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Abstract

Recent developments in mass spectrometry (MS) instruments and data acquisi-
tion modes have aided multiplexed, fast, reproducible and quantitative analysis of
proteome profiles, yet missing values remain a formidable challenge for proteomics
data analysis. The stochastic nature of sampling in Data Dependent Acquisition
(DDA), suboptimal preprocessing of Data Independent Acquisition (DIA) runs and
dynamic range limitation of MS instruments impedes the reproducibility and accu-
racy of peptide quantification and can introduce systematic patterns of missingness
that impact downstream analyses. Thus, imputation of missing values becomes
an important element of data analysis. We introduce msImpute, an imputation
method based on low-rank approximation, and compare it to six alternative impu-
tation methods using public DDA and DIA datasets. We evaluate the performance
of methods by determining the error of imputed values and accuracy of detection of
differential expression. We also measure the post-imputation preservation of struc-
tures in the data at different levels of granularity. We develop a visual diagnostic to
determine the nature of missingness in datasets based on peptides with high biolog-
ical dropout rate and introduce a method to identify such peptides. Our findings
demonstrate that msImpute performs well when data are missing at random and
highlights the importance of prior knowledge about nature of missing values in a
dataset when selecting an imputation technique.
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Running Title: Peptide imputation by low-rank approximation

Abbreviations
DE: Differential Expression
MAR: Missing At Random
MCAR: Missing Completely At Random
MNAR: Missing Not At Random
SVD: Singular Value Decomposition
FDR: False Discovery Rate
MS: Mass Spectrometry
LC-MS: Liquid Chromatography - Mass Spectrometry
DDA: Data-dependent Acquisition
DDA: Data-independent Acquisition
ALS: Alternating Least Squares
RMSE: Root Mean Squared Error
HBD: High Biological Dropout
LOQ: limits of quantification
PC: Principal Components
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1 Introduction

Measurement of protein abundance in samples provides vital insight into the molecular
processes that underpin biological or clinical phenotypes of interest. Label-free liquid
chromatography mass spectrometry (LC-MS) is commonly used for comprehensive char-
acterization of protein species in a sample (1), yet a substantial fraction of identified
peptide measurements is missing from proteomics datasets (2). In proteomic biomarker
discovery studies, where no prior information is available on the potential protein species
that exist in a sample, data is acquired by the spectrum centric mode data dependent
acquisition (DDA). The stochastic sampling of peptide features for fragmentation during
DDA combined with low signal to noise ratio at lower levels near to limit of detection of
MS instruments and imperfect feature detection result in high levels of missing values,
even within technical replicates (3). Alternatively, the peptide centric data independent
acquisition (DIA) mode of operation requires prior knowledge about the fragment ion
spectra of targeted peptides and has substantially enhanced the reproducibility of pro-
teome quantification (4). However missing values still remain a problem for the field, and
can impact results from the downstream statistical analysis of proteomics data (5).

Missing values can be categorized into three categories: Missing Completely At Ran-
dom (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) (6).
MCAR missing values in proteomics data can originate from random errors or stochastic
fluctuations during experimental process. A number of different factors are reported to
impact the accuracy and reproducibility including, sample preparation, sample process-
ing, peptide separation, changes in sample complexity, matrix effects and ion suppression,
detector saturation and other technical factors (7–10). MAR is defined as the possibility
of a variable being missing is dependent on other observed variables (6, 11). MAR data
in proteomics are produced during data preprocessing, for example, by inaccurate peak
detection and deconvolution of co-eluting compounds. Missingness of values under the
limits of quantification (LOQ) (i.e. left-censored missing) are considered as MNAR (2).

