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Abstract6

Dimensionality reduction is a common tool for visualization and inference of population7

structure from genotypes, but popular methods either return too many dimensions for easy8

plotting (PCA) or fail to preserve global geometry (t-SNE and UMAP). Here we explore the9

utility of variational autoencoders (VAEs) – generative machine learning models in which10

a pair of neural networks seek to first compress and then recreate the input data – for11

visualizing population genetic variation. VAEs incorporate non-linear relationships, allow12

users to define the dimensionality of the latent space, and in our tests preserve global ge-13

ometry better than t-SNE and UMAP. Our implementation, which we call popvae, is avail-14

able as a command-line python program at github.com/kr-colab/popvae. The approach15

yields latent embeddings that capture subtle aspects of population structure in humans and16

Anopheles mosquitoes, and can generate artificial genotypes characteristic of a given sample17

or population.18

Introduction19

As we trace the genealogy of a population forward in time, branching inherent in the ge-20

nealogical process leads to hierarchical relationships among individuals that can be thought21

of as clades. Much of the genetic variation among individuals in a species thus reflects the22

history of isolation and migration of their ancestors. Describing this population structure23

is itself a major goal in biogeography, systematics, and human genetics; wherein one might24

attempt to infer the number of genotypic clusters supported by the data (Holsinger and25

Weir, 2009), estimate relative rates of migration (Petkova et al., 2016), or observe turnover26

in the ancestry of people living in a geographic region (Antonio et al., 2019).27

Estimation of population structure is also critical for our ability to accurately link genetic28

variation to phenotypic variation, because population structure is a major confounding29

factor in genome-wide association studies (GWAS) (Lander and Schork, 1994; Pritchard30

and Donnelly, 2001; Marchini et al., 2004; Freedman et al., 2004). Downstream studies31

that use GWAS information can themselves be compromised by inadequate controls for32

structure, for instance in recent work trying to identify the effects of natural selection33
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on complex traits (Mathieson and McVean, 2012; Berg et al., 2019; Sohail et al., 2019).34

Dimensionality reduction via principal components analysis (PCA) has been an important35

tool for geneticists in this regard, and is now commonly used both to control for the effects36

of population structure in GWAS(Price et al., 2006; Patterson et al., 2006) as well as for37

visualization of genetic variation.38

As a visualization tool however, PCA scatterplots can be difficult to interpret because39

information about genetic variation is split across many axes, while efficient plotting is40

restricted to two dimensions. Though techniques like plotting marginal distributions as41

stacked density plots can aid interpretation, these require binning samples into ”popula-42

tions” prior to visualization, are rarely used in practice, and remain difficult to interpret43

in complex cases. Recently two techniques from the machine learning community – t-SNE44

(Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018) – have shown promising per-45

formance in producing two-dimensional visualizations of high-dimensional biological data.46

In the case of UMAP, Diaz-Papkovich et al. (2019) recently showed that running the algo-47

rithm on a large set of principal component axes allows visualization of subtle aspects of48

population structure in three human genotyping datasets.49

However, interpreting UMAP and t-SNE plots is also complicated by a lack of so-called50

global structure. Though these methods perform well in clustering similar samples, distances51

between groups are not always meaningful – two clusters separated by a large distance in a52

t-SNE plot can be more similar to each other than either is to their immediate neighbors53

(Becht et al., 2019). The degree to which initialization and hyperparameter tuning can54

alleviate this issue remains an open question in the literature (Kobak and Linderman, 2019).55

To create meaningful and interpretable visualizations of population genetic data we56

would like a method that encodes as much information as possible into just two dimen-57

sions while maintaining global structure. One way of achieving this is with a variational58

autoencoder (VAE).59

VAEs consist of a pair of deep neural networks in which the first network (the encoder)60

encodes input data as a probability distribution in a latent space and the second (the de-61

coder) seeks to recreate the input given a set of latent coordinates (Kingma and Welling,62

2013). Thus a VAE has as its target the input data itself. The loss function for a VAE63

is the sum of reconstruction error (how different the generated data is from the input)64

and Kullback-Leibler (KL) divergence between a sample’s distribution in latent space and65

a reference distribution which acts as a prior on the latent space (here we use a standard66

multivariate normal, but see (Davidson et al., 2018) for an alternative design with a hy-67

perspherical latent space). The KL term of the loss function incentivizes the encoder to68

generate latent distributions with meaningful distances among samples, while the recon-69

struction error term helps to achieve good local clustering and data generation. VAE’s have70

been used extensively in image generation (Gulrajani et al., 2016; Larsen et al., 2015; Hou71

et al., 2016) and several recent studies have applied them to dimensionality reduction and72

classification of single-cell RNAseq data (Wang and Gu, 2018; Grønbech et al., 2018; Lafarge73

et al., 2018; Hu and Greene, 2019). At deeper timescales than we test here, Derkarabetian74

et al. (2019) recently explored the use of VAEs in species delimitation.75

In population genetics two recent studies have studied the utility of generative deep76

neural networks for creating simulated genotypes. Montserrat et al. (2019) use a class-77

conditional VAE to generate artificial human genotypes, while Yelmen et al. (2019) use a78

restricted Boltzman machine and provide an in-depth assessment of the population genetic79

characteristics of their artificial genotypes. These studies found that such generative meth-80

ods can produce short stretches of artificial genotypes that are difficult to distinguish from81
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real data, but performance was improved by using a generative adversarial network (GAN)82

