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Abstract

Experimental studies of grid cells in the Medial Entorhinal Cortex (MEC) have shown
that they are selective to an array of spatial locations in the environment that form a
hexagonal grid. However, place cells in the hippocampus are only selective to a
single-location of the environment while granule cells in the dentate gyrus of the
hippocampus have multiple discrete firing locations, but lack spatial periodicity. Given
the anatomical connection from MEC to the hippocampus, previous feedforward models
of grid-to-place have been proposed. Here, we propose a unified learning model that can
describe the spatial tuning properties of both hippocampal place cells and dentate gyrus
granule cells based on non-negative sparse coding. Sparse coding plays an important
role in many cortical areas and is proposed here to have a key role in the navigational
system of the brain in the hippocampus.Our results show that the hexagonal patterns of
grid cells with various orientations, grid spacings and phases are necessary for model
cells to learn a single spatial field that efficiently tile the entire spatial environment.
However, if there is a lack of diversity in any grid parameters or a lack of cells in the
network, this will lead to the emergence of place cells that have multiple firing locations.
More surprisingly, the model shows that place cells can also emerge even when
non-negative sparse coding is used with weakly-tuned MEC cells, instead of MEC grid
cells, as the input to place cells. This work suggests that sparse coding may be one of
the underlying organizing principles for the navigational system of the brain.

1 Introduction 1

The brain can perform extremely complex spatial navigation tasks, but how the brain 2

does this remains unclear. Since the Nobel-prize-winning discovery of place cells in the 3

hippocampus (Moser et al., 2008; O’Keefe, 1976; O’Keefe and Dostrovsky, 1971) and 4

grid cells in the Medial Entorhinal Cortex (MEC) (Hafting et al., 2005; Rowland et al., 5

2016), brain regions involved in spatial awareness and navigation have attracted much 6

attention from both experimental and computational neuroscientists. 7

Experimental rat studies show that hippocampal place cells have a single specific 8

location in the environment at which they have an elevated firing rate (O’Keefe and 9

Dostrovsky, 1971) and neighboring cells have firing fields at different locations of the 10

environment, such that the local cell population in the hippocampus can represent the 11

whole spatial environment (O’Keefe, 1976). In contrast, granule cells in the dentate 12

gyrus of the hippocampal formation have multiple discrete firing locations without 13

spatial periodicity (Jung and McNaughton, 1993; Leutgeb et al., 2007). 14
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MEC grid cells are also spatially tuned to the locations of the environment. However, 15

unlike hippocampal place cells, firing fields of grid cells form a hexagonal grid that 16

evenly tile the entire environment (Hafting et al., 2005). The hexagonal grid of each 17

grid cell is characterized by spacing (distance between fields on the grid), orientation 18

(the degree of rotation relative to an external reference), and phase (offset relative to an 19

external reference). The spacing of the grid increases step-wise monotonically along the 20

dorsal-ventral axis (Hafting et al., 2005). Moreover, the progression in grid spacing 21

along the dorsal-ventral axis is geometric, with ratio around 1.42, such that grid cells 22

are organized into discrete modules according to their spacing (Stensola et al., 2012). 23

Additionally, grid cells in each module also have similar orientation but random phases 24

(Stensola et al., 2012). 25

Experimental evidence indicates that MEC grid cells are the main projecting 26

neurons to the dentate gyrus and CA3 of the hippocampus (Leutgeb et al., 2007; 27

Steward and Scoville, 1976; Tamamaki and Nojyo, 1993; Zhang et al., 2013). 28

Consequently a variety of models have been proposed to explain the emergence of the 29

firing fields of hippocampal place cells based on the feedforward connection from MEC 30

grid cells, from mathematical models that have no learning (de Almeida et al., 2009; 31

Solstad et al., 2006) to models with plasticity (Franzius et al., 2007a,b; Rolls et al., 32

2006; Savelli and Knierim, 2010). 33

For the learning models of grid-to-place formation, Rolls et al. (2006) used a 34

competitive learning procedure to learn place cells from grid cell input. However, only 35

approximately 10% of model cells were found to have a single-location place field. 36

Furthermore, the competition in the model was introduced by manually setting the 37

population activation to a small specified value that indicates a sparse network. 38

Similarly, Franzius et al. (2007b) applied independent component analysis (ICA) 39

(Hyvarinen, 1999) to maximising the sparseness of the model place cells. However, the 40

examples of model place cells in these studies are mostly located at the border of the 41

environment (Figure 1G in Franzius et al. (2007b) and Figure 3C in Franzius et al. 42

(2007a)). Additionally, in their model the connection strength between grid and place 43

cells can be positive or negative and the place cell responses were manually shifted by 44

the addition of a constant term to ensure that they were non-negative, which puts into 45

question the biological realization of the model. Furthermore, previous models do not 46

investigate how well the learned place map represents the spatial environment. 47

Sparse coding, proposed by Olshausen and Field (1996), provides a compelling 48

explanation of many experimental findings of brain network structures. One particular 49

variant of sparse coding, non-negative sparse coding (Hoyer, 2003), has recently been 50

shown to account for a wide range of neuronal responses in areas including the retina, 51

primary visual cortex, inferotemporal cortex, auditory cortex, olfactory cortex and 52

retrosplenial cortex (see Beyeler et al. (2019) for a review). However, whether sparse 53

coding can account for the formation of hippocampal place cells has not previously been 54

investigated in detail. 55

Here we applied sparse coding with non-negative constraints, where neuronal 56

responses and connection weights are restricted to be non-negative, to building a 57

learning model of place cells using grid cell responses as the input. Our results show 58

that single-location place fields can be learnt that tile the entire environment, given a 59

sufficient diversity in grid spacings, orientations and phases of the input grid cells. 60

However, if there is a lack of diversity in any of these grid parameters, the learning of 61

the place cells is impeded; instead, the learning results in more place cells with multiple 62

firing locations. Furthermore, a lower number of grid cell inputs results in learning 63

multiple place cell firing locations. The competition generated by the principle of sparse 64

coding in the model naturally provides a global inhibition such that the place cells 65

display discrete firing fields, suggesting that the proposed model can be implemented by 66
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biologically based neural mechanisms and circuits. Moreover, the model can still learn 67

place cells even when the inputs to the place cells are replaced by the responses of 68

weakly-tuned MEC cells. This suggests a plausible explanation of why place cells emerge 69

earlier than grid cells during development (Langston et al., 2010; Wills et al., 2010). 70