The imputation methods in proteomics are broadly categorized as single value ap-
proaches, local similarity and global similarity approaches (12). Imputation of left-
censored MNAR missing values is typically performed by replacing the missing value
with a small value or with zero, although more sophisticated methods such as quantile
regression imputation have also been applied to left-censored data. MAR/MCAR are
generally difficult to distinguish and can be imputed by local methods based on observed
values in the neighborhood, or global similarity approaches such as maximum likelihood
estimation (13). We propose a global imputation method that completes missing values
by estimating a low-rank representation of the data and evaluate this method against
common imputation approaches in simulated and real MNAR and MAR/MCAR data.
We also provide a diagnostic for MAR/MNAR in proteomics data based on peptides with
higher than expected dropout rate, and demonstrate how this diagnostic can guide the
selection of imputation method.
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2 Experimental Procedures

We propose a method for imputation of missing peptide intensity measurements in label-
free proteomics experiments. Assuming that peptide intensities profiled in several samples
in an experiment are represented as a matrix, where rows are peptides and columns
correspond to samples, the proposed method re-constructs the partially observed matrix
of peptide intensities by estimating the underlying patterns in abundance data; a low-rank
approximation to the incomplete peptide intensity matrix. We benchmark the proposed
method in several public datasets, evaluate the performance of the method along with
other popular imputation procedures in simulated data, and provide parallel evidence that
support our findings in empirical datasets. Additionally, we propose a model that serves
as a visual diagnosis to deduce the MAR/NMAR nature of missing values in datasets.

2.1 Experimental Design and Statistical Rationale

2.1.1 Benchmark datasets

A number of public DDA and DIA benchmark datasets with Universal Proteomics Stan-
dards (UPS1/2) or known spiked-in proteins were identified from the previous literature.
An overview of the datasets used in this study is given in Table 1.

PXD000279 consists of UPS1/UPS2 standards spiked into E.coli lysates. Four repli-
cates are available for each UPS Proteomics Standards. This is a DDA dataset (14).

PXD002370 is a DDA dataset, where three concentrations of UPS1 (25 fmol, 10 fmol
and 5 fmol) were spiked in yeast extract in triplicates. PXD002370-Dataset 1 is a com-
parison between 10 fmol and 5 fmol, and PXD002370-Dataset 2 compares 25 fmol to 10
fmol (15).

PASS00589 consists of a DDA and a DIA dataset, where a set of 12 proteins are spiked
at different concentrations. Each dataset comes in four biological and three technical
replicates (16).

PXD011691 The sample set in PXD011691 consisted of ten samples derived from 10
different mouse cerebelli spiked with the UPS2 protein standard in five different concen-
trations (17). It contains DIA and TMT datasets acquired at two facilities. We used the
DIA dataset from FLI facility in differential expression analysis. We used the DIA and
TMT datasets from BGS center in the empirical evaluation of RMSE and local/global
structures, and the TMT data for generation of missing values, as it has smallest pro-
portion of missing values compared to data from FLI facility. We only retained complete
observations in the TMT data from BGS facility prior to amputation (a process where
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we mask a real, measured value to treat it as if it were missing, allowing us to impute a
value in a situation where we know the real, observed value).

The following pre-processing steps were applied to peptide-level intensities: contam-
inant peptides or those assigned to the reverse sequence of a known peptide or decoy
peptides were removed. Signal intensity values were collapsed at the peptide sequence
level by adding signal intensities from different charge states together. Peptides were
retained only if they were measured (not NA) in more than four samples. Peptides are
typically filtered if they are not detected in at least k samples, where k is the minimum
number of biological replicates in an experimental group. However, low-rank approxima-
tion requires at least 4 observed measurements per peptide. Peptide intensities were then
log2-transformed and quantile normalized. If a quantification workflow reports missing
values as zeros, the values were set back to NAs. Datasets were imputed at the peptide
level.