– either in combination with a VAE as in Montserrat et al. (2019) or as a standalone method83

in Yelmen et al. (2019). In this study we focus not on generation of simulated genotypes,84

but instead on the learned latent space representations of genotypes produced by a VAE,85

and study when and how they can best be used for visualizing population structure.86

We introduce a new method, popvae (for population VAE), a command-line python87

program that takes as input a set of unphased genotypes and outputs sample coordinates88

in a low-dimensional latent space. We test popvae with simulated data and demonstrate89

its utility in empirical datasets of humans and Anopheles mosquitoes. In general popvae is90

most useful for complex samples for which PCA projects important aspects of structure91

across many axes. Relative to t-SNE and UMAP, the approach appears to better preserve92

global geometry at the cost of less pronounced clustering of individual sample localities.93

However, we show that hyperparameter tuning and stochasticity associated with train/test94

splits and parameter initialization are ongoing challenges for a VAE-based method, and the95

approach is much more computationally intensive than PCA.96

Methods97

Model98

In this manuscript we describe the application of a Variational Auto-Encoder (VAE) to pop-99

ulation genetic data for clustering and visualization Kingma and Welling (2013). Formally100

let X be our dataset consisting of N observations (i.e. individual genotypes) such that101

X = {x1, x2, ..., xN}, and let the probability of those data with some set of parameters θ be102

pθ(X). For VAEs we are interested in representing the data with a latent model, assigning103

some latent process parameters z, such that we can write a generative latent process as104

pθ(x, z) = pθ(z)pθ(x|z), where pθ(z) is the prior distribution on z. The last conditional105

probability here pθ(x|z) is often referred to as the decoder, as it maps from latent space to106

data space.107

For VAEs we also define a so-called encoder model qφ(z|x), where φ represents the108

parameters of the encoding (the mapping of x to the latent space z), and we seek to optimize109

the encoder such that qφ(z|x) ≈ pθ(z|x). In practice the parameters φ represent the weights110

and biases of the encoding neural network. We thus step from data space by using111

(µ, log(σ)) = EncoderNeuralNetwork(X) (1)

qφ(z|x) = N (z;µ,diag(σ)) (2)

The complete VAE information flow then has three steps: the encoder estimates sample112

distributions in latent space as qφ(z|x), we sample from the prior on the latent space using113

pθ(z), and finally decode back to data space using pθ(x|z). Training is then performed by114

optimizing the evidence lower bound or ELBO which has parameters of the encoder and115

decoder within it such that116

Lθ,φ(X) = Eqφ(z|x)[logpθ(x, z)− logqφ(z|x)] (3)

Optimization of the ELBO here leads to simultaneous fitting of the parameters of the en-117

coder, φ, and the decoder, θ. In practice we use binary cross-entropy between true and118

generated sequences for the first term, and Kullback-Leibler divergence of sample latent119

distributions (relative to a standard normal N (0, 1)) for the second term of equation 3. A120

graphical depiction of this computational flow can be seen in Figure 1.121
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Figure 1: A schematic of the variational autoencoder (VAE) architecture. Input allele
counts are passed to an encoder network which outputs parameters describing a sample’s
location as a multivariate normal in latent space. Samples from this distribution are then
passed to a decoder network which generates a new genotype vector. The loss function
used to update weights and biases of both networks is the sum of reconstruction error (from
comparing true and generated genotypes) and Kullback-Leibler divergence between sample
latent distributions and N (0, 1).

Implementation122

We implemented this model in python 3 using the tensorflow and keras libraries (Abadi et al.,123

2015; Chollet et al., 2015), with preprocessing relying on numpy, pandas, and scikit-allel124

(Miles and Harding, 2017; Oliphant, 2006–; McKinney, 2010). popvae reads in genotypes125

from VCFs, Zarr files https://zarr.readthedocs.io/en/stable/, or a bespoke hdf5 file126

format. Genotypes are first filtered to remove singletons and non-biallelic sites, and missing127

data is filled by taking two draws from a binomial distribution with probability equal to the128

allele frequency across all samples (a binned version of the common practice of filling missing129

genotypes with the mean allele frequency (Jombart, 2008; Dray and Josse, 2015)). Filtered130

genotpes are then encoded with 0/0.5/1 representing homozygous ancestral, heterozygous,131

and homozygous derived states, respectively.132

Samples are split into training and validation sets before model training. We also ex-133

perimented with using all samples for training and a fixed number of epochs but found134

this generally led to poor performance (Appendix 1, Figure S1). Training samples are used135

to optimize weights and biases of the neural network, while validation samples are used136

to measure validation loss after each training epoch (a complete pass through the data),137

which in turn tunes hyperparameters of the optimizer. By default we use a random 90% of138

samples for training. However we found considerable variation in latent representations of139

some datasets when using different sets of training and validation samples (see e.g. Figure140

S2), so we encourage users to compare multiple training runs with different starting seeds141
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when interpreting plots.142

popvae’s encoder and decoder networks are fully-connected feed-forward networks whose143

size is controlled by two parameters – ‘width‘, which sets the number of hidden units per144

layer, and ‘depth‘, which sets the number of hidden layers. We experimented with a range145

of network sizes and set defaults to depth 6 and width 128, which performed well on the146

empirical analyses described here (Table S1, Figure S3). However we also include a grid147

search function by which popvae will conduct short training runs across a user-defined range148

of network sizes and then fit a final model using the network size with minimum validation149

loss.150

We use a linear activation on the input layers to both networks and a sigmoid activation151

on the output of the decoder (this produces numeric values bound by (0, 1)). We interpret the152

sigmoid decoder outputs as the probability of observing a derived allele at a site, consistent153

with our 0/0.5/1 encoding of the input genotypes. All other layers use “elu” activations154