2 Materials and Methods 71

2.1 Sparse coding with non-negative constraints 72

Sparse coding was originally proposed by Olshausen and Field (1996) to demonstrate 73

that simple cells in the primary visual cortex represent their sensory input using an 74

efficient neuronal representation, namely that their firing rates in response to natural 75

images tend to be sparse (rarely attain large values) and statistically independent. In 76

addition, sparse coding finds a reconstruction of the sensory input through a linear 77

representation of features with minimal error, which can be understood as minimizing 78

the following cost function 79

E(A, s) =
1

2
‖I−As‖22 + β

∑
i

Q(si), (1)

where the matrix I is the input, columns of A are basis vectors (universal features) from 80

which any input can be constructed from a weighted sum, the vector s represents the 81

neural responses and each element, si, is the coefficient for the corresponding basis 82

vector, the function Q(·) is a function that penalizes high activity of model units, and β 83

is a sparsity constant that scales the penalty function (Olshausen and Field, 1996, 1997). 84

The term As in Eq. (1) represents the model reconstruction of the input, so this cost 85

function represents the sum of squared reconstruction error and response penalty. 86

Therefore, the model finds a sparse representation for the input by solving this 87

minimization problem. By taking the partial derivatives of Eq. (1) in terms of the 88

elements of A and s, and then applying gradient descent, the dynamic equations and 89

the learning rule are given by 90

ṡ = AT (I−As)− βQ′(s)

∆A ∝ 〈(I−As)s
T 〉,

(2)

where 〈·〉 is the average operation, Q′(·) is the derivative of Q(·), and the dot notation 91

represents differentiation with regard to time. 92

Non-negative sparse coding is simply sparse coding with non-negative 93

constraints, i.e., the connection weights A and model responses s are restricted to 94

non-negative values in the cost function Eq. (1). Note that, when β in Eq. (1) is set to 95

zero, the cost function of non-negative sparse coding reduces to the cost function of 96

non-negative matrix factorization (Lee and Seung, 1999). 97

2.2 The environment 98

The 2D spatial environment used in this study is a 1m×1m square box. A 32× 32 grid 99

with 1024 points is used to represent the entire environment. Therefore, a 1024× 1 100

vector, denoted by r, with only one non-zero element can be used to represent the 101

location of a virtual rat. 102

2.3 Grid cell model 103

The hexagonal firing fields of grid cells are represented in this study by the sum of three 104

sinusoidal gratings (de Almeida et al., 2009; Kropff and Treves, 2008; Solstad et al., 105
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2006), as described by 106

G(~r) =
2

3

(
1

3

3∑
i=1

cos

(
4π√
3λ
~ui · (~r − ~r0)

)
+

1

2

)
, (3)

where G(~r) is the grid cell response at the spatial location ~r = (x, y), λ is the grid 107

spacing, θ is the grid orientation, ~r0 = (x0, y0) represents the phase offset, and 108

~ui = (cos(2πi/3 + θ)), sin(2πi/3 + θ)) is the unit vector with direction 2πi/3 + θ. G(·) 109

described in Eq. (3) is normalized to have a maximum value of 1 and minimum of 0. 110

Because of the periodicity of the hexagonal pattern, the grid orientation, θ, lies in the 111

interval of [0, π/3), and the phase offsets in both x and y axis are smaller than the grid 112

spacing, i.e., 0 ≤ x0, y0 < λ. 113

Since grid cells have different spacings, orientations and phases, Eq. (3) is used to 114

generate diverse grid fields. The value of the grid spacing, λ, ranges in value from 28 cm 115

(Hafting et al., 2005; Solstad et al., 2006) and increases by a geometric ratio 1.42 that is 116

consistent with experimental results (Stensola et al., 2012), and the optimal grid scale is 117

derived by a mathematical study (Wei et al., 2015). For example, if there are Nλ 118

different grid spacings, the spacings will be 28 cm, 28× 1.42 = 39.76 cm, · · · , 119

28× 1.42Nλ−1 cm. For each grid spacing, different values of grid orientation, θ, are 120

uniformly taken from the interval [0, 60◦). For example, if there are 3 different grid 121

orientations, the values will be 0, 20◦ and 40◦. The number of different orientations for 122

each grid spacing is denoted as Nθ. Furthermore, it is assumed here that there are Nx 123

and Ny phase offsets along x-axis and y-axis for each specific grid spacing and 124

orientation. Similar to grid orientation, the value of the phase is taken uniformly from 125

[0, λ). For example, if there are 2 phases along the x-axis, they will have the values 126

x0 = 0 and λ/2. The resulting total number grid cells, denoted as Ng, will be the 127

product of numbers of spacings, orientations and phases: 128

Ng = NλNθNxNy (4)

Some examples of grid fields described by Eq. (3) are shown in Figure 1. These grid 129

fields have diverse grid spacings, orientations and phases. 130

Figure 1. Examples of grid fields, Eq. (3), with different grid spacings,
orientations and phases. Each block represents the hexagonal firing field of a grid
cell in a 1 m×1 m environment. Values in each block are normalised to [0 1] in this plot.