2.1.2 Missing value generation - data simulation

We utilized the ampute function (18–20) in mice R package (21) to simulate MAR and
MNAR missingness patterns in TMT dataset from (17) with 10 samples. The function
expects a complete dataset, and a list of peptides (a combination of which is called a
pattern) selected for amputation (masking), the fraction of samples affected by the pattern
(referred to as pattern frequency herein), a mechanism for missing values, and proportion
of missing values. Peptides were selected for amputation based on a mean-dependent,
weighted sampling strategy, such that peptides at low abundance receive higher weight
for being selected for amputation, whereas less weight is assigned to peptides at high
abundance. This mean-dropout trend is previously reported by (12), and can be modeled
by the following sampling strategy. Let µi denote the standardized average log2 intensity
for peptide i across all peptides. Each peptide is selected according to a weight defined
by

wi = 1− pi,

where pi is computed from a logistic function

pi =
eµi

1 + eµi
,

For MAR generation, we selected 30% of the peptides according to the sampling pro-
cedure described above. The selected peptides were partitioned into three patterns. Each
pattern defines a combination of peptides selected for amputation. The first pattern was
set to be missing in 60% of samples, and the two remaining patterns were each set to
be missing in 20% of the samples (N samples = 10). The proportion of missing values
were set to 10%. We then used the ampute function to introduce MAR missing values
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according to the described scheme. An illustration of the weights used for selection of
peptides for amputation is given in Figure S1.

For MNAR generation, we selected 9% peptides from mid-range abundance. We se-
lected all other peptides from the same protein as the selected peptides. We partitioned
the selections into four patterns and set them to be missing across samples at the frequency
of 0.6,0.2,0.1 and 0.1, according to the MNAR mechanism. The proportion missing was
set to 1%, hence each sample had 1% MNAR missing values. We selected peptides with
mid-range abundance and all other peptides in the protein group of selected peptides to
mimic dropout patterns in DDA, where peptides from the same protein are detected at
high abundance in one experimental group, but are missing in the other experimental
group due to LOQ. The patterns and their corresponding frequencies were deliberately
determined such that peptides from the same protein are amputed in at least one experi-
mental group, and remain intact in other experimental groups.

2.1.3 Missing value imputation methods

We benchmarked msImpute against six established imputation techniques in proteomics,
namely Zero replacement (22), MinDet (23, 24), Perseus-style imputation (25), QRILC
(26), K-Nearest Neighbors (KNN) (27) and MLE (28,29). MinDet replaces missing values
in each sample with a minimal observed value in that sample, determined by the qth quan-
tile of the observed values. Perseus replaces missing values by random numbers drawn
from a normal distribution with a width of 0.3 and down shift of 1.8. We deployed Perseus
in column-wise imputation mode (the default mode), where imputation is applied to each
expression column separately. QRILC imputes missing values by random draws from a
truncated normal distribution with parameters estimated using quantile regression. In
KNN, missing values in a sample are replaced by the average of k closest observed mea-
surements in that sample (local estimation), whereas in MLE missing values are replaced
by Maximum Likelihood estimates (global estimation).

MinDet and Zero replacement are known as single value approaches, and as with
QRILC and Perseus, are commonly used for imputation of left-censored MNAR data.
KNN is known as a local similarity approach, and MLE is a global similarity approach
to imputation. We used imputeLCMD (26) implementation of these imputation methods
with default parameters. We re-implemented Perseus’s (column-wise) imputation C++
script in R, where missing values were replaced by random draws from a multivariate
normal distribution, using the rmvnorm function in mvtnorm R package. The multivariate
normal distribution was parameterized by the following (vector) of means µ and standard
deviations σ:

µ = x̄− (s× σ̂)

σ = σ̂ × w,

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.12.248963doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.248963
http://creativecommons.org/licenses/by/4.0/


where x̄ denotes sample means, σ̂ denotes sample standard deviations, s and w denote
shift and width parameters, respectively. We set s = 1.8 and w = 0.3, as per defaults of
Perseus.