(Clevert et al., 2015), a modification of the more common “relu” activation which avoids155

the “stuck neuron” problem by returning small but nonzero values with negative inputs.156

We use the Adam optimizer (Kingma and Ba, 2014) and continue model training until157

validation loss has not improved for p epochs, where p is a user-adjustable ‘patience‘158

parameter. We also set a learning rate scheduler to decrease the learning rate of the optimizer159

by half when validation loss has not improved for p/4 epochs. This is intended to force the160

optimizer to take small steps when close to the final solution, which increases training time161

but in our experience leads to better fit models. Users can adjust many hyperparameters162

from the command line, and modifying our network architectures is straightforward for those163

familiar with the Keras library.164

To evaluate model training popvae returns plots of training and validation loss by epoch165

(e.g., Figure S4), and also outputs estimated latent coordinates for validation samples given166

the encoder parameters at the end of each epoch. These can then be plotted to observe167

how the model changes over the course of training, which can sometimes help to diagnose168

overfitting. We also include an interactive plotting function which generates a scatter plot of169

the latent space and allows users to mouse-over points to view metadata (Figure S5). This is170

intended to allow users to quickly iterate through models while adjusting hyperparameters.171

In Appendix 1 we discuss alternate approaches to network design and optimization tested172

while developing popvae.173

popvae is available at https://github.com/kr-colab/popvae, and scripts for re-174

producing plots and analyses in this manuscript are available at https://github.com/175

cjbattey/popvae_analysis_scripts. HGDP genotypes used in this paper are avail-176

able at ftp://ngs.sanger.ac.uk/production/hgdp, AG1000G genotypes at https://177

www.malariagen.net/data/ag1000g-phase-2-ar1, and 1000 genomes phase 3 data at178

https://www.internationalgenome.org/category/phase-3/.179

Results180

Latent Spaces Reflect Human Migration History181

We first applied popvae to 100,000 SNPs from chromosome 1 in the Human Genetic Diver-182

sity Project (HGDP; Bergström et al. (2019)), a sample of global modern human diversity.183

The resulting latent space reflects geography from the point of view of human demographic184

history (Figure 2, Figure S6, Figure 4). Sub-Saharan African and South American popula-185

tions are placed on opposite ends of one latent dimension, and north African (Mozabite) and186
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east Asian samples are on opposite ends of the second; mirroring the geography of Africa187

and Eurasia. Samples from the Americas are roughly centered among Eurasian samples on188

latent dimension (LD) 2, consistent with recent demographic modeling studies suggesting189

a mix of Eurasian ancestries in ancestral American populations (Flegontov et al., 2019;190

Posth et al., 2018). Indeed the closest American samples to the European cluster are Maya191

individuals who were found to have low levels of recent European admixture in previous192

analyses(Bergström et al., 2019; Rosenberg et al., 2002) (Figure S6), suggesting popvae is193

picking up on the signal of gene flow associated with European colonization of the Americas.194

These patterns are similar to those seen in PCA, but many aspects of ancestry that are195

difficult to see on the first two PC axes are conveniently summarized in popvae’s latent196

space. For example, differentiation within the Americas and Oceania is not visible until197

PC6 and PC7, respectively, but is clear in the 2D VAE latent space. This shows adjacent198

clusters for the islands of Bougainville and Papua New Guinea, and a cline in Eurasian199

ancestry from North through South America (Figure S6).200

To highlight the flexibility of the VAE approach, we also trained a model with a 1-201

dimensional latent space and used this to scale colors on a sampling map (Figure 3). This202

results in a single latent dimension that approximates the diagonal of our 2D model, with203

African and East Asian samples on either end of the spectrum. A comparison using PCA but204

summarizing only the first principal component emphasizes diversity within Africa (Figure205

S7) and provides little resolution for out-of-Africa groups.206

Finally, to emphasize the correspondence of the VAE latent space with geography, we207

can also directly compare geographic and latent spaces by rescaling both sets of coordinates208

with a z-normalization and plotting them together on a map (Figure 4). As can be seen, the209

visual correspondence between geographic and latent coordinates is striking in this case.210
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Inversions and Population Structure in Anopheles Mosquitoes211

We next applied popvae to DNA sequenced from the Anopheles gambiae / coluzzii complex212

across sub-saharan African by the AG1000G project (AG1000G Consortium, 2020; Miles213

et al., 2017) (Figure 5). Using 100,000 randomly-selected SNPs from chromosome 3R we214

again find that the VAE captures elements of population structure that are not apparent215

by visualizing two PC axes at a time. For example, samples from Kenya and the island of216

Mayotte off East Africa are highly differentiated (Fst > 0.18 relative to all other groups),217

but are placed between clusters of primarily west-African coluzzii and gambiae samples on a218

plot of PC1/2. The VAE instead places these populations on the opposite end of one latent219

dimension from all other groups and closest to Ugandan samples – similar to their relative220

geographic position and positions on PC3/4. The VAE also captures the relatively high221

differentiation of samples from Gabon and significant variation within Cameroon, which are222

not visible until PC6 and PC8, respectively. Further details of population structure in this223

species complex are discussed in AG1000G Consortium (2020).224

A. gambiae / coluzzii genomes are characterized by a series of well-studied inversions on225

chromosomes 2L and 2R (Coluzzi et al., 2002) which segregate within all populations and226

are associated with both malaria susceptibility and ecological niche variation (Riehle et al.,227

2017). The large 2La inversion contains at least one locus for insecticide resistance (Rdl),228

and has experienced multiple hard sweeps and introgression events in its recent history229