Since the environment is represented by a 32× 32 grid, a 1024× 1 vector, denoted by 131

g, can be used to represent the firing field of the grid cell over the entire environment. 132

For a given position r in the environment, the response of a grid cell is simply gT r. 133

The number of different grid parameters (Nλ, Nθ, Nx and Ny) of grid cells defined 134

above are assigned to different values to investigate the effect of the diversity of grid 135

cells on the formation of place cells. Next we define grid cells with parameters that 136

better capture the biologically observed variability, which will be used to investigate the 137

robustness of the model. 138
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Similarly, grid cells are separated into discrete modules based on their grid spacings, 139

which is supported by experimental evidence (Stensola et al., 2012). However, values of 140

the grid spacing are randomly sampled from normal distributions: there are four 141

discrete modules for grid spacings (λ) with mean of 38.8 cm, 48.4 cm, 65 cm and 98.4 142

cm and a same standard deviation of 8 cm. For grid orientation (θ), since grid cells in 143

the same spacing module tend to have similar orientations (Stensola et al., 2012), grid 144

cells in the four discrete modules also have mean orientations 15◦, 30◦, 45◦ and 0◦, and 145

a common standard deviation of 3◦. Because grid phases, (x0, y0), are random in each 146

module (Stensola et al., 2012), grid phase is randomly sampled from a uniform 147

distribution. Stensola et al. (2012) showed that 87% of grid cells belong to the two 148

modules with small spacings. Therefore, when using realistic grid fields in the study, we 149

have 43.5%, 43.5%, 6.5% and 6.5% of grid cells in the modules with mean spacings 38.8 150

cm, 48.4 cm, 65 cm and 98.4 cm, respectively (unless otherwise noted). 151

The firing field of the grid cells is taken be the sum of the spatial firing pattern at 152

every vertex on the hexagonal pattern. The spatial firing pattern with vertex (xv, yv) is 153

described by a 2D Gaussian function with the following form (Neher et al., 2017) 154

Qv(x, y) = γve
− ln(5)

(x−xv)2+(y−yv)2

σ2 , (5)

where γv is the amplitude and σ determines the radius of the firing field. The amplitude 155

at every vertex of the hexagonal pattern, γv, is chosen from a normal distribution with 156

mean 1 and standard deviation 0.1, and σ is determined by the grid spacing, λ, with 157

σ = 0.32λ (Neher et al., 2017). The grid field is then the sum of firing fields (described 158

by Eq. 5) at all vertices of the hexagonal pattern. The locations of vertices of the 159

hexagonal pattern are determined by grid spacing, λ, grid orientation, θ, and grid phase, 160

(x0, y0). 161

2.4 Structure of the model 162

In this study a two-layer network is proposed to model the activities of grid cells (first 163

layer) and place cells (second layer), respectively. Given a spatial location in the 164

environment, grid cells respond according to their firing fields. Grid cell responses then 165

feed into place cells and the grid-place network implements a sparse coding model with 166

non-negative constraints. The model structure is shown in Figure 2. 167

Figure 2. Graphical representation of the model. Red arrows represent non-
negative connections. Notation is defined in the main text.

Denote G as a 1024×Ng matrix that represents the firing fields for Ng grid cells in 168

the network; i.e. each column of G, gi (i = 1, 2, ..., Ng) is a 1024× 1 vector that 169

represents the firing field of grid cell i. For a spatial location r in the environment, grid 170

cell responses (firing rates), sg, are given by sg = GT r. Place cell responses (firing 171

rates), sp, are computed by a sparse coding model for the grid-place network with 172

non-negative connection A. Assume there are Np place cells in the network. Then A is 173
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a Ng ×Np matrix and sp is a Np × 1 vector. Denote up as a Np × 1 vector that 174

represents membrane potentials of place cells. The model dynamics is given by 175

sg = GT r

τ u̇p = −up + AT sg −Wsp

sp = max(up − β, 0),

(6)

where τ is the time constant for place cells, β is the threshold of the rectifying function 176

of firing rates, and W can be understood as the matrix of recurrent connections 177

between place cells. In this paper, we take W = ATA− 1, where 1 is a Np ×Np 178

identity matrix. The dynamics of place cells described in Eq. (6) is derived from the 179

local competitive algorithm (LCA) proposed by Rozell et al. (2008) that solves sparse 180

coding efficiently. However, place cell responses, sp, and connection matrix, A, are 181

taken to be non-negative in this study. 182

The code to run the model is available online (https://github.com/lianyunke/ 183

Learning-Place-Cells-from-Grid-Cells-Using-Nonnegative-Sparse-Coding). 184

2.4.1 Learning rule 185

The learning rule for updating the connection strength matrix A is similar to that in 186

previous studies of sparse coding (Olshausen and Field, 1997; Zhu and Rozell, 2013), as 187

given by 188

∆A = η(sg −Asp)sp
T , (7)

where η is the learning rate. Elements of A are kept non-negative during training, i.e., 189

the element will be set to 0 if it becomes negative after applying the learning rule 190

described in Eq. (7). Then each column of A is normalised to unit length, similar to 191

previous studies (Lian et al., 2019; Olshausen and Field, 1997; Rolls et al., 2006; Zhu 192

and Rozell, 2013). 193

The model dynamics and learning rule described in Eqs. (6) and (7) can be 194

implemented in a biologically realistic network (Lian et al., 2019). Here we simply use 195

the equations described above to demonstrate that the principle of non-negative sparse 196

coding can learn both place cells in the hippocampus and granule cells in the dentate 197

gyrus. 198

2.5 Training 199

Since the environment used in this study is 1m×1m environment, the maximal grid 200

spacing is taken to be smaller than 1m, i.e., 1 ≤ Nλ ≤ 4. All possible grid spacings are 201

28 cm, 39.76 cm, 56.46 cm and 80.17 cm. For grid orientation, we have 1 ≤ Nθ ≤ 7. For 202

grid phase, we have the same number of phases in each direction and the maximal 203

number is 5, i.e. 1 ≤ Nx = Ny ≤ 5. 204

There are 100 model cells at the second layer in our simulations, i.e.. Np = 100. The 205

dynamical system described by Eq. (6) is implemented by the first-order Euler method, 206

where the membrane time constant is τ = 10ms, consistent with the physiological value 207

(Dayan and Abbott, 2001), the threshold is β = 0.3, and there are 200 integration time 208

steps with a time step of 0.8ms which we found to provide numerically stable solutions. 209

We use 20, 000 epochs in our training. In each epoch, a random location, r, is presented 210

to the grid cells and the model responses are computed using Eq. (6) and the matrix of 211

connection strengths, A, is updated by Eq. (7). The learning rate, η, is chosen to be 212

0.03. The parameters above were chosen to ensure a stable solution in a reasonable time 213

scale, but the results were found to be robust to moderate changes of these parameters. 214

