing the microenvironment (white dashed line) in the notum 

primordium with myoblasts (green), ASP (blue), Hh expressing notum cells (turquois), and 

notum anterior compartment (red). (B) Schematic showing cross-section of the 

microenvironment at the yellow line in (A). (C) Confocal image of the cross section shown in 

(B); myoblasts (green), phalloidin staining (blue), α-Ptc staining (red). Scale bar: 50μm. (D) Pie 

graphs showing the percentage of microenvironment that expresses Ptc in the notum, myoblasts, 

and ASP under normal conditions and in conditions of ASP and myoblast ablation. (E) α-Ptc 

staining (red) of the microenvironment for control genotype (WT, ASP marked by CD8:GFP 

(green) driven by btl-Gal4; outlined by red dashed line in middle panel) and ASP ablation 

genotype (btl-Gal4>BtlDN ); white dashed lines surround myoblasts, blue dashed lines indicate the 

notum primordium, yellow dashed lines mark the compartment boundary, blue arrows mark the 

extent of myoblast Ptc expression, green arrows mark extent of notum Ptc expression. Left 

column: ASP, myoblast section in (B), α-Ptc staining (red) and GFP (green); middle column: α-

Ptc staining in the ASP, myoblast section indicated in (B); right column: α-Ptc staining in the 

notum section indicated in (B). Scale bar: 50μm. (F) Wing discs stained with α-Ptc antibody 

(red) and phalloidin (blue) for control genotype (WT) and ASP ablation genotype (btl-Gal4>BtlDN 

); trachea and ASP marked by CD8:GFP (green) driven by btl-Gal4. Scale bar: 100μm. (G) Bar 

graphs quantifying total area and Ptc-expressing areas of myoblasts, ASP, notum (total) in 

control (WT) and ASP-ablation genotype (btl-Gal4>BtlDN); n = 5 and 4 (control and ASP 

ablation, respectively). Dashed lines indicate predicted changes in Ptc expressing area under 

extracellular pool model of dispersion or directed release model of dispersion. (H) Similar to (G) 

but with the ASP depleted by the expression of Cut in the ASP (btl-Gal4>cut); n = 5 and 4 

(control and ASP ablation, respectively). (I) Similar to (E) but with myoblast ablation; myoblasts 
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marked CD8:GFP (green), ablated by knockdown of msk (1151-Gal4>mskRNAi). Orange arrows 

mark extent of Ptc expression in the ASP. Scale bar: 50μm. (J) Similar to (F) but with myoblast 

ablation. (K) Similar to (G) and (H), but with myoblast ablation; n = 5 for each genotype. 

Genotypes: (C) 1151-Gal4/+ ; UAS-CD8:GFP/+; (E-G) control (btl-Gal4 UAS-CD8:GFP/+); 

btl>BtlDN  (btl-Gal4 UAS-CD8:GFP/UAS-BtlDN ); (H) btl>Cut  (btl-Gal4 UAS-CD8:GFP/UAS-Cut; 

Gal80ts/+); (I-K) control (1151-Gal4/+ ; UAS-CD8:GFP/+; 1151>mskRNAi (1151-Gal4/+ ; 

UAS-CD8:GFP/UAS-mskRNAi). 
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Materials and Methods 

 

Fly Genetics  

Mutant lines: hhac  (Lee et al., 1992), dppH46 (Irish and Gelbart, 1987),  wgRF (Pérez-Garijo et al., 

2009) 

 

Transgenic lines: 40k Hh BAC (Chen et al., 2017), 40k Hh:GFP BAC (Chen et al., 2017), 100k 

Hh BAC (Chen et al., 2017), Dpp BAC (this study), Dpp:Cherry crispr (Fereres et al., 2019),  

wg-gal4 (Giráldez et al., 2002), 1151-gal4 (Roy and VijayRaghavan, 1997), UAS-Wg:GFP 

(Pfeiffer et al., 2002), UAS-mcd8:GFP (Roy et al., 2011), btl-LHG (Roy et al., 2014), lexO-

cherry:CAAX (K. Basler), UAS-Cut, UAS-btlDN  (Reichman-Fried and Shilo, 1995), UAS-mskRNAi 

(Bloomington #27572) 

 

Dpp BAC: BAC clone CH321-23O18 (CHORI) was inserted into cytological location 65B2 

(Venken et al., 2009).  