(Grau-Bové et al., 2020). Inversions have significant effects on local PCA (Li and Ralph,230

2019) which often lead to samples clustering by inversion karyotype rather than geography231

on the first two PC axes (Ma and Amos, 2012).232

To test how our VAE responds to inversions we fit models to SNPs extracted from233

200,000 bp non-overlapping windows across the 2LA inversion in the AG1000G phase 2 data234

(Figure 6, Figure S11). We took an approach similar to Li and Ralph (2019) to summarize235

differences in latent spaces across windows while accounting for axis rotation and scaling.236

Latent dimensions were first scaled to 0 - 1 and the pairwise Euclidean distance matrix237

among individuals was calculated for each window to generate rotation- and scale-invariant238

representations of the latent space. We then calculated Euclidean distances among all pairs239

of per-window distance matrices, giving us a matrix representing relative differences in latent240

spaces across windows. Last, we used multi-dimensional scaling to compress this distance241

matrix to a single dimension, and plotted this value against genomic position across the 2La242

inversion region.243

This analysis found two clear classes of latent spaces inside and outside the inversion244

(Figure 6). Outside the inversion samples generally cluster by species and geography, while245

inside the inversion samples form three clusters corresponding to the homozygous and het-246

erozygous inversion karyotypes, similar to results found with PCA (Grau-Bové et al., 2020;247

Riehle et al., 2017). Interestingly the VAE retains geographic and species clustering within248

inversion classes, but loads these aspects of structure on a different latent dimension than249

the karyotype clusters (e.g. LD1 reflects species clusters while LD2 reflects inversion kary-250

otypes in the windows shown in Figure 6). Unlike PCA, latent dimensions from a VAE251

are not ranked by variance explained and nothing in the loss function incentivizes splitting252

particular aspects of variation onto separate axes, so we found this pattern of partitioning253

geographic and karyotypic signals somewhat surprising.254
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Simulations and Sensitivity Tests255

In general a method’s ability to detect population structure in a sample of genotypes scales256

with the degree of differentiation and the size of the genotype matrix. Patterson et al. (2006)257

found that there is a ”phase change” phenomenon by which methods like PCA transition258

from showing no evidence of structure to strong evidence of structure when Fst ≈ 1/
√
nm,259

where n is the number of genotyped SNPs and m is the number of sampled individuals.260

To compare the performance of PCA and VAE around this threshold we ran a series of261

two-population, isolation with migration model coalescent simulations in msprime (Kelleher262

et al., 2016) while varying the symmetric migration rate to produce an expected equilibrium263

Fst ranging from 0.0001 to 0.05. We sampled 50 diploid genomes from each population and264

downsampled the resulting genotype matrix to 10,000 SNPs. Given this sample size we265

expect the threshold for detecting structure to be approximately Fst = 0.001.266

With tuned hyperparameters the VAE appeared slightly more sensitive to weak structure267

than the first two axes of a PCA (Figure 7). Both popvae and PCA reflect some population268

structure at Fst >= 0.005 (though this is clearer in the VAE) but none at Fst <= 0.001,269

consistent with Patterson et al. (2006)’s ”phase change” suggestion. However the VAE’s270

performance was highly sensitive to hyperparameter tuning on this dataset. At default271

settings popvae latent spaces reflect no clear structure until Fst = 0.05 (Figure S12,Figure272

S13). In particular we found that increasing the ‘patience‘ parameter to 500 was necessary273

for even marginal performance in this case, and running a grid search across network sizes274

was needed to match PCA’s sensitivity to weak structure.275
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Figure 7: VAE latent spaces and PCA run on two-population coalescent simulations with Fst
varying from 0.0001 − 0.05. Points are colored by population. popvae was run with tuned
hyperparameters and patience set to 500. See Figure S12 for (much worse) performance
with default settings.
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Comparison with UMAP and t-SNE276

In addition to PCA we also compared the VAE’s latent spaces to t-SNE (Maaten and Hinton,277

2008) and UMAP (Diaz-Papkovich et al., 2019) (Figure S14, Figure S15), both of which278

have been used recently for population genetic visualization. We first ran both methods on279

the top 15 PC axes (following Diaz-Papkovich et al. (2019)) with default settings on the280

human and Anopheles datasets and used the R packages ’umap’ (Konopka, 2019) and ’tsne’281

(Donaldson, 2016) as our reference implementations.282

For HGDP data both UMAP and t-SNE produce latent spaces that roughly correspond to283

continental regions (Figure S14). Running both methods at default settings, UMAP’s latent284

space was much more tightly clustered – for example grouping all samples from Africa into285

a single small region. Similar patterns were seen in the AG1000G data (Figure S15) – both286

t-SNE and UMAP produce latent spaces that strongly cluster sample localities and species.287

However, global geometry appeared to be poorly preserved in t-SNE and UMAP latent288

spaces. That is, though clusters in latent space correspond to sampling localities, distances289

among clusters do not appear to meaningfully reflect geography or genetic differentiation.290

To compare how well different methods reflect geography we compared pairwise distances291

among individuals in latent and geographic space for Eurasian human samples (HGDP292

regions Europe, Central/South Asia, the Middle East, and East Asia). Geographic distances293

were great-circle distance calculated on a WGS84 ellipse with the R package ‘sp‘ (Pebesma294

et al., 2012). Distances were scaled to 0-1 for this analysis, and we calculated the coefficient295

of determination (R2) across geographic and latent-space distance for each method as a296

metric. VAE latent space distances have the strongest correlation with geographic distance297