6/24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248534doi: bioRxiv preprint 

https://github.com/lianyunke/Learning-Place-Cells-from-Grid-Cells-Using-Nonnegative-Sparse-Coding
https://github.com/lianyunke/Learning-Place-Cells-from-Grid-Cells-Using-Nonnegative-Sparse-Coding
https://github.com/lianyunke/Learning-Place-Cells-from-Grid-Cells-Using-Nonnegative-Sparse-Coding
https://doi.org/10.1101/2020.08.12.248534
http://creativecommons.org/licenses/by-nc/4.0/


2.6 Recovering the firing fields of model cells 215

After training, we use the method of reverse correlation to recover the firing fields, 216

denoted as F, of model cells. We present K random locations, r1, · · · , rK , to the model, 217

compute according to Eq. (6) the neural responses of a model cell, s1, · · · , sK , and then 218

compute the firing field, F, of this model cell by 219

F =
s1r1 + · · ·+ sKrK
s1 + · · ·+ sK

. (8)

2.6.1 Fitting firing fields to 2D Gaussian functions 220

The recovered firing field, F (recovered by Eq 8), is fitted by a 2D Gaussian function 221

Q(x, y) of the form 222

Q(x, y) = γe− ln(5)
(x−xc)2+(y−yc)2

σ2 , (9)

where γ is the amplitude, σ is the breadth of the firing field, and (xc, yc) represents the 223

center of the 2D Gaussian function. The built-in MATLAB (version R2020a) function, 224

lsqcurvefit, is used to fit these parameters. The fitting error is defined as the square of 225

the ratio between the fitting residual and firing field. 226

2.6.2 Selecting single-location firing field 227

Some firing fields of model cells have multiple firing locations and noise in the 228

background. A firing field is categorised as a place field if the following two criteria are 229

satisfied: (1) the fitting error is smaller than 15% (2) the breadth, σ, is larger than 5 230

cm. These two rules exclude any cells with no obvious firing field or with 231

multiple-location firing field. A model cell is called a place cell if its firing field meets 232

the two criteria of a place field. 233

2.7 Measuring the uniformity of place cell representation 234

For place cells with a single-location firing field, the field center (xc, yc) fitted by Eq. (9) 235

indicates the spatial location that the place cell responds to. We measured how well 236

these place cells represent the entire environment using two measures. 237

The first measure is distance to place field, dPF, which indicates the distance between 238

each spatial location (px, py) in the environment and the nearest place field, described as 239

dPF = min
i

(√
(xi − px)2 + (yi − py)2

)
. (10)

If the distance to a place field is large for a location, it means that there are no place 240

fields near this location. Therefore, the distribution of this measure can tell us how well 241

place fields tile the entire spatial environment. When all spatial locations have small 242

values of this distance to place field, dPF, the entire environment is tiled by the place 243

cells. 244

The second measure is the K-nearest-distance, dKnd. For all the centres of place cells 245

with single-location firing field, we define K-nearest-distance as the maximal distance of 246

K nearest centers of each center (xj , yj), described as 247

dKnd(j) = max

(
K

min
i,i6=j

(√
(xi − xj)2 + (yi − yj)2

))
, (11)

where minK returns a set of K smallest values. When K = 2, the distribution of 248

K-nearest-distance, dKnd, for all centers shows the uniformity of place cells in the 249
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environment. However, this measure alone provides little information about the 250

coverage of all place cells because place cells with small K-nearest-distance might only 251

lie in a small sub-region of the entire environment, which would give a small value of 252

this measure but would not represent a good tiling of the entire environment. 253

The distance to place field, dPF, together with K-nearest-distance, dKnd, provides 254

quantitative measures of how well the place cells code for the spatial environment. 255

Small values of both measures indicate that place cells can tile the entire environment 256

fairly evenly. For example, if 100 place cells are organised on a 10× 10 grid that evenly 257

tile the 1m ×1m environment, the K-nearest-distance will be 100/(10− 1) ≈ 11.11 cm 258

for each place cell and the distance to place field for every location is smaller than 259

11.11/2 ≈ 5.56 cm. 260

3 Results 261

3.1 The model can learn single-field place-like cells if grid cells 262

are diverse 263

Our simulations show that the non-negative sparse coding model proposed here can 264

learn single-location place cells given diverse grid cells as the input. Grid cells with 4 265

different spacings (Nλ = 4), 6 different orientations (Nθ = 6) and 5 different phases in 266

both x and y axis (Nx = Ny = 5) are used here, i.e., there are 600 grid cells in total 267

(Ng = NλNθNxNy = 600). 268

3.1.1 Learned place cells are localized and tile the whole environment 269

The place field, F defined by Eq.(8), for 100 model cells is shown in Figure 3A. All 270

model cells shown here have a single-location firing field. Furthermore, different cells 271

have spatially different firing fields. After learning, the place field of each cell is fitted 272

to a 2D Gaussian function. All cells have a small fitting error (< 3%) and meet the 273

criteria of single-location place field (as defined in Materials and Methods 2.6.2). The 274

centers of all the place cells are displayed together in the 1m×1m spatial environment 275

represented by a 32× 32 pixel-like image, Figure 3B, which shows that the centers of 276

the 100 place cells tile the entire environment without any overlap. In addition, the box 277

plot in Figure 3C shows that any location within the space is within a distance of no 278

more than 8.2 cm from the nearest place fields. The histogram of K-nearest-distance of 279

all 100 place cells is displayed in Figure 3D, which shows that the distribution is 280

centered around a mean value of 10.70 cm and standard deviation 0.75 cm. Given that 281

the learned place cells have mean radius 8.69 cm, Figure 3B,C and D illustrate that the 282

learned place cells tile the whole environment rather evenly, i.e, the model learned by 283

non-negative sparse coding can give an accurate neural representation of spatial 284

locations in the environment. 285

3.1.2 The competition introduced by sparse coding provides the 286

inhibition for place cells 287

The connectivity profile between 600 grid cells and 100 place cells is plotted in 288

Figure 4A, which shows that each place cell selects particular grid cells with different 289

weights. As a result, the overall feedforward connection from the spatial environment to 290

the place cells, namely the matrix product GA, has the spatial structure plotted in 291