2.2 Performance evaluation

We used Root Mean Squared Error (RMSE) to quantify the error introduced in intensity
values by imputation in simulated datasets. Let (i, j) denote peptide i in sample j,
x(i,j) the ground truth log2 intensity and denote x̂ij the corresponding imputation. Let

m0i
def
= #{(i, j), wij = 0} denote total number of missing values for ith peptide. The

RMSE for the ith peptide is defined as:√√√√√ 1

m0i

∑
(i,j):wij=0

(xtrue
i,j − x̂ij)2

We looked at imputation error against average intensity of the peptides to investigate
if imputation error varies as average intensity increases. We also evaluated the impact of
imputation on results of differential expression analysis, and perturbation of global and
local structures.

2.2.1 Differential peptide expression

We used linear models with Empirical Bayes moderated t-statistics implemented in limma
(30) R/Bioconductor package to identify peptides differentially expressed between differ-
ent concentration of spiked-ins in benchmark datasets. Peptides were called differentially
expressed if they achieved a False Discovery Rate of 0.05. We evaluated the performance
of imputation methods by number of spiked-in peptides detected in top N DE peptides,
number of True Positives (peptides from spiked proteins correctly called differentially ex-
pressed), False Positives (peptides falsely called DE), Precision (number of peptide from
spiked proteins correctly called DE from all discoveries). In addition, for each method
we evaluated the rank of truly differentially expressed peptide in the top most significant
findings against the false discoveries made by the method.

2.2.2 Perturbation to global and local structures

We quantified distortion to local and global structures post imputation. We define local
structure as distance between biological (or technical) replicates of an experimental con-
dition, and global structure as distance between biological groups in an experiment. We
use four metrics to quantify such distortions: KNN, KNC, CPD and Gromov-Wasserstein
distance.
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• KNN The fraction of k-nearest neighbor runs in the original data that are preserved
as k-nearest neighbors in imputed data (31). KNN quantifies preservation of the
local, or microscopic structure.

• KNC The fraction of k-nearest class means in the original data that are preserved
as k-nearest class means in imputed data (32). KNC quantifies preservation of the
mesoscopic structure after imputation.

• CPD Spearman correlation between pairwise distances in the original data and
imputed data (33). CPD quantifies preservation of the global structure.

• GW Gromov-Wasserstein distance is a distributional divergence metric (34) that
quantifies dissimilarity of local and global structures simultaneously. We compute
the GW distance between Principal Components (PCs) of the imputed data and
original data, where PCs in the original data are computed using peptides with high
biological variance.

In addition to simulation studies, we assessed RMSE and the three metrics of struc-
tural properties (KNN, KNC and CPD) empirically in datasets where alternative mea-
surements were available for missing peptides. We identified a matched DIA-TMT dataset
(PXD011691), and a matched DDA-DIA (PASS00589). The latter is an example of MNAR
as the intensity values tend to be missing because of LOQ in DDA, while the earlier is
an example of MAR/MCAR. For each pair of datasets, we treated the dataset with more
complete measurements as the ground truth. For the DDA-DIA pair we evaluated im-
putation on peptides missing in DDA that were detected in DIA, and for the DIA-TMT
pair we carried out the assessments on peptides missing in DIA that were measured in
TMT dataset. The datasets where each centered to ensure the magnitude of the error
is comparable. We used k=3 nearest neighbor runs/classes for simulated datasets. For
empirical evaluations we used k=3 for DIA-TMT and k=2 for DDA-DIA. The GW dis-
tance was computed for all datasets used in differential expression analyses using all PCs
in imputed and original data. The PCs in original data were computed on top 1000
highly variable peptides in PXD011691, and top 50 in all other datasets. The highly
variable peptides were determined by decomposition of the total variance into biological
and technical variance similar to the scran package (35).