(Figure 8; R2 = 0.659), followed by PCA (R2 = 0.561), UMAP (R2 = 0.529), and t-SNE298

(R2 = 0.342).299

Finally to test how parameter tuning of tSNE and UMAP impacts our results, we repro-300

duced our analysis of HGDP data using double and triple the default values for n neighbors301

(UMAP) and perplexity (tSNE). Though scatter plots are visually similar at these settings302

(Figure S16) the correlation between latent-space and geographic distances of Eurasian sam-303

ples is improved in both methods at double default settings (t-SNE: R2 = 0.631, UMAP:304

R2 = 0.611; Figure S17). At triple default settings we observed slightly better performance305

for tSNE and slightly worse for UMAP (Figure S18, Figure S19).306
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Figure 8: Comparing pairwise distances in geographic and latent space for Eurasian hu-
man genotypes across four dimensionality reduction methods run at default settings. All
distances are scaled to 0-1. Black lines show a 1:1 relationship.
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Run Times and Computational Resources307

We compared popvae’s run times to PCA, UMAP, and t-SNE using sets of 100,000 and308

10,000 SNPs from the HGDP as described above. popvae was run using default settings309

(i.e. fitting a single network rather than running a grid search over network sizes) using310

a consumer GPU (Nvidia GeForce RTX 2070). PCAs were run in the python package311

scikit-allel (Miles and Harding, 2017), which in turn relies on singular-value decomposition312

functions from the numpy library (Oliphant, 2006–).313

popvae was much slower than PCA or UMAP, but comparable to running t-SNE on314

PC coordinates. However for datasets of the size we tested here none of these run times315

present significant challenges – all methods return sample latent coordinates in less than316

five minutes. We have not conducted exhaustive tests on CPU training times for popvae,317

but in general find these to require at least twice as much time as GPU runs.318

However for larger datasets we expect popvae’s run time performance would suffer fur-319

ther in comparison to PCA and UMAP. The major computational bottleneck is loading320

tensors holding weights for the input and output layers of the encoder and decoder net-321

works into GPU memory. These tensors have dimensions n snps x network width so they322

become extremely large when running on large genotype matrices. Our development ma-323

chine has 8GB GPU RAM and can process up to roughly 700,000 SNPs in a single analysis324

using a 128-unit-wide network. Throughout this study we have limited our analysis to rela-325

tively small subsets of genome-wide SNPs to allow us to explore a range of network sizes in326

reasonable time. Scaling up to a single model fit to all genome-wide SNPs – on the order327

of 107 for datasets like the HGDP – would require access to specialized hardware with very328

large GPU memory pools.329

run time (s) SNPs method
204.4 100,000 VAE
3.6 PCA
6 UMAP

124.8 t-SNE
78.8 10,000 VAE
0.5 PCA
2.7 UMAP

119.5 t-SNE

Table 1: Run times for VAE, PCA, UMAP, and t-SNE HGDP data. UMAP and t-SNE
were run on the top 20 PC axes (run times thus include running the PCA).

Generating Genotypes330

The VAE framework also allows us to generate genotypes characteristic of a given population331

by sampling from the latent space of a trained model. Simulated genotypes generated by332

process-based models like the coalescent are a key tool in population genetics, because they333

allow us to explore the impact of various generative processes – demography, selection, etc –334

on observed genetic variation (Adrion et al., 2020a). In contrast popvae’s generative model335

provides essentially no mechanistic insight beyond the strong observed correlation of latent336

and geographic spaces. However, if the VAE accurately reproduces characteristics of real337
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genotypes it could be a fast alternative to simulation that does not require parameterizing338

a custom demographic model.339

We compared these approaches by analyzing empirical data from European (CEU), Han340

(CHB), and Yaruban (YRI) human genotypes in the 1000 Genomes Project data (Con-341

sortium et al., 2015). We first subset 50 samples from each population and then fit a342

2-dimensional popvae model to all SNPs from chromosome 22. To generate genotypes we343

drew a sample from the latent distribution of each individual and passed these coordinates344

to the trained decoder network. We interpret the sigmoid activation output of our decoder345

as the probability of observing a derived allele at each site, and generate derived allele counts346

by taking two draws from a binomial distribution with p = gi,j where gi,j is the decoder347

output for individual i at site j.348

As a baseline comparison we used coalescent simulations from the standardpopsim li-349

brary (Adrion et al., 2020a) of the 3-population out-of-Africa model (OutOfAfrica 3G09) –350

a rigorously tested implementation of the demographic model fit to the joint site frequency351

spectrum in Gutenkunst et al. (2009) using the msprime coalescent simulator (Kelleher352

et al., 2016). For this comparison we changed standardpopsim’s default human mutation353

rate of 1.29× 10−8 to 2.35× 10−8 to match the rate used in Gutenkunst et al. (2009), used354

the HapMapII GRCh37 recombination map for chromosome 22, and sampled 100 haploid355

chromosomes from each population.356

Last, we examined three facets of population genetic variation on real, VAE-generated,357

and simulated genotype matrices: the site frequency spectrum, the decay of linkage disequi-358

librium with distance along the chromosome, and embeddings from a PCA. These analyses359

were conducted in scikit-allel (Miles and Harding, 2017) after masking genotypes to retain360

only sites with the most stringent site accessibility filter (”P”) in the 1000 genome project’s361

phase 3 site accessibility masks. LD statistics were calculated only for YRI samples using362