Figure 4B, which shows that each place cell is selective to one spatial location similar to 292

the recovered firing fields (Figure 3A). However, GA has strong average offsets, which 293

can be seen from the grey background in Figure 4B. The model of place cells proposed 294

by Solstad et al. (2006) has an inhibition term to balance the excitation so that the 295
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Figure 3. Place fields and their centers learned by the model with Nλ = 4,
Nθ = 6 and Nx = Ny = 5. (A) Place fields, F (defined by Eq 8), for 100 model cells.
All 100 cells learn a place field at different spatial locations. Each block represents the
recovered firing field of a model cell in a 1m×1m environment. Values in each block
are normalised to [0 1]. The mean radius of place cells is 8.69 cm. (B) Centers of the
place cells plotted together in the environment, showing that they evenly tile the whole
spatial environment. (C) Box plot of distance to place field for all spatial locations in
the spatial environment. The black lines at the bottom and top indicate the minimum
and maximum, and the bottom edge of the blue box, red line inside the blue box and
top edge of the blue box represent 25%, 50% (median) and 75% percentile of the data.
In this box plot there are no outliers. (D) Histogram of K-nearest-distance for all place
cells.

place fields are responsive to a single location. As for the model of place cells proposed 296

by Franzius et al. (2007b), an offset constant is added and signs of model units are 297

adjusted in order to achieve single location place fields. Nevertheless, comparing 298

Figure 3A and Figure 4B, we can conclude that the network implemented by sparse 299

coding naturally introduce the competition to inhibit place cells such that they have 300

firing fields similar to those found in experiments. As stated earlier in Materials and 301

Methods, the sparse coding model used in this paper can be implemented by a 302

biologically realistic network (Lian et al., 2019), suggesting that principle used here can 303

be a potential mechanism used in the navigational system of the brain. The results 304

presented in this study are not sensitive to different parameter values as long as there 305

are diversities in spacing, orientation and phase. Even 81 grid cells are sufficient for the 306

model to learn place cells that tile the whole environment (see S1 Fig). 307

In addition, the principle of sparse coding forces the model to learn a efficient 308

representation of the grid cell input. The average percentage of active model cells in 309

response to a spatial location is 5.59%. The sparse population activity is consistent with 310

the experimental study that shows sparse ensemble activities in the macaque 311

hippocampus (Skaggs et al., 2007). 312
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Figure 4. Feedforward connections of the model. (A) Connection strengths
between grid and place cells, A. Each block represents the connections between 600
grid cells and a place cell on a 24× 25 matrix. (B) Feedforward connection strengths
from the spatial environment to place cells, GA. Each block shows the selective spatial
structure of a place cell. For both (A) and (B), values in each block are normalized to
[0, 1] for plotting.

3.2 The model can learn cells with multiple firing locations 313

similar to dentate gyrus cells 314

In this section, we show that the lack of diversity in any grid parameters will prevent 315

the model from learning place cells and cells with multiple firing locations start to 316

emerge, i.e., the same model can learn cells similar to dentate gyrus cells that have 317

multiple firing locations. 318

3.2.1 When grid cells are less diverse 319

A lack of diversity in grid spacing results in the emergence of multiple firing locations of 320

the model cells, as illustrated in Figure 5A compared with Figure 3A. Similarly, 321

compared with Figure 3B and C, the lack of diversity in grid orientation or grid phase 322

will also cause the model to learn more cells with multiple firing locations (Figure 5B 323

and C). These model cells are similar to dentate gyrus cells that are found to have 324

multiple firing locations in experimental studies (Jung and McNaughton, 1993; Leutgeb 325

et al., 2007). 326

Recall that the principle of sparse coding finds a linear representation of the input, 327

namely the grid cell responses. Our results suggest that grid cells with less diversity in 328

grid parameters are not sufficient to well represent the whole environment, so that the 329

system gives an ambiguous representation of the spatial location. Therefore, the diverse 330

grid cells found in the MEC are crucial to the emergence of hippocampal place cells. 331

Similar to MEC-hippocampus connections, there are also feedforward connections from 332

MEC to the dentate gyrus, so the lack of diversity in afferent grid cells may be one 333

possible factor explaining how cells with multiple firing locations emerge in the dentate 334

gyrus. 335

3.2.2 When there are fewer model cells 336

Simulations also show that a smaller number of model cells, Np, can also cause the 337

model to learn cells with multiple firing locations, even though the grid cells are diverse. 338

This is illustrated in Figure 6, which shows the firing fields of the model when there are 339
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Figure 5. Cells with multiple firing locations start to emerge due to the lack of diversity in any of the grid
parameters. Each block represents the recovered firing field, F (Eq. 8), of a model cell in a 1m×1m environment. Values in
each block are normalised to [0 1]. (A) Lack of diverse grid spacings: 1 grid spacing, 6 orientations and 25 phases (Nλ = 1,
Nθ = 6 and Nx = Ny = 5). (B) Lack of diverse grid orientations: 4 grid spacing, 1 orientation and 25 phases (Nλ = 4,
Nθ = 1 and Nx = Ny = 5). (C) Lack of diverse grid phases: 4 grid spacing, 6 orientations and 1 phase (Nλ = 4, Nθ = 6 and
Nx = Ny = 1).

different numbers of model cells in the network. The values of the remaining parameters 340

are exactly the same as ones used in Figure 5 which shows well-learned place cells, 341

except the number of model cells, Np. Figure 6 demonstrates that as the number of 342

model cells, Np, decreases, cells with more firing-locations start to emerge. The less 343

cells, the larger the proportion of cells with multiple firing locations that emerge. When 344