2.2.3 Linearity of observed UPS2 protein abundances after imputation

The UPS2 consists of 48 proteins organized in 6 tiers of abundance. We assessed if impu-
tation would preserve the linearity of observed protein abundances with the theoretical
concentration of the spiked UPS2 proteins in a Top3 analysis. The average intensity of
the three (or fewer, if fewer peptides were detected) peptides with the highest intensity,
Top3, was determined for each protein detected (36). Peptides were chosen separately
for each sample, so the same peptides were not necessarily used across the 10 samples.
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We used UPS2 FLI-DIA data in PXD011691 for the Top3 analysis. There was a total of
12 UPS2 proteins detected in this study. Our evaluations are based on 10 of 12 UPS2
proteins that passed our filtering steps and were retained in DE analysis of this dataset.

3 Results

3.1 Imputation by low-rank approximation via Alternating Least
Squares

Any high-dimensional dataset Xm×n with m features and n observations can be approxi-
mated and reconstructed by a number r ≤ min(m,n) of linear combination of its features.
This is the basis of the Singular Value Decomposition (SVD) technique widely used for
pattern extraction. Founded on softImpute-ALS algorithm (37), msImpute finds a low-
rank approximation of the incomplete peptide abundance matrix and reconstructs the
peptide intensity matrix as the product of two low-rank matrices.

Let Xm×n denote the peptide intensity matrix with missing values where m denotes
the number of peptides and n denotes the number of samples. Denote the indices of non-
missing observations by the set Ω. softImpute-ALS combines Nuclear-Norm-regularized
matrix approximation and maximum-margin matrix factorization to find two low-rank r ≤
min(m,n) matrices Am×r and Bn×r, such that the incomplete matrix can be reconstructed
by the product of the two matrices, i.e. X ≈ ABT . The two matrices A and B are found
by minimizing the following objective function:

minimize
A,B

1

2

∥∥PΩ(X − ABT )
∥∥2

F
+

λ

2
(∥A∥2F + ∥B∥2F ) (1)

where PΩ is the subset of observed peptide intensities, ∥2F is the nuclear norm that en-
courages low-rank solutions, and λ is a shrinkage operator that controls the rank of the
matrices being estimated. That is, we find two matrices A and B of lower dimensions
(rank) than the measured peptide intensities, X, such that their products approximate
X over the observed values with a reasonable accuracy (hence, the difference between X
and X̃ = AB becomes negligible, for observed entries of X). The solutions are found by
alternating between two Least Squares problems given in equations (2) and (3).

The matrix A = UD is initialized by random matrix Um×r with orthonormal columns
and D = Ir , the identity r × r matrix. Given A, solve for B:

minimize
B

∥∥PΩ(X − ABT )
∥∥2

F
+ λ ∥B∥2F , (2)

This is a multiresponse ridge regression with solution:

B̃T = (D2 + λI)−1DUTX
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B = V D is reconstructed from SVD of B̃D = Ṽ D̃2RT , where V = Ṽ and D = D̃.
Given B, A is solved by

minimize
A

∥∥PΩ(X − ABT )
∥∥2

F
+ λ ∥A∥2F , (3)

which is also a multiresponse ridge regression with solution

Ã = XVD(D2 + λI)−1

A is then updated by the product of two matrices A = UV , where U = Ũ and V = Ṽ
are estimated from SVD of ÃD = ŨD̃2RT . These steps are repeated until the difference
between successive estimates of ABT becomes negligible (i.e. the algorithm is converged).
The parameter λ controls the rank r of A and B matrices, hence ensures the solution to
equation (1) is low-rank. As λ decreases, the rank of solutions tend to increase.

msImpute first standardizes rows and columns of the matrix with missing values to
have zero means and unit variances. Since missing values are present, mean and standard
deviations cannot be estimated directly. msImpute first scales the data using the biscale
algorithm proposed in (37), which estimates mean and variance of rows and columns using
methods of moment. msImpute first scales the data using this algorithm. It also com-
putes the optimal, data-driven value for λ from the scaling step, then finds the low-rank
approximation X̃m×n of Xm×n by estimating Ã and B̃. The complete peptide intensity
matrix is then reconstructed by ÃB̃T . We recommend users apply msImpute to filtered,
normalized, log2-transformed, peptide intensity values.

3.2 Assessment of imputation error

Root Mean Squared Error is commonly used as a measure of imputation error in pro-
teomics benchmark studies (12,13,22). One expects the error to be uniform for peptides
at all ranges of abundance. Hence, absence of any trends in RMSE versus average peptide
intensity is desired, if an appropriate imputation procedure is adopted.

Evaluation of RMSE as a function of mean intensity in simulated MAR (Figure 1a),
and NMAR data (Figure 1b) suggested that in MAR datasets the error is smaller and
relatively uniform over the average abundance range in MLE and msImpute, whereas KNN
tends to make large errors for both low- and high-abundance peptides. Although the
methods developed for left-censored MNAR missing data, MinDet, QRILC, Perseus, and
Zero, tend to maintain a uniform small (with the exception of Zero) error in MNAR data,
they result in largest error when applied to MAR data. The imputation error is monotone
increasing over average log2 intensity for Zero replacement. It has an unbalanced V-shape
trend for MinDet, QRILC and Perseus, where imputation error is large for both low and
high abundance peptides, but is larger for peptides at high abundance. Replacement of
missing values by zero resulted in largest imputation error in both MAR and MNAR data.
Similar trends were identified in our empirical evaluations of RMSE and mean intensity
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in MAR and MNAR datasets where alternative measurements were available for missing
values (Figure S2a).

3.3 Assessment of the impact of imputation on Differential Ex-
pression

We found that msImpute tends to behave similar to MLE and KNN in recovering true
differentially expressed peptides and outperforms single value or left-censored MNAR
imputation approaches such as replacement with zero, MinDet, QRILC and Perseus in
PXD011691 and PXD002370 datasets (Figure 2). msImpute detects a larger number of
UPS1/2 peptides in top differential expression calls (Figure 2a), orders spiked-in peptides
at the top DE discoveries while making less false discoveries (Figure 2b), and maintains
highest precision and low false discovery rate (Figure 2c,d) compared to single value and
left-censored MNAR approaches in these datasets. We observed a favorable performance
when no imputation was applied to datasets in Figure 2 that is similar to imputation
by MLE. This was, however, coupled by hundreds of peptides being discarded from the
computations, as their fold-change or variances could not be estimated by limma. In
addition, we observed that the UPS2 protein abundances, measured as the average of
top 3 most intense peptides (i.e. Top3) across replicates, in all imputation methods
except Zero replacement maintain a linear association with theoretical concentrations in
PXD011691 dataset (Figure S3).

We also observed that msImpute can result in high false discovery rate and fail to
recover a considerable number of true DE peptides (i.e. true positives) in some datasets
(Figure 3a-d), where the evaluations were in favor of left-censored MNAR approaches,
particularly QRILC and Perseus. We reasoned that the variations in the performance of
msImpute in differential expression analyses is linked to the nature of missing values in
datasets.

3.4 A visual diagnosis for MAR/MNAR

We developed a visual test for MAR/MCAR and MNAR diagnosis based on dropout
patterns of peptides with high biological dropout rate. We fit a linear model to peptide
dropout rate, D, against peptide average intensity, µ:

D = β0 + β1µ+ ϵ,

where ϵ is the error term. The k peptides with largest residual have high dropout
rate and are highly expressed. If such peptides tend to be missing completely in one
biological group, then the dropout probability of a missing peptide depends on other
missing peptides, which is, by definition, describing the MNAR mechanism. We refer to
top k peptides with largest residual as High Biological Dropouts (HBD).
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We identified top 500 high biological dropout peptides as described earlier in each
benchmark dataset and produced heatmaps of their detection pattern (Figure 4). In
datasets where msImpute failed to maintain reasonable false discovery and true positive
rate, we noticed the presence of large blocks where intensity values were measured com-
pletely in one experimental group, but were missing in the other group, for example, due
to LOQ. This indicates that the dropout probability of a missing peptide depends on
other missing peptides in closely related samples. By definition, such missing values are
MNAR, hence why left-censored MNAR imputation methods outperform in this data.
We, therefore, inferred that data in Figure 4b are MNAR, whereas data in Figure 4a
are MAR/MCAR as there is no systematic pattern in missingness patterns of high bi-
ological dropout peptides. We suggest users produce heatmaps of dropout patterns of
HBD peptides as in Figure 4. If blocks of missing peptides are observed in one biological
group, the underlying missingness mechanism is MNAR. Otherwise intensity values are
MAR in which case msImpute will outperform imputation techniques that replace missing
values with a determined small value , or random draws from a Gaussian distribution.
Peptides with high biological dropouts can be identified using selectFeatures function
in msImpute software.

3.5 Preservation of global and local structures post-imputation

Using both simulated and real MAR/MNAR data, we could demonstrate that imputation
introduces distortions to local (within experimental group) and global (between experi-
mental groups) similarities in a dataset. While perturbation to local structures is related
to variance of measurements, distortion in global structures pertains to accuracy of fold-
changes estimates between experimental groups. We observed that msImpute and KNN
achieve lowest average RMSE in simulated MAR (Figure 5a) and NMAR (Figure 5b)
data, respectively. Although low average RMSE indicates small deviation of imputed val-
ues from ground truth, it does not guarantee preservation of pairwise distances between
samples, within or between experimental conditions.

While all imputation methods preserve mesoscopic structures (similarity of related
samples) reasonably well in both MAR (Figure 5c) and MNAR (Figure 5d) datasets,
preservation of local and global properties by various imputation methods depend on the
underlying missing data generation mechanisms. In MAR data, single value approaches
MinDet, Zero and left-censored MNAR methods only maintain, on average, 30% of global
and local structures, while these structures are almost perfectly preserved by msImpute

and MLE. Local similarity approaches to imputation can preserve 40% of global and local
structures in MAR data (Figure 5c). In MNAR data, the fraction of preserved nearest
neighbors and correlation between pairwise distances are lower in data imputed by MLE
and msImpute, whereas an almost perfect preservation of local and global similarities
is observed by KNN, Zero, MinDet, QRILC and Perseus (Figure 5d). Our empirical
evaluation of preservation of the structures in the MAR and NMAR data confirms similar
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conclusions to simulated datasets (Figure 5e and Figure S2b,c).
In the six datasets that we used to benchmark performance in differential expression

analyses, we computed the Gromov-Wasserstein distance between imputed data and the
original data. This distance metric measures preservation of local and global structures
simultaneously, so that larger distortions to the data post imputation result in larger
distances between imputed and original data. We observed that in MAR datasets global
similarity approaches, and in MNAR datasets left-censored missing approaches tend to
result in smaller distance estimates, hence better preservation of local and global structures
(Figure 5e).

4 Discussion

Many proteomics data analysis approaches such as differential expression, Network Anal-
ysis, classification and multi-omics integration require complete observations and non-NA
measurements. Missing values are inherent in proteomics datasets. Hence, imputation of
missing values is an essential part of data processing.

We evaluated the performance of the proposed imputation method along with the
widely used local, global and left-censored NMAR missing imputation approaches. Eval-
uation of RMSE of imputed peptide log-intensities as a function of mean log-intensity in
simulated MAR and NMAR data suggested that MLE and msImpute have similar imputa-
tion error. Similarly, left-censored MNAR methods produce similar RMSE trends. RMSE
is on average lower in msImpute compared to all other methods in simulated MAR data,
and is smaller than the left-censored missing, single value imputation, or Zero replacement
approaches in simulated NMAR settings. We observed that, regardless of the nature of
missing data, imputation by zero results in largest error/deviation from ground truth. We
note that msImpute is akin to global similarity approaches of imputation such as MLE,
and outperforms single value and left-censored MNAR approaches, that are mostly based
on random sampling from a normal distribution, in MAR data.

In differential expression analyses, msImpute can reliably detect and rank true DE pep-
tides at the top table of the findings in MAR data. The benchmark differential expression
results are in favor of QRILC and Perseus in MNAR data. Under MAR settings, msIm-
pute and MLE preserve data structures post imputation. Replacement of missing values
by zero, or sampling from a Gaussian distribution are common choices of imputation by
the proteomics community and here we demonstrate that mean RMSE and perturbations
to local and global structures are generally very large for these methods in MAR data.
Hence, these imputation strategies should be practiced with caution. Our benchmark and
simulation studies suggest that under a MAR assumption msImpute and MLE, and under
MNAR assumption QRILC and Perseus are safe choices for imputation. Importantly,
missing values can be left untreated in differential expression analyses if they occur ran-
domly, and indeed we showed that performance is comparable to that of imputation by
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MLE. However, many peptides will be discarded when linear models are fitted, as their
fold-change or variance cannot be estimated, which results in the loss of information from
the data.

Our evaluations suggest that there is a resemblance in performance among methods
in each category of imputation procedures (e.g., local-similarity, global-similarity, left-
censored MNAR). Therefore, based on the datasets used in this study, there is likely to be
one dominant pattern of missingness in datasets. Our proposed method for MAR/MNAR
pattern identification based on peptides with high biological dropout rate can, hence,
serve as an effective visual tool to infer the governing pattern. For each sample in a
dataset, the missingness patterns of High Biological Dropout peptides introduced in this
work can be encoded as a binary vector, where 1 denotes the measurement for the peptide
is missing in the sample and 0 denotes otherwise. Such encoding results in a binary
matrix of dimensions n× k, where n is the number of samples and k < m is the number
of top HBD peptides, that can be used to train a supervised classification models such
as Logistic Regression or Support Vector Machine (SVM) to predict the biological group
of the samples. A Receiver Operator Characteristic (ROC) value larger than 0.5 implies
that the missing patterns contain information that is predictive of biological groups, and
hence, a Missing Not At Random mechanism. msImpute has been successfully applied in
previous proteomics studies (38).
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Table 1 Datasets used in this study, listed in the order of appearance in figures.

PXD011691

PXD002370 

PASS00589 

PXD000279

Dataset name Description Type No. of replicates Reference

Dynamic range benchmark dataset 
consisting of UPS1/UPS2 standards 
(Sigma) spiked into E. coli lysates. 

Samples from 10 different mouse cerebelli
spiked with the UPS2 protein standard in 
five different concentrations.

Cox et al.14DDA 4

DIA, TMT 10-plex 10 Muntel et al.17

Three different concentrations of UPS1 
(Sigma) spiked in yeast extracts.  

DDA 3 Giai Gianetto
et al.15

DDA, DIA 4 Bruderer et al.16
Three master mixes consisting of twelve 
non-human proteins spiked into a constant 
background (HEK-293) at various 
concentrations.
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Figure 1: Evaluation of Imputation Error. RMSE versus Average intensity in simulated
MAR dataset (a), and MNAR dataset (b) by imputation procedure. Small errors and
uniform trends in RMSE versus mean intensity are desired.
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Figure 2: Impact of imputation on Differential Expression Analysis at the peptide level
in MAR data. (a) Number of peptides from UPS/spiked-in proteins in top N differentially
expressed peptides per imputation method in six benchmark datasets. A large number of
UPS peptides detected in top N discoveries is desired. (b) Ranking of the UPS/spiked-in
peptides in top N differential expression calls and false discoveries made by each impu-
tation technique in benchmark datasets. An ideal imputation procedure is expected to
order UPS/spiked-in peptides at the top N discoveries, while maintaining small number of
false discoveries.(c) True Positives (UPS/spiked-in peptides correctly called DE) vs False