 

Flies were cultured in standard cornmeal and agar medium at 25°C and all crosses were done at 

25°C, except expression of Cut. To express Cut in the ASP, btl-Gal4/UAS-Cut; Gal80ts/+ was 

incubated at 18°C until early L3 and transferred to 29°C until late L3.  

 

qPCR analysis of hh gene expression 

Wing discs were dissected in PBS, RNA was extracted using RNeasy micro kit (Qiagen), and 

cDNA was synthesized using the High Capacity RNA-to-cDNA Kit (Applied Biosystems). 

qPCR was performed with SensiFast Sybr green (BIOLINE). For each genotype, 3-4 replicates 

of 5 wing discs were analyzed. Actin was the internal control and fold differences in relative 

mRNA levels between genotypes were calculated as 2-ΔΔCt. 

 

Immunohistochemistry, fluorescent imaging, and image analysis 

Wing discs together with Tr2 trachea were dissected in PBS, fixed in 4% formaldehyde in PBS, 

and after washing in PBS-TritonX-100 (0.3%), samples were blocked in Roche Blocking 

Solution. Antibodies: mouse α-GFP (Roche), rabbit α-RFP (Rockland), mouse α-Ptc (DSHB, 
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Apa1), mouse α-En (DSHB, 4D9), Rabbit α-Hh (from P. Ingham), α-pMAD (Abcam), α-Wg 

(DSHB), α-Sense (H. Bellen), α-Dpp prodomain (M.C. Gibson), Alexa633 conjugated-

Phalloidin (Invitrogen), secondary antibodies (Invitrogen). Samples were mounted in 

Vectashield (Vector labs).  

 

To observe cytonemes, unfixed preparations were observed using the hanging drop method 

(Huang and Kornberg, 2016). Images were acquired using the FV3000 Olympus Confocal 

microscope with GaAsP PMT detectors. Images were analyzed and processed with ImageJ and 

Photoshop. The domains of α-Ptc, α-Sense, α-En, and α-pMAD staining were measured in 

ImageJ from single optical sections at the basolateral part of the wing disc.  

 

Statistics: In all figures, error bars indicate standard deviation (SD) and statistical significance 

was calculated by student’s t-test. 

 

Areas of Ptc expression  

For Figure 6 (G,H,K), the dotted lines for the predicted extracellular pool was calculated 

assuming that total area of Ptc expression is constant and increase in remaining tissues 

compensates for the absence of ablated tissue. The ratio for directed release was set at 1.00 based 

on the assumption that Ptc expressing area for the remaining tissues would not change under 

conditions of tissue ablation. 

 

ASP ablation: Calculated ratio of depleted/control for extracellular pool = 1.00/(% of Ptc 

expressing area in notum (0.39) + myoblast (0.47) before ablation) = 1.16 

Myoblast ablation:  Calculated ratio of depleted/control for extracellular pool = 1.00/(% of Ptc 

expressing area in notum (0.39) + ASP (0.14)) = 1.89 

 

Intensity measurements of proteins 

Average intensity quantification for projections of α-Hh, α-GFP, α-Cherry, and α-Wg staining 

was calculated for segments of optical sections spanning 9 µm from the most apical side of the 

wing pouch cells. This segment was were chosen because the basal sides of the wing discs is 

folded, making accurate comparisons between samples problematic. Background measurements 
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taken in equivalent areas distant from staining regions and were subtracted. Intensities in the 

Wg-producing and adjacent receiving cells were measured in the indicated 30 µm x 90 µm area, 

with the producing area defined by a 30 µm x 10 µm rectangle and the receiving area defined by 

two 30 µm x 40 µm rectangles.  

 

Quantification of cytoneme density 

Maximum intensity projection image of the whole volume of the ASP was used to count the 

number of cytonemes in the bulb. To calculate the density of cytoneme per µm, the number of 

cytonemes was divided by the perimeter of the bulb of the ASP. 
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