Np = 10 all model cells have more than one firing location. When Np = 20 there are 345

five cells that are categorised as place cells. When Np is larger than 30, almost all cells 346

are found to have single-location firing fields. 347

Figure 6. The firing fields, F (recovered by Eq. 8), as the number of cells
(Np) increases from 10 to 60 (separated by dash lines). A smaller number of cells,
Np, leads to more cells with multiple firing fields after learning. Each block represents
the recovered firing field of a cell in a 1m×1m environment. Values in each block are
normalised to [0 1]. Results shown in this figure have the same parameters as Figure 3
except the number of cells, Np.
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Consequently, though a network with diverse grid cells can represent the spatial 348

environment well, having less model cells does not result in an accurate representation 349

of the spatial location with single-location place cells. This suggests more generally that 350

cells with multiple firing locations may be generated by having a small number of cells 351

in the population that implements the sparse coding. 352

3.3 The spatial resolution of the model increases as more place 353

cells are utilised to represent the environment 354

As discussed above, when Np is larger than 30, almost all cells have a single-location 355

firing field. In addition, the learned place cells tile the whole environment rather well 356

with small values of the K-nearest-distance, Eq.(11). Furthermore, as Np increases, the 357

mean K-nearest-distance and field breadth decreases (Figure 7), indicating that the 358

spatial resolution of the neural representation by place cells improves. 359

Figure 7. Np vs. mean radius and Np vs. mean K-nearest-distance. As Np

increases, the mean radius and mean K-nearest-distance decrease.

3.4 Model results are robust to realistic grid fields 360

When more realistic grid fields (Materials and Methods, 2.3) are used that incorporate 361

the observed biological variability, the model can still learn a robust representation of 362

the spatial location of the entire environment, as shown in Figure 8. 363

Figure 8A shows that when grid fields are diverse in grid spacing, orientation and 364

phase, each model cell learns a single-location firing field such that centers of all place 365

fields tile the entire spatial environment rather evenly. The box plot of distance to place 366

field shows fairly small values and indicates the whole environment is covered well. The 367

distribution of K-nearest-distance has mean 10.71 cm and standard deviation 0.72 cm, 368

qualitatively consistent with results shown in Figure 3C (mean 10.70 cm and standard 369

deviation 0.75 cm). Therefore, the learned place cells evenly tile the entire environment. 370

Figure 8B shows that realistic grid fields with less diversity will learn model cells 371

with multiple firing locations. The left plot displays the firing fields of 100 model cell 372

with less diversity in grid spacing. The standard deviation of spacing in four modules is 373

set to 0 cm instead of 8 cm while the standard deviation of orientation is still 3◦ and 374

the phase is random. The middle plot shows firing fields when there is less diversity in 375

grid orientation, where the standard deviation of spacing is 4 cm, the standard 376

deviation of orientation is 0◦ and phase is random. The right plot is for the case of less 377

diversity in grid phase, where the standard deviation of spacing is 8 cm, the standard 378

deviation of orientation is 3◦ and phase is (0, 0) for all grid cells. Thought the model 379
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Figure 8. Results are robust when realistic grid fields are used. (A) Learned place cells evenly tile the entire spatial
environment (similar to Figure 3). (B) The lack of diversity in grid spacing, orientation or phase (left, middle and right
plot) leads to cells with multiple firing locations (similar to Figure 5). (C) Fewer model cells leads to cells with multiple
firing locations (similar to Figure 6). (D) Spatial resolution of the neural representation increases as Np increases (similar to
Figure 7).
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learn cells with multiple locations when there is less diversity in grid parameters, the 380

place cells still tile the entire environment (see S3 Fig). 381

Figure 8C shows that having fewer model cells makes the model learn cells with 382

multiple firing locations. The six plots separated by dashed lines in Figure 8C represent 383

the firing fields of model cells when the number of model cells, Np, is 10, 20, 30, 40, 50, 384

and 60, respectively. When Np = 10 and 20, there is no place cell. When Np ≥ 40, 385

almost all model cells are place cells. 386

Similar to Figure 7, the neural representation of the spatial environment has better 387

resolution (smaller radius and smaller K-nearest-distance) as Np increases, as seen from 388

Figure 8D. 389

3.5 The model can generate large place fields 390

As discussed in a previous study (Neher et al., 2017), most existing model of place cells 391

cannot produce large place fields, such as CA3 place cells with size around 1225 cm2. 392

The model proposed here can generate large place fields by simply having grid cells with 393

large grid spacings as the input to model cells. 394

In this part of the study, only grid cells with grid spacings in the fourth module are 395

used; i.e., the grid spacing is sampled from the normal distribution with mean 98.4 cm 396

and standard deviation 8 cm, grid orientation is sampled from the distribution with 397

mean 0◦ and standard deviation 3◦, and grid phases are randomly chosen from a 398

uniform distribution. Similarly, 600 grid cells are used. The number of model cells, Np, 399

is set to 20. 400

After learning, 18 out of 20 model cells satisfy the definition of place cells. Figure 9A 401

shows that large place fields can emerge after learning. Figure 9C shows that these 402

place cells have radiuses from 18.71 cm to 21.22 cm (mean 19.68 cm and standard 403

deviation 0.75 cm). Therefore, the size of place fields range from 1099.76 cm2 to 1414.62 404

cm2. Figure 9B,D and E show that these 18 place cells with large size cover the entire 405

environment rather evenly. 406

Above all, the model can learn place cells if the afferent grid cells have large grid 407

spacings, consistent with experimental evidence that the sizes of grid cells and place 408

cells increase along the dorsal-ventral axis (Fyhn et al., 2007; Kjelstrup et al., 2008) and 409

with topographic entorhinal-hippocampal projections along the dorsal-ventral axis 410

(Dolorfo and Amaral, 1998). 411

3.6 Weakly-tuned MEC cells are sufficient for place cells to 412

emerge 413

Recent experimental evidence shows that the emergence of hippocampal place cells 414

happens earlier in development than grid cells (Langston et al., 2010; Wills et al., 2010). 415

Here we show that even weakly-tuned MEC cells can provide sufficient spatial 416

information for the emergence of place cells which have an accurate representation of 417

spatial location. This suggests that place cells can emerge throughout the development 418

of MEC grid cells, from the initial weakly-tuned spatial pattern to the fully developed 419

hexagonal grid pattern. 420

Weakly-tuned cells are observed to be abundant in the MEC (Zhang et al., 2013). 421

The weakly-tuned field is generated in the simulation by first assigning a random 422

activation, sampled from a uniform distribution between 0 and 1, to each location, then 423

smoothing the map with a Gaussian kernel with standard deviation 6 cm, and 424

normalizing the map such that the values are between 0 and 1 (Neher et al., 2017). 425