SNPs between positions 2.5× 107 and 2.6× 107 in the hg18 reference genome and summa-363

rized by calculating the mean LD for all pairs of alleles in 25 distance bins (similar results364

in three different genomic windows are shown in figure S20). Results are plotted in figure 9.365

In general we found all methods produce similar results in a plot of the first two PC axes,366

suggesting they capture broad patterns of allele frequency variation created by population367

structure. The site frequency spectrum is also very similar for the VAE and real data, while368

the simulated genotypes suffer from a scaling issue. This could reflect differences in the369

input data – Gutenkunst et al. (2009) fit models to an SFS calculated from a set of sanger-370

sequenced loci in 1000 genomes samples, rather than the short-read resequenced SNPs from371

the 1000 Genomes project we use – or an inaccuracy in one of the constants used to convert372

scaled demographic model parameters to real values (accessible genome size, generation373

time, or mutation rate). LD decay shows the largest difference among methods. Simulation374

and real data both reflect higher LD among nearby SNPs which decays with distance, while375

the VAE genotypes produced no correlation between distance along a chromosome and376

pairwise LD.377

These differences reflect the strengths and weaknesses of each method. The VAE decoder378

doesn’t require a pre-defined demographic model and by design exactly fits the matrix size379

of input empirical data, so it should not suffer from the scaling issues that frequently impact380

population genetic models. But the lack of mechanistic biological knowledge in its design381

means it misses obvious and important features of real sequence data like the decline of382

LD with distance. In this case the lack of LD decay in VAE decoder sequences means this383

implementation should not be used for testing properties of analyses like GWAS, in which384

LD among a subset of sequenced loci and an unknown number of truly causal loci is a crucial385
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Figure 9: Comparing real, VAE-generated, and simulated genotype matrices for three popu-
lations from the 1000 genomes project. The VAE decoder and coalescent simulation produce
similar results in genotype PCA (A), but the VAE fails to reproduce the decay of LD with
distance along the chromosome seen in real data (B). The site frequency spectrum is very
similar for real and VAE-generated genotypes, but suffers from scaling issues in the coales-
cent simulation (C).
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parameter. Though other network designs (e.g. a convolutional neural network Flagel et al.386

(2019) or a recurrent neural network Adrion et al. (2020b)) could potentially address the387

specific shortcoming of LD decay, the general problem of a non-mechanistic generator failing388

to mimic features of the data produced by well-understood processes seems intrinsic to the389

machine learning approach.390

Discussion391

Dimensionality reduction of genotypic variation is a key analytic tool in modern genomics392

and their visualizations are often the central figure of a genetic study. For example, Antonio393

et al. (2019) studied a 10,000-year transect of genotypes from Rome and extensively used394

PCA to visualize changes in ancestry in the city over time. In cases like this producing395

informative plots of population structure is a requisite step for the analysis and can shape396

the way data is interpreted both by authors and readers.397

In this study we demonstrate how variational autoencoders can be used for visualization398

and low dimensional summaries of genotype data. Variational autoencoders have at least399

two attractive properties for genetic data: they allow users to define the output dimension-400

ality, and they preserve global geometry (i.e., relative positions in latent space) better than401

competing methods. As we have shown in humans and mosquitoes, this allows users to gen-402

erate visualizations that summarize relationships among samples without either comparing403

across several panels (as with PCA) or attempting to ignore possibly spurious patterns of404

global structure (as with t-SNE and UMAP).405

An additional attractive property of VAEs is that they are generative models. That is406

to say that VAEs allow us to create genotypes that capture aspects of population genetic407

variation characteristic of the training set. This is done by taking samples from the estimated408

latent space and passing forward into data space. Though in theory this could be used as an409

alternative to simulation, our implementation fails to replicate at least one important aspect410

of real genomes – the decay of linkage disequilibrium with distance along a chromosome – and411

thus offers limited utility for tasks such as boosting GWAS sample sizes or as a substitute412

for simulation. We point researchers interested in generating genotypes via deep learning413

approaches to recent work by Yelmen et al. (2019) and Montserrat et al. (2019), which414

describe similar, deep learning based methods more tightly aimed at generating realistic415

genotypes.416

The are also several significant limitations of our method as a visualization tool. One417

issue is that we lack a principled understanding of how the VAE output maps to parameters418

of idealized population models like the coalescent (Kingman, 1982). This is in contrast to419

PCA, which was first applied to genetic data with little theoretical background (Menozzi420

et al., 1978) but is now fairly well characterized in reference to population genetic models421

(McVean, 2009; Novembre and Stephens, 2008).422

Hyperparameter tuning is another challenge. As we showed, popvae has many hyperpa-423

rameters that significantly affect the output latent space and no principled way to set them424

a priori. Though we include a grid-search function for network sizes, this is slow and is425

still dependent on other hyperparameters – like the patience used for early stopping, or the426

learning rate of the optimizer – which we have set to defaults that may not be optimal for427

all datasets. This is not a unique issue to VAEs; opaque hyperperameters of methods like428

t-SNE and UMAP can significantly affect embeddings (Kobak and Linderman, 2019), and429

preprocessing choices such as how to scale allele counts prior to PCA dramatically vary the430
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appearance of final plots (Patterson et al., 2006). However it does require extra work on431

the part of users interested in exploring the full parameter space.432

A parallel issue is stochasticity in the output. Stochasticity is introduced by the random433

test/train split, parameter initialization states, and even the execution order of operations434

run in parallel on GPU during model training. Though all but the last of these can be fixed435

by setting a random seed, which itself could be (unfortunately) seen as a hyperparameter,436

there is no obvious way to compare models fit to different validation sets in a world of limited437

