
1 

Title: 
Intrinsic brain activity gradients dynamically coordinate functional 
connectivity states 
 
Authors 
Jesse A. Brown1, Alex J. Lee1, Lorenzo Pasquini1, William W. Seeley1 
 
Affiliations 
1University of California, San Francisco, Memory and Aging Center, 
Department of Neurology, San Francisco, CA, USA. 
 
Corresponding Author 
Jesse A. Brown, Ph.D. 
Assistant Professor 
Department of Neurology 
University of California San Francisco 
675 Nelson Rising Lane 
San Francisco, CA 94158 
jesse.brown@ucsf.edu 
 
 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248112doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248112


2 

Abstract 
Brain areas are organized into functionally connected networks though 
the mechanism underlying this widespread coordination remains unclear. 
Here we apply deep learning-based dimensionality reduction to task-
free functional magnetic resonance images to discover the principal 
latent dimensions of human brain functional activity. We find that 
each dimension corresponds to a distinct and stable spatial activity 
gradient. Brain areas are distributed non-uniformly along each 
gradient, reflecting modular boundaries and hub properties. Gradients 
appear to dynamically steepen or flatten to produce task-specific 
activation patterns. Dynamical systems modelling reveals that 
gradients can interact via state-specific coupling parameters, 
allowing accurate forecasts and simulations of brain activity during 
different tasks. Together, these findings indicate that a small set of 
overlapping global activity gradients determine the repertoire of 
possible functional connectivity states. 
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Introduction  
 

Functional connectivity is defined as synchronous activity within 
two or more brain regions over time. Functional connectivity patterns 
as revealed by functional MRI (fMRI) are reliable within and across 
individuals (Damoiseaux et al., 2006) and have advanced our 
understanding of the brain’s functional neuroanatomy in both health 
(Power et al., 2011; Yeo et al., 2011) and disease (Seeley et al., 
2009). While the mechanism supporting functional connectivity remains 
unclear, the range of observed functional connectivity states appears 
diverse but bounded, both within individuals over short timescales 
(Allen et al., 2014; Bassett et al., 2011; Calhoun et al., 2014; Lurie 
et al., 2020; Vidaurre et al., 2017) and across individuals (Gratton 
et al., 2018). This constrained flexibility suggests that a “low-
dimensional” set of factors may give rise to functional connectivity 
(Glomb et al., 2019; MacDowell and Buschman, 2020; Saggar et al., 
2018; Shine et al., 2019). The neuroanatomical basis of these 
dimensions appear to be gradients – continuous, overlapping systems 
which reflect the predominant organization of brain regions into 
functionally connected networks (Haak et al., 2018; Margulies et al., 
2016) and for which the structural underpinnings are becoming clearer 
(Burt et al., 2018; Paquola et al., 2019; Wang, 2020). A critical next 
step for validating the fundamental role of gradients in brain 
function is to demonstrate that individual gradients and their dynamic 
interactions can collectively explain key phenomena in functional 
connectomics. These include the presence of a brain-wide global signal 
(Fox et al., 2009), anti-correlation between large-scale networks (Fox 
et al., 2005), the presence of discrete functional modules and hubs 
regions (Sporns and Betzel, 2016; van den Heuvel and Sporns, 2013), 
correspondence with spatial patterns of gene expression (Richiardi et 
al., 2015), dynamic configuration into task-specific brain activity 
states (Barch et al., 2013; Cole et al., 2014), and stable functional 
connectivity patterns in individuals over time (Finn et al., 2015). 
 
Low-dimensional brain activity latent space 

We approached the study of gradient dynamics in task-free and 
task-engaged fMRI scans using deep neural networks, a powerful tool 
for dimensionality reduction (Hinton and Salakhutdinov, 2006) and the 
representation of spatial features (Zeiler and Fergus, 2013). We 
defined a latent space of functional brain activity where each 
dimension represents an independent spatial activity gradient and 
where the full space collectively represents the range of possible 
brain activity states. The latent space was learned from 119,500 task-
free fMRI images, collected from a group of 100 healthy young control 
subjects in the Human Connectome Project (HCP; see Methods), using a 
3D convolutional autoencoder and subsequent principal component 
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analysis (Figure 1A). By projecting each individual’s scan into this 
low-dimensional space, we obtained latent trajectories of brain 
activity. To derive the spatial activity gradients associated with 
each latent dimension, we regressed each voxel’s BOLD activity against 
that latent dimension timeseries, inferring a voxel’s positive or 
negative weight (i.e. beta) on that dimension. A voxel’s BOLD signal 
could be reconstructed by multiplying the voxel’s weight on a gradient 
by the gradient’s current slope and summing across all gradients (see 
Figure 1C and Methods). When reconstructing each brain region’s 
timeseries, the first 3 dimensions explained 44.9% of BOLD variance 
across 273 cortical, subcortical, and cerebellar regions, while 9 
dimensions explained 57.9% (Figure S1 and Supplementary Results). This 
indicates that a low-dimensional latent space was able to explain a 
substantial proportion of the variation in BOLD activity, and 
therefore most subsequent analysis focused on these 9 dimensions. 
 

 
Figure 1. Latent space derivation, gradient maps, and temporal 
interpretation. 
A. The workflow for deriving individual latent trajectories and 
spatial activity gradient maps from task-free fMRI images. B. Activity 
gradient maps for the first 9 latent space dimensions. The sign of 
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each dimension is arbitrary. C. Illustration of relationship between 
latent space trajectories and regional BOLD activity. Across three 
successive timepoints, latent space positions on each dimension 
reflect the current slopes of the corresponding gradients. The 
resultant BOLD signal in each region depends on the region’s weight on 
each gradient, shown here for the anterior cingulate cortex (yellow), 
premotor cortex (cyan), and precuneus (orange). 
 
 

Each latent dimension was associated with a different but 
overlapping spatial gradient of brain activity. The spatial gradient 
weights for the first dimension were positive across 99.6% of the gray 
matter (Figure 1B, Gradient 1; the sign of each dimension is 
arbitrary), albeit with a topographically varied intensity that was 
highest in the primary sensory, visual, and auditory cortices. The 
gradient slope timeseries associated with this dimension had a near-
perfect correlation with the global gray matter signal (r=0.98), a 
major influence on the estimated strength of functional connectivity 
(Fox et al., 2009). This was the only “unipolar” gradient, as no other 
gradient was more than 70% skewed towards positive- or negative-
predominant weights. The spatial gradient for dimension 2 represented 
a sensory-to-cognitive axis (Figure 1B). The most positive weights 
were in areas of the default network (Greicius et al., 2003) and 
executive control network (Seeley et al., 2007) (see Figure S4 for 
correspondence with 7 canonical networks (Yeo et al., 2011)), while 
the strongest negative weights were in somatomotor, visual, and 
ventral attention networks. The positioning of regions on the positive 
or negative side of a gradient signifies that these regions’ gradient-
specific activity will either be correlated or anti-correlated with 
each other (Figure 1C). This gradient had a strong correspondence with 
the putative primary functional connectivity gradient (Margulies et 
al., 2016) (r=0.82; see also Supplementary Results), reflecting a 
functional spectrum from perception and action to more abstract 
cognitive function. Dimension 3 resembled a task-positive 
(frontoparietal) to task-negative (default) gradient (Figure 1B and 
Figure S4). The subsequent dimensions included strongly lateralized 
activity gradients (Gradients 8 and 9), oppositions between specific 
sensory modalities like the visual and somatomotor networks (Gradients 
4 and 5), and differential involvement of sub-components of larger 
super-systems like the default network (Gradients 2, 3, and 7) 
(Andrews-Hanna et al., 2010). Critically, gradients were highly 
reproducible in an independent validation dataset with the first 12 
dimensions appearing in the nearly the same sequence (all spatial 
correlation coefficients > r=0.5; Table S1 and Figure S4/Figure S5). 
The consistency of the spatial gradient patterns across individuals 
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suggests that they may reflect a fundamental anatomical property of 
brain functional organization. 
 
 
Basis for functional modularity and hubness 

Building on the finding that gradients appear to be spatially 
consistent systems across individuals, we next characterized how the 
cumulative activity of each gradient at each timepoint can give rise 
to observed patterns of functional connectivity. As a demonstration of 
how to reach maximal activation of a region or co-variation of two 
regions based on gradient slopes, we conducted a whole-brain analysis 
using gradients 2 and 3 and then focused on two regions of interest, 
the anterior cingulate cortex (ACC) and middle frontal gyrus (MFG). 
For every region, we determined which latent space trajectory 
direction was optimal for most rapidly maximizing that region’s BOLD 
activation relative to all other regions (Figure 2A). The ACC’s 
activity was maximized when the slope of gradient 3 was more negative, 
reflected by the downward pointing arrows in Figure 2A (top). By 
contrast, the MFG’s activity was maximized primarily by driving a more 
positive slope for gradient 2, reflected by the downward pointing 
arrows in Figure 2A (bottom). We next identified which latent 
trajectory angle maximized co-variation (i.e. functional connectivity) 
between the ACC and MFG. The optimal angle was from the top-left to 
bottom-right of this two-dimensional latent space, bisecting the 
trajectory angles that maximized activity in either the ACC or MFG. We 
confirmed that the individual subjects with maximal or minimal ACC-MFG 
functional connectivity during task-free fMRI had full scan-length 
latent trajectories that were most or least aligned with the optimal 
co-variation angle for this pair of regions (Figure 2B; see Methods 
and Supplementary Results for more detail). This demonstrates the 
value of rendering brain activity as a latent trajectory, providing a 
read out for levels of regional activity or functional connectivity 
for any timespan, from a single timepoint to a full scan. Importantly, 
individual subject scan-length latent trajectories (described by the 
gradient slope covariance matrix, see Methods) exhibited high 
reliability on consecutive days of scanning, consistent with the 
finding of identifiable individual functional connectivity 
“fingerprints” (Finn et al., 2015). 6 dimensions were required on 
average to correctly match a subject’s day 1 and day 2 scans, while 29 
dimensions were required to identify the correct fingerprint for all 
100/100 subjects (Supplementary Results and Figure S6). Thus, a low 
dimensional latent space captures sufficient information to 
distinguish individuals, suggesting that reliable differences in 
gradient engagement may be an individual trait. 
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Figure 2. Functional modularity and hubness reflect non-uniform region 
gradient weights. A. Latent trajectory directions that maximize BOLD 
activation for the ACC, MFG, or the covariation between them. B. 
Latent trajectories during task-free scans for subjects with the most 
negative (top) or most positive (bottom) ACC-MFG correlation. C. Left: 
group-average functional connectivity matrix, based on region 
timeseries reconstructed only from latent dimensions 2 and 3. The 8 
modules detected in this network are highlighted along the diagonal. 
Middle/Right: polar plots showing the angle of the optimal latent 
trajectory to maximize activation in each region, which canvas the 
full 360° of the two-dimensional latent space. Region colors are based 
on the modules they belong to, revealing that the bunching of regions 
with similar angles naturally reflects the modularity. Regions 
identified as the top connector hubs (middle) or provincial hubs 
(right) from the functional connectivity matrix have larger/smaller 
mean angles to their neighboring regions than do non-hubs. 
 
 

The existence of spatially continuous activity gradients may 
appear to be at odds with the presence of discrete modular brain 
networks, a major principle of brain functional organization (Sporns 
and Betzel, 2016). We therefore attempted to reconcile the gradient 
and modular perspectives by testing the hypothesis that gradient non-
uniformities would recapitulate modular boundaries. In the process of 
determining every region’s optimal trajectory angle in a two-
dimensional latent space for maximizing BOLD activation, we discovered 
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that the angles fully canvassed the 360° of the space (Figure 2C). 
Regions tended to cluster with their contralateral homologues and 
other regions in the same functional connectivity network, while 
regions that were diametrically opposed belonged to canonically anti-
correlated networks. Based on this observation, we expected that 
functional connectivity modules derived from the functional connectome 
would correspond well with different angular ranges in latent space. 
We found that region module membership from the functional connectome 
corresponding exactly to the sequence of regions as grouped by optimal 
activation angle (Figure 2C). Consequently, provincial hubs and 
connector hubs (van den Heuvel and Sporns, 2013) were found to have 
characteristic orientations. Provincial hubs had significantly smaller 
angles to their most strongly connected neighbors than non-hubs 
(provincial hubs: mean=2.8°±2.3°; non-hubs: mean=4.0°±3.7°; F=80.45, 
p=5.72x10-19; Figure S8), which in turn had smaller angles to their 
neighbors than connector hubs (connector hubs: mean=4.8°±3.9°; F=9.94, 
p=0.001). This relationship held true when considering a higher 
dimensional latent space with a larger number of gradients (see 
Supplemental Results). Thus, the presence of modularity and hub 
regions appears to be consistent with the non-uniform distribution of 
regions along gradients. This finding helps unify the observations of 
both discrete, bounded networks (Glasser et al., 2016) and a graded 
functional-structural continuum. 
 
 
Correspondence with spatial gene expression patterns 

The spatial gradients described here and elsewhere have a 
striking congruence with the morphogen gradients that guide regional 
differentiation and connectivity during brain development (O’Leary et 
al., 2007). This motivated a systematic assessment by comparing each 
activity gradient’s spatial similarity with genetic expression maps 
using the 15,655 genes across 196 cortical regions from the Allen 
Human Brain Atlas (Fan et al., 2016; Hawrylycz et al., 2012). Across 
the first 9 gradients, 4089 genes showed significant spatial 
correlations with at least one gradient in both the discovery and 
validation datasets, with correlation coefficients ranging between 
r=0.37-0.81 (surviving Bonferroni corrected threshold p < 3.55 x 10-7 
in both the discovery and validation datasets; all correlations in 
Supplementary Data 1). The most striking correspondences were with 
gradient 1, for which 3572 genes were significantly correlated and 
which explained up to 64% of the variance in regional gradient weight. 
A gene ontology enrichment analysis based on the full set of 
significantly correlated genes found associations including “ion gated 
channel activity”, “neuron projection”, “synapse”, and “anatomical 
structure development” (top-ranked terms in Table S2, all terms in 
Supplementary Data 2). The most significant positive relationships 
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between gene expression and gradient 1 were SEMA7A 
(discovery/validation mean r=0.78), SCN1B (r=0.76), LAG3 (r=0.76), 
ACAN (r=0.76), ASB13 (r=0.76), SV2C (r=0.76), ANK1 (r=0.76), and GPAT3 
(r=0.76), while the most negative relationships were KCNG1 (r=-0.81), 
ASCL2 (r=-0.78), ANKRD6 (r=-0.76), PRKCD (r=-0.75), and RSPH9 (r=-
0.75). There was a significant spatial correlation between gradient 1 
and the principal spatial component of gene expression (r=0.72), for 
which each of these individual genes was strongly loaded (all loading 
absolute Z scores > 2.8), revealing that the predominant sources of 
variability in BOLD activity and spatial gene expression are strongly 
linked. There were substantially fewer genes significantly correlated 
with the remaining gradients (Supplementary Results and Figure S9). 
Gradient 2 had 48 significantly correlated genes. Interestingly, 
gradient 3 had no significantly correlated genes (discovery minimum 
p=2.51 x 10-6, validation minimum p=9.06 x 10-11) despite explaining a 
substantial portion of BOLD variance, having a replicated spatial 
pattern in the validation dataset, and showing spatial correspondence 
to a previously described functional connectivity gradient 
(Supplementary Results). The lack of genetic correspondence for this 
gradient may be due to the stringent criterion for statistical 
significance or greater individual variability. Among the strongest of 
the other gene/gradient relationships were CARTPT on gradient 2 
(r=0.55) and CDH6, CDH13, and FABP6 on gradient 5 (r=0.60/0.58/0.60). 
Genes associated with activity gradients were recurrently linked to 
functional and structural processes likely to influence brain-wide 
activity patterns including anatomical morphogenesis, 
excitation/inhibition balance, and thalamocortical connectivity. 
 
 
Gradient-based task brain activity patterns 

We next evaluated the possibility that activity gradients 
detected during the task-free state are spatially stable, discrete 
systems that can dynamically adopt specific configurations to create 
task-specific brain activity states. We focused on four diverse 
cognitive tasks known to elicit distinct brain activity patterns – 
working memory (2-back vs. 0-back), motor movement (finger/toe/tongue 
movement vs. visual fixation), language comprehension (auditory story 
vs. math questions), and emotion processing (face emotion recognition 
vs. shape recognition). We projected HCP task fMRI data into the task-
free state-defined latent space and derived gradient slope timeseries 
for each condition in each task. In each task, we found selective 
gradient slope differences between conditions (abs(t) > 3.17, p < 
0.005) that combined to produce greater activation in areas consistent 
with previously reported task-activity patterns (Figure 3) (Barch et 
al., 2013). We verified the plausibility of the task-specific 
gradient-based activation patterns by measuring their spatial 
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correlation with conventional voxelwise GLM-based task activation 
maps. Gradient-based maps had strong correlation (r > 0.5) with the 
GLM-based maps when including between 3 to 10 gradients, rapidly 
increasing in correspondence before plateauing after ~20 gradients and 
reaching a maximum of r=0.76-0.91. The rapid increase and subsequent 
plateau of correlation suggests that the low-dimensional set of 
activity gradients enables diverse task-activation patterns. 
 

 
Figure 3. Specific gradient slopes produce task-specific activity 
patterns.  
A. Reconstructed BOLD activity differences between the active and 
baseline conditions in the working memory, motor, language, and 
emotion tasks, based on gradient slope differences of the first 9 
latent dimensions. B. Gradient slope differences between the 
contrasting task conditions, where the line slope represents the 
across-subject average and the shaded band represents the 95% 
confidence interval. Black tick marks denote each region’s weight on 
each gradient. C. Spatial correlation between the gradient-based task 
activation maps from panel A and the task activation maps derived with 
a conventional general linear model (GLM). 
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Predicting dynamic trajectories 

Seeking evidence for the causal influence of activity gradients 
on brain activity dynamics, we tested their usefulness in forecasting 
and simulating brain activity states. Because latent space 
trajectories exhibited continuity and momentum, we elected to model 
the gradient slope timeseries as a dynamical system with differential 
equations representing the continuous influence of each activity 
gradient on one another (Breakspear, 2017). We used a data-driven 
strategy for parameter estimation (Brunton et al., 2016). For each 
fMRI volume, we measured the gradient slope (y), the ‘velocity’ of the 
slope (y’), and the ‘acceleration’ of the slope (y’’) (Figure 4A). We 
then used a linear model for each of the first 9 gradients in the 
task-free state fMRI data to estimate instantaneous gradient slope 
acceleration as a function of all gradients’ slopes and slope 
velocities. We found that a gradient’s slope acceleration y’’ 
primarily had a strong negative relationship with its own slope, (as 
is characteristic of an oscillating signal, ie sin(x)’’=-sin(x)), and 
secondarily with the slope velocity of the other 8 gradients (see 
Supplementary Data 3). Next, trajectories were modeled by using the 
parameter estimates from these linear models – the “coupling” 
parameters – to set up a system of second-order differential equations 
(Figure 4A and Methods). We measured the accuracy of these 
differential equations by using them to generate forecasts of task-
free state gradient slope timeseries based on the initial slope and 
velocity of the 9 gradients at a given timepoint t. Critically, we 
used coupling parameters derived from the discovery dataset to make 
forecasts in the validation dataset. As a benchmark, we compared these 
forecasts to alternative forecasts generated by a first-order 
autoregressive model, a standard timeseries forecasting procedure 
which makes predictions based on the previous timepoint by leveraging 
the autocorrelation in the signal (Liégeois et al., 2017). The 
differential equation-based forecasts of the gradient slopes for 
gradients 1-9 at the subsequent fMRI timepoints explained 
significantly more variance than the autoregressive model (all p < 
0.001): t=2, 99.8%/94.0% (Z=385.0); t=3, 96.9%/78.2% (Z=244.5); t=4, 
87.3%/58.1% (Z=162.5); t=5, 69.2%/38.8% (Z=105.2); t=6, 46.1%/23.9% 
(Z=60.7); t=7, 24.7%/13.9% (Z=26.9); t=8, 10.3%/8.0% (Z=5.5). Thus, 
while forecasting brain activity at a long time horizon is not 
feasible, short-term predictions based on a model of dynamic 
interactions between activity gradients can outperform conventional 
timeseries forecasting methods. 

A central tenet of cognitive neuroscience is that specific tasks 
will reliably evoke characteristic brain activity states. If specific 
modes of gradient coupling are required to induce task-specific 
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activation patterns, we expected that task-specific coupling 
parameters would generate more accurate forecasts of task fMRI 
activity timeseries than from other tasks or the task-free state. We 
tested this hypothesis in three ways: task-specific gradient 
timeseries reconstruction, simulation, and forecasting (Figure 4A). 
Reconstructions illustrated that the differential equations captured 
the within- and between-gradient factors that guide the moment-to-
moment evolution of gradient changes for each task over a time horizon 
of ~20 timepoints (Figure 4B, Figure S10, and Supplementary Results). 
Next, we tested whether differential equations with state-specific 
coupling parameters could simulate timeseries that mimicked the brain-
wide temporal dynamics in the actual task data as captured by task-
specific functional connectivity patterns (see Methods). We found that 
for each task, the simulated timeseries functional connectivity matrix 
obtained with state-matched coupling parameters from the discovery 
dataset was always significantly more correlated to the true 
functional connectivity matrix from the same task condition than from 
any other task in the validation dataset (working memory, actual vs. 
simulated functional connectivity matrix r=0.95, Z=12.09; motor 
r=0.94, Z=5.33; language r=0.93, Z=7.83; emotion r=0.95, Z=21.45; all 
Z-associated p < 0.001; see Figure 4C for real and simulated 
functional connectivity matrices; Figure 4D for partial correlations 
among simulated matrices and actual matrices; see also Table S3 and 
Supplementary Results). To illustrate the influence of the coupling 
parameters on latent trajectories, we compared the shape of the 
simulated state-specific latent trajectories to the true latent 
trajectories in the working memory task (Figure 4E). The shapes and 
locations of the 2D trajectories were consistent across multiple 
dimensions, indicating that the simulations can replicate higher-order 
geometrical properties of the multi-dimensional data manifold. 
Finally, we performed timeseries forecasting to verify that state-
matched coupling parameters could accurately extrapolate task-specific 
activity trajectories for unseen subjects. With parameters derived 
from the discovery dataset, the forecasts for all 4 tasks in the 
validation dataset were always significantly more accurate when based 
on the state-matched parameters than when using parameters from the 
baseline condition or from task-free state (working memory, for 
timepoints t+1 to t+10, all t-statistics versus baseline condition > 
3, all FDR-corrected p < 0.01; motor, timepoints t+5 to t+10; 
language, timepoints t+1 to t+10; emotion, timepoints t+1 to t+10; 
Figure 4F and Supplementary Results). 
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Figure 4. Gradient timeseries forecasts and simulations using coupled 
differential equations. A. Gradient forecasting schematic. For each 
gradient, a linear model estimated the gradient’s acceleration as a 
function of all gradients’ slopes and first derivatives. The 
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regression-derived coupling parameters were used to specify the system 
of coupled differential equations, which were then solved using 
initial conditions and coupling parameters that either come from in-
sample data for illustrative purposes (“reconstructions”), or out of 
sample data for statistical assessment (“forecasts”). B. Differential 
equation-based reconstructions of gradient timeseries during the 2-
back and 0-back conditions of the working memory task, based on trial-
locked group-average data. The reconstructions accurately match the 
actual data up until t=25, after which they become unstable. FRNT: 
frontal, TEMP: temporal, PRT: parietal, INS: insula, CING: cingulate, 
OCCP: occipital, SUB: subcortical, CRB: cerebellar. C. Functional 
connectivity matrices from the active condition for each task, 
comparing actual data region pairwise correlations (upper triangle) 
with simulated data using state-specific coupling parameters (lower 
triangle). D. Partial correlations between each simulated functional 
connectivity matrix and the real/simulated functional connectivity 
matrices. E. Actual and simulated latent trajectories during working 
memory. Latent space difference histograms are shown for the first 9 
latent dimensions, where actual working memory task trajectories on 
the upper triangle of the matrix can be compared to simulated 
trajectories on the lower triangle. Areas where trajectories dwell 
more during the 2-back than the 0-back condition are shown in red and 
vice versa in blue. F. Task fMRI forecast accuracy. In each task, 
coupling parameters from condition of interest (blue; *: significantly 
lower than red after FDR correction) yielded more accurate forecasts 
(root mean squared error ± standard error of the mean) than task-free 
state parameters (green), or opposite task condition coupling 
parameters (red). 
 
 
Discussion 
 

Dimensionality reduction of brain activation images during task-
free fMRI revealed a set of spatial brain activity gradients – 
overlapping, stable systems of influence on functional brain 
organization that dynamically adjust to enable a diverse repertoire of 
brain activation patterns. These gradients were consistently found in 
multiple groups of subjects, were reliable within individuals over 
time, present in both task-free and task-engaged states, and strongly 
correlated with brain gene expression patterns, comprehensively 
supporting their existence as stable anatomical systems. The spatial 
anatomy of the activity gradients and their collective interactions 
contribute to the field of human brain mapping by helping to unify a 
number of observed phenomena in fMRI: the global signal, gradients of 
functional connectivity, modularity, and the existence of hub regions. 
Dynamic reconfiguration of gradient temporal interactions appears 
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responsible for achieving task-specific brain activity states, 
offering a new perspective on the consistency of the brain’s intrinsic 
architecture across rest and task (Smith et al., 2009). 

The primary gradient in our study had a unipolar cortical 
activation pattern reflecting the global signal. A source of ongoing 
controversy in fMRI literature, the global signal appears to have a 
neuronal basis (Turchi et al., 2018) but has also been associated with 
respiration or head motion (Chang and Glover, 2009; Power et al., 
2015). Here we found that this gradient had strongest involvement of 
early visual, somatomotor, and auditory areas, consistent with 
previous reports that the global signal has a heterogenous spatial 
topography (Liu et al., 2018b). In line with this, this gradient had a 
strong spatial correlation with the principal spatial component of 
cortical gene expression, which has been linked to the cortical 
myelination pattern that demarcates the borders between sensory and 
association areas (Burt et al., 2018). The genes most positively 
associated with this gradient included SEMA7A and SCN1B, which have 
known roles in excitation/inhibition balance in somatomotor areas, 
thalamocortical projection, and seizure disorders including Dravet 
syndrome and genetic epilepsy with febrile seizures plus (Brackenbury 
et al., 2013; Carcea et al., 2014). Collectively, the primary gradient 
appears to represent a convergent system of functional, structural, 
and genetic variation in the brain which may modulate global neuronal 
excitation/inhibition balance. 