Similar to Figure 3 and 8A, 600 weakly-tuned MEC cells and 100 model cells are used. 426

16 examples of weakly-tuned field are shown in Figure 10A. 427
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Figure 9. Large place fields emerge. (A) Place fields, F (recovered by Eq 8), for
100 model cells. All 100 model cells learn a place field at different spatial locations.
Each block represents the recovered firing field of a model cell in a 1m×1m environment.
Values in each block are normalised to [0 1]. (B) Centers of place cells plotted together
in the environment. Place cells evenly tile the whole spatial environment. (C) Histogram
of radiuses for all place cells. (D) Box plot of distance to place field for all spatial
locations in the spatial environment. The black lines at the bottom and top indicate
the minimum and maximum, and the bottom edge of the blue box, red line inside the
blue box and top edge of the blue box represent 25%, 50% (median) and 75% percentile
of the data while outliers are excluded and represented as red dots. (E) Histogram of
K-nearest-distance for all place cells.

Though the fields of weakly-tuned MEC cells are very different from the periodic 428

pattern of grid cells. Surprisingly, they can nevertheless provide sufficient spatial 429

information such that the model based on sparse coding can decode MEC cell responses 430

and give an accurate representation of the spatial location. Figure 10B shows the firing 431

field of learned place cells. Figure 10C, D and E shows that the centers of place cells 432

evenly tile the entire spatial environment. 433

Compared with Figure 3 and 8A, using weakly-tuned MEC cells instead of grid cells 434

results in learning a hippocampal place-map with less resolution. The mean radius of 435

place fields in Figure 10B (11.45 cm) is larger than Figure 3 and 8A (8.92 cm and 8.69 436

cm, respectively). Furthermore, the K-nearest-distance in Figure 10 (mean 12.32 cm 437

and standard deviation 7.10 cm) is also larger, compared with Figure 3 (mean 10.70 cm 438

and standard deviation 0.75 cm) and 8A (mean 10.71 cm and standard deviation 0.72 439

cm) when grid cells are used. The large standard deviation in Figure 10D suggests that 440

the irregular fields of weakly-tuned MEC cells leads to the less even tiling of place cells. 441

The average active rate for model cells is 30.68%, much larger than the percentage when 442

grid cells are used (5.59%). 443

Therefore, the model suggests that place cells emerge earlier than grid cells during 444

development, in part because the neural system can learn a hippocampal map even 445

when the hexagonal spatial field is not well developed. 446

Sparse coding can learn place cells even though the input cells (MEC cells in this 447

paper) are weakly tuned to the spatial environment. Thus, input cells with stronger 448
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Figure 10. Weakly tuned MEC cells are sufficient for place cells to emerge.
(A) Examples of weakly-tuned MEC cells. Each block represents the spatial field of a cell
in a 1 m×1 m environment. (B) Place fields, F (recovered by Eq 8), for 90 model cells.
90 out of 100 model cells learn a place field at different spatial locations. Each block
represents the recovered firing field of a model cell in a 1 m × 1 m environment. Values
in each block are normalised to [0 1]. (C) Centers of 90 place cells plotted together in
the environment. Place cells evenly tile the whole spatial environment.
(D) Box plot of distance to place field for all spatial locations in the spatial environment.
The black lines at the bottom and top indicate the minimum and maximum, and the
bottom edge of the blue box, red line inside the blue box and top edge of the blue box
represent 25%, 50% (median) and 75% percentile of the data. In this box plot, there are
no outliers. (E) Histogram of K-nearest-distance for place cells.

spatial selectivity can provide more spatial information so that unique place field can be 449

decoded by sparse coding. Barry and Burgess (2007) used a learning model to learn 450

place cells from responses of boundary vector cells that are selective to boundaries of 451

the environment at particular angles and distances. Their result can be regarded as a 452

special case of the results presented in the paper, where boundary vector cells are 453

simply input cells with stronger tuning of the spatial environment. 454

Our results also suggest that these weakly-tuned MEC cells can arise from any form 455

of sensory inputs, such as visual input and auditory input, that encode spatial 456

information. For example, the visual input at different locations of the environment 457

actually carries information about spatial locations and consequently the afferent visual 458

information to MEC can lead to spatially tuned MEC cells. Moreover, the principle of 459

sparse coding can cause the MEC cells to generate a place map. The conjecture 460

proposed here can explain a recent experimental study that shows that place cell firing 461

mainly reflect visual inputs (Chen et al., 2019) and another experimental study that 462

suggests homing abilities of mice even in darkness may not need accurate grid cell firing 463

(Chen et al., 2016). 464
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4 Discussion 465

In this paper, we applied sparse coding with non-negative constraints to a hierarchical 466

model of grid-to-place cell formation. Our results show that sparse coding can learn an 467

efficient place code that represents the entire environment when grid cells are diverse in 468

grid spacing, orientation and phase. However, lack of diversity in grid cells and fewer 469

model cells leads to the emergence of cells with multiple firing locations, like those cells 470

found in the dentate gyrus. In addition, weakly-tuned Medial Entorhinal Cortex (MEC) 471

cells are sufficient for sparse coding to learn place cells, suggesting that place cells can 472

emerge even when grid cells have not been fully developed. 473

4.1 Comparison with other learning models 474

Our work differs from them significantly from previous studies on learning place cells 475

from grid cell input (Franzius et al., 2007b; Neher et al., 2017; Rolls et al., 2006). First, 476

we systematically investigate the influence of the diversity in grid cells upon the 477

formation for place cells. Second, we demonstrate that learned place cells can represent 478

the entire spatial environment well. Third, the same model can produce cells with one 479

firing location, multiple firing locations and large receptive field size, which can account 480

for the emergence of a range of different observed hippocampal cell types. Fourth, we 481

demonstrate that weakly-tuned MEC cells can also provide sufficient spatial information 482

for the emergence of place cells after learning. Most importantly, all the results 483

presented in this paper are generated by the same model, namely sparse coding with a 484

non-negative constraint. 485

4.2 Properties of grid cells that are necessary for the 486

emergence of place cells 487

Though the model based on sparse coding can learn place cells when only weakly-tuned 488