training examples. This introduces noise which could potentially allow users to cherry-pick438

a preferred latent space.439

For example, one run of our best-performing network architecture on the HGDP data440

produced a latent space with in which samples Papua New Guinea and Bougainville are441

separated by roughly the same distance as samples from north Africa and East Asia. In442

contrast all other fits of the same network architecture cluster these samples (Figure S2,443

see the top middle panel). We chose a latent space for the main text that lacked this444

feature because it occurred in only one training run, but acknowledge this procedure is445

sub-optimal. Developing a method to summarize across multiple latent spaces, perhaps via446

ensemble learning approaches, would be useful for postprocessing VAE output when latent447

spaces vary.448

The last major shortcoming is computational effort. popvae is much slower and more449

computationally intensive than PCA, and requires specialized and expensive GPU or TPU450

hardware to run on large sets of SNPs. Future developments in both hardware and software451

will likely alleviate this issue somewhat, but at present it may make the method difficult452

to apply to the increasingly common whole genome resequencing data now being generated453

for many species.454

One important question we did not explore in this study is whether VAE latent space co-455

ordinates offer any improvement over PCA when used as covariates to correct for population456

structure in GWAS (Price et al., 2006). UMAP and t-SNE are generally thought to be inap-457

propriate for this use because of their failure to preserve global geometry (Diaz-Papkovich458

et al., 2019), but because the VAE appears to strongly reflect geography in humans it may459

be useful for this task. Testing this aspect of the VAE could be done in simulation but would460

benefit from empirical investigations in large human datasets – a task which is beyond the461

scope of the present study, but perhaps fruitful for further investigation.462

Here we have shown that our implementation of a VAE, popvae , can produce informative463

visualizations of population genetic variation and offers some benefits relative to competing464

methods. However our approach is just one implementation of a huge class of potential465

models falling under the VAE umbrella. Altering the prior on the latent space (Davidson466

et al., 2018), the weighting of the loss function (Higgins et al., 2017), or the type of neural467

network used in either the encoder or decoder all offer avenues for further research and468

potential improvement (see also Appendix 1, where we briefly describe alternate approaches469

we experimented with). Entirely different methods of visualizing population structure which470

focus on genetic variants rather than individuals, like that proposed in Biddanda et al.471

(2020), also offer a complementary perspective on the nature of genetic differentiation.472

As population genetic data becomes increasingly common across evolutionary biology we473

anticipate visualization techniques will receive increased attention from researchers in many474

areas, and believe VAEs offer a promising avenue for research.475
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Appendix 1665

Other Things We Tried That Didn’t Work666

We tried a bunch of things while developing popvae. Here we document some of our dead-667

ends in the hope they may be useful to others developing similar methods.668

0.0.1 A Convolutional Neural Network669

We first developed popvae using convolutional neural networks (CNNs) for both the encoder670

and decoder. The feed-forward network we use here was originally intended as a naive671

baseline for comparing our CNN performance, but it turned out to be faster and more672

accurate (that is, lower validation loss), and had much lower memory requirements than673

any CNN we tried. These included 2D CNNs run on phased haplotypes, 1D CNNs run on674

unphased genotype counts, hybrid CNN+feed-forward networks stacking convolutional and675

dense layers in succession, and restricting the CNN to either the encoder or the decoder.676

0.0.2 A Recurrent Neural Network677

We also tested recurrent neural networks (using the cudnnGRU( ) layer in keras) as one or678

both of the encoder/decoder pair. Due to memory limitations we were only able to test679

relatively small, shallow networks with this approach (width 32, depth up to 3). Like the680

CNNs these were slower, less accurate, and more resource-intensive than the dense network681

we describe in the main text.682

0.0.3 Skipping the Validation Set683

It would be nice to not need a validation set. The train/test split introduces extra stochas-684

ticity and you have to ignore some hard-earned data in training.685

Unfortunately we couldn’t find a good way of setting the learning rate scheduler or686

establishing a good stopping time for model training without a validation set. Training687

on all samples leads to constantly decreasing loss so all training runs go to the maximum688

number of epochs. Examining the progress of latent spaces through model training for689

these runs, the encoder seems to quickly identify and then refine structure in the input690

samples, but eventually samples begin to cluster in a ring around the origin at 0,0. This691

appears to reflect the Gaussian prior on the latent space dominating the loss function as the692

reconstruction error approaches some lower bound. In runs with validation sets we observed693

that validation loss typically increases once points begin circling the origin (Figure S1),694

suggesting it reflects a typical overfitting behavior. Unfortunately the number of epochs695

needed for this to occur is different for every dataset and we found no general solution for696

estimating its location other than a validation set.697

So we recommend using a validation set of at least 10%, and comparing latent spaces698

from runs with multiple starting seeds (and so different train/validation splits). In a pinch,699

users can set --train prop 1 to train on all samples and heuristically examine latent spaces700

output during training to figure out a good stopping point.701

0.0.4 Batch Normalization702

Putting a batch normalization layer anywhere in either the encoder or decoder made vali-703

dation loss worse in all of our tests.704
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0.0.5 Dropout705