The second gradient strongly resembled the principal macroscale 
gradient of functional connectivity (Margulies et al., 2016). This 
gradient defines a sensory-to-cognitive axis with the default network 
at one extreme and somatomotor/visual areas at the other. Balanced 
anticorrelation between networks is a central aspect of brain 
functional connectivity (Fox et al., 2005) and could plausibly be 
instantiated by placing brain areas at opposing ends of a single 
dynamic gradient. What circuit or systems-level mechanism might drive 
the ongoing fluctuations of these global, bipolar gradients? One 
compelling possibility is the reciprocal inhibitory connections in the 
thalamic reticular nucleus, which allow one thalamic nucleus to 
activate while inhibiting an opposing nucleus (Crabtree, 2018). This 
motif enables switching between attending to visual or auditory 
stimuli (Schmitt et al., 2017) and may enable thalamic coordination of 
widespread cortical functional connectivity (Halassa and Kastner, 
2017; Hwang et al., 2017; Jones, 2001). Here, multiple gradients had 
correlations with genes including SEMA7A and CDH6 that demarcate 
specific thalamic nuclei and are also expressed in cortical layers 
where thalamocortical axons terminate (Bibollet-Bahena et al., 2017; 
Bock and Goode, 2008; Nakagawa et al., 1999). Probing the link between 
microscale thalamic electrophysiology and macroscale BOLD activity 
gradient fluctuations may require an optogenetic fMRI approach (Liu et 
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al., 2015). A hypothetical second gradient switch may be in the 
amygdala, where two antagonistic, mutually inhibitory neuronal 
populations can drive either positive or negative valence behaviors 
(Kim et al., 2016). Intriguingly, one of these populations has been 
identified by CARTPT expression, the gene most strongly associated 
with our gradient 2. 
 One consequence of functional anticorrelation between systems is 
modularity, which the brain uses to perform segregated cognitive 
processing (Bertolero et al., 2015; Sporns and Betzel, 2016). Here we 
find that the presence of modular boundaries, provincial hubs, and 
connector hubs reflects the non-uniform distribution of regional 
weights on each functional activity gradient. This principle of non-
uniformity or “clumpiness” has previously been observed to influence 
the distinctness of a region’s boundaries (Tian and Zalesky, 2018). 
Our observation that gradients had significant spatial correlations 
with gene expression maps implies that a non-uniform distribution of 
gene expression along gradients is also likely, with sections of a 
gradient expressing either clustered or transitioning gene expression 
profiles. Canonical functional connectivity networks have similarly 
been shown to correspond with spatial gene expression patterns 
(Bertolero et al., 2019; Hawrylycz et al., 2015; Richiardi et al., 
2015). Morphogen gradients during brain development may provide the 
scaffold for the emergence of multiple distributed and overlapping 
activation gradients (O’Leary et al., 2007). 
 Our dynamical systems model shows that distinct brain activity 
states can be achieved by the dynamic interaction of stable anatomical 
gradients following state-specific coupling parameters. Specific modes 
of coupling may enable the brain to settle into transient stable 
states, where the amount of push and pull between gradients may be 
calibrated neuromodulation (Shine, 2019) or other mechanisms of gain 
control (Buzsáki, 2019). We observed a strong tendency for a 
transiently steep gradient slope to subsequently flatten out, 
suggesting that gradient engagement and maintenance may be 
energetically costly (Attwell and Laughlin, 2001). A tendency towards 
relaxation in parallel with mutual influence between gradients may 
lead to a “frustrated equilibrium” that perpetuates dynamic activity 
(Gollo and Breakspear, 2014). The shape of the latent brain activity 
manifold will be dictated by the coupling parameters, determining the 
coactivation patterns occurring during that state (Liu et al., 2018a) 
and the temporal sequence of activity flow (Cole et al., 2016). Future 
work can seek to understand how gradient coupling evolves on short 
timescales and is altered by neurological conditions or modified by 
feedback over extended timescales. 
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