MEC cells are used, it does not imply that grid cells are not necessary for their 489

formation. The active firing rate for model cells when weakly-tuned MEC cells are used 490

as input is much larger than the rate when grid cells are used, suggesting that grid cells 491

are more efficient and thereby reduce the energy required by the neural system. Fiete 492

et al. (2008) proposed that grid cells with different spacings and phases altogether form 493

a residual system that efficiently encode the spatial location. In addition, the triangular 494

lattice of the grid pattern is known to be the solution to the optimal circle packing 495

problem (Thue, 1892) and the geometric scale of grid spacings can represent the spatial 496

environment efficiently (Wei et al., 2015). 497

4.3 Underlying neural circuits 498

Our study examines the extent to which sparse coding is as an underlying principle in 499

the navigational system of the brain. However, the current model implies no specific 500

neural circuits for the implemention of the sparse coding, rather it is one of the 501

principles that underlyings the formation of the neural circuits. Neurophysiological and 502

anatomical studies suggest that the entorhinal cortex and the hippocampus interact via 503

a loop (Tamamaki, 1997; Tamamaki and Nojyo, 1995; Witter et al., 2014). Therefore, 504

feedforward connections from the entorhinal cortex to the hippocampus, recurrent 505

connections within the hippocampus, and feedback connections from the hippocampus 506

to the entorhinal cortex all play an important role, thought their specific contributions 507

to the overall function of the network have not been fully uncovered yet. The proposed 508

model based on sparse coding in this study does not rule out any of the network 509

structures mentioned above, as sparse coding can be implemented in neural circuits 510
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either in a feedforward network with recurrent connections (Zylberberg et al., 2011) or a 511

network with feedforward-feedback loops (Lian et al., 2019). 512

4.4 Future work 513

The current study does not propose a specific biological neural circuit for implementing 514

sparse coding in the entorhinal-hippocampal region, which is the study of ongoing work. 515

Such a model of these neural circuits would need to take into account the experimentally 516

known networks in this area. In addition, the model here used prefixed grid cells. We 517

did not attempt here to provide a description for how grid cells emerge, but rather the 518

grid cells are assumed to provide an efficient representation of the environment. It 519

would be interesting to also investigate the role of sparse coding in how grid cells 520

themselves emerge. It is hoped that such future work, which incorporates these aspects 521

of the development process of both grid cells and place cells, will provide further 522

insights into how the navigational system of the brain works. Sparse coding represents 523

just one of a number of possible mechanisms that shape network structures, and much 524

remains to be explored to incorporate other mechanisms, such as those associated with 525

the complexities of metabotropic receptor effects, as discussed in Hasselmo et al. (2020). 526

5 Conclusion 527

In this study we examined the role of non-negative sparse coding upon hippocampal 528

place cells that receive input from MEC grid cells. The model showed that both place 529

fields and cells with multiple locations can be learned, depending upon specific network 530

parameters. In addition, the learned place cells give an accurate representation of 531

spatial location. Furthermore, weakly-tuned MEC cells are sufficient to drive 532

hippocampal cells to learn place fields. This study elucidates the role of sparse coding 533

as an important mechanism in the navigational system of the brain. 534

6 Supporting information 535

S1 Fig. A place map can be learned with a small number grid cells. Place 536

fields and their centers learned by the model with Nλ = 3, Nθ = 3 and Nx = Ny = 3. 537

Only 81 grid cells with diversity in spacing, orientation and phase are sufficient for the 538

model to learn place cells that tile the entire environment. (A) Place fields, F 539

(recovered by Eq 8), for 100 model cells. All 100 model cells learn a place field at 540

different spatial locations. Each block represents the recovered firing field of a model 541

cell in a 1m×1m environment. Values in each block are normalised to [0 1]. (B) 542

Centers of place cells plotted together in the environment. Place cells evenly tile the 543

whole spatial environment. (C) Histogram of K-nearest-distance for all place cells. 544

S2 Fig. Model cells can learn place cells even with limited diversity of 545

grid parameters. Compared with Fig 5, the model will learn place cells well if the 546

grid parameter has more than 1 different values. Firing fields, F (recovered by Eq 8), 547

are show below. Each block represents the recovered firing field of a model cell in a 548

1m×1m environment. Values in each block are normalised to [0 1]. (A) Two different 549

grid spacings are sufficient compared with Fig 5A: 2 grid spacing, 6 orientations and 25 550

phases (Nλ = 2, Nθ = 6 and Nx = Ny = 5). (B) Two different orientations are 551

sufficient compared with Fig 5B: 4 grid spacing, 2 orientations and 25 phases (Nλ = 4, 552

Nθ = 2 and Nx = Ny = 5). Note that 2 out of 100 model cells do not have obvious firing 553
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fields. (C) Two different phases in x− and y− axis are sufficient compared with Fig 5C: 554

4 grid spacing, 6 orientations and 4 phases (Nλ = 4, Nθ = 6 and Nx = Ny = 2). 555

S3 Fig. Effect of loss of diversity in grid cells. The model learns cells with 556

multiple firing locations when the realistic grid fields are less diverse: The place cells 557

still tile the entire environment, but with larger K-mean-distance. The top row of plots 558

shows the centers of all place cells and the bottom row of histogram shows the 559

distribution of K-nearest-distance. (A) When there is less diversity in grid spacings 560

(corresponding to the left plot in Figure 8B). There are 35 place cells out of 100 model 561

cells. The distribution of K-nearest-distance has mean 15.91 cm and standard deviation 562

2.51 cm. (B) When there is less diversity in grid orientation (corresponding to the 563

middle plot in Figure 8B). There are 45 place cells out of 100 model cells. The 564

distribution of K-nearest-distance has mean 14.78 cm and standard deviation 1.95 cm. 565

(C) When there is less diversity in grid phase (corresponding to the right plot in 566

Figure 8B). There are 81 place cells out of 100 model cells. The distribution of 567

K-nearest-distance has mean 11.67 cm and standard deviation 1.05 cm. 568
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