As above, dropout layers either made no difference or yielded slightly higher validation losses706

no matter where we put it.707

0.0.6 Reweighting the Loss Function708

Higgins et al. (2017) proposed a modification of the standard VAE loss function which709

amounts to multiplying the KL divergence by a factor β. This puts extra weight on the710

normal prior of the latent space and on the MNIST dataset delivered more clustered and711

interpretable latent spaces. Unfortunately the only suggested method for estimating β712

in a truly unsupervised setting like ours is heuristic examination of model output. We713

experimented with several values and found no consistent benefits either in latent space714

or validation loss relative to our baseline approach. However this seems like a productive715

area for further investigation and we plan to continue experimenting along these lines (and716

encourage others to do so as well).717
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Supplementary Figures and Tables718
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Figure S1: Latent spaces output during model training for HGDP data. Here patience

was increased to 500 to show the overfitting behavior of popvae’s latent space. In this run
validation loss was minimized at epoch 59.
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Figure S2: popvae latent spaces from runs with default hyperparameters and different
random seeds.
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Figure S3: Validation loss as a function of the number of hidden units in a network for
models fit to 100,000 SNPs selected randomly from Anopheles chromosome 3R and human
chromosome 1. See table 1 for model rankings. Curves are quadratic least-squares model
fits.
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Figure S4: Example training history plot of showing training and validation loss by epoch
during model training.
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Figure S5: Example interactive plotting with scroll-over metadata.
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Figure S6: Latent space for 100,000 SNPs from chromosome 1 of the HGDP cohort (see
Figure 2), with population centroids labeled.
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Figure S7: The first PC axis for HGDP SNPs summarized on a map as in Figure 3. Points
show approximate population locations and are colored by the mean PC1 coordinate for
each HGDP population. Densities show the distribution of PC1 scores for each HGDP
region.
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Figure S8: Comparing the VAE latent space with the geography of sampling localities HGDP
samples. Circles show z-normalized sample locations in latent space and squares show the
corresponding location in geographic space.
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Figure S9: popvae latent spaces from runs with the same random seed and the top five
network sizes by validation loss. Network sizes are listed as ‘depth x width‘.
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Figure S10: popvae latent spaces from models across the range of sizes tested. Network
sizes are listed as ‘depth x width‘.
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coluzzii. A: VAE latent spaces for AG1000G phase 2 samples from windows near the 2La
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Figure S12: VAE latent spaces from the simulations shown in Figure 7, with popvae run at
default settings.
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Figure S13: VAE latent spaces from the simulations shown in Figure 7, with popvae run
with default network size (width 128, depth 6) and patience set to 500.
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Figure S14: UMAP and t-SNE plots of HGDP samples using 100,000 or 10,000 SNPs. Both
methods were run with default settings on the top 15 PC axes.
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Figure S15: UMAP and t-SNE plots of AG1000G phase 2 samples using 100,000 or 10,000
SNPs at default settings. Both methods were run with default settings on the top 15 PC
axes.
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Figure S16: UMAP and t-SNE plots with parameters n neighbors=30 and perplexity=60.
These settings are double the default values and are intended to improve global relative to
local structure.
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Figure S17: Comparison of relative pairwise distance for Eurasian HGDP samples, with
UMAP parameter n neighbors=30 and t-SNE parameter perplexity=60. These settings
are double the default values and are intended to improve global relative to local structure.

39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.08.12.248278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248278
http://creativecommons.org/licenses/by/4.0/


REFERENCES REFERENCES

UMAP

10,000 SNPs

UMAP

100,000 SNPs

t−SNE

10,000 SNPs

t−SNE

100,000 SNPs

−10 0 10 −10 −5 0 5 10

−20 −10 0 10 20 −20 −10 0 10 20

−20

−10

0

10

20

0

10

−10

0

10

20

−5

0

5

10

15

20

Region

Africa
America
Central/South Asia
East Asia
Europe
Middle East
Oceania

Figure S18: UMAP and t-SNE plots with parameters n neighbors=30 and perplexity=60.
These settings are double the default values and are intended to improve global relative to
local structure.
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Figure S19: Comparison of relative pairwise distance for Eurasian HGDP samples, with
UMAP parameter n neighbors=45 and t-SNE parameter perplexity=90. These settings
are triple the default values and are intended to improve global relative to local structure.

41

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.08.12.248278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248278
http://creativecommons.org/licenses/by/4.0/


REFERENCES REFERENCES

chr22:25000000−26000000 chr22:30000000−31000000

chr10:10000000−11000000 chr10:25000000−26000000

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.000

0.025

0.050

0.075

0.100

Distance (Mbp)

Li
nk

ag
e 

D
is

eq
ui

lib
riu

m
 (R

2 )

Genotypes

real
VAE decoder
coalescent
simulation

Figure S20: Comparing LD decay curves across real, simulated, and VAE decoder genotypes
for four different regions of the genome. Points show the mean LD for all pairs of variants
in each of 25 distance bins.
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HGDP AG1000G
SNPs Depth Width Loss Depth Width Loss
10,000 4 256 1394.231 3 256 750.677

6 128 1394.48 6 128 750.859
6 64 1394.504 4 128 751.0646
10 64 1394.663 4 256 751.1514
3 256 1394.976 6 64 751.7088

100,000 6 128 13955.76 4 256 7603.105
3 256 13968.39 6 128 7606.528
4 256 13971.75 3 256 7613.279
3 512 13980.04 6 256 7614.232
3 128 13992.27 4 128 7615.816

500,000 6 128 70087.32 10 128 37836.90
10 64 70191.43 6 128 37848.67
10 128 70203.22 6 64 37860.76
6 64 70221.66 10 64 37872.49
4 128 70357.73 4 128 37888.68

Table S1: Comparing validation loss across network sizes. Depth is the number of layers,
width is the number of hidden units per layer, and loss is the mean validation loss across
5 random starting seeds for each network. Networks are ranked by loss for each dataset.
SNPs were selected randomly from human chromosome 1 and Anopheles chromosome 3R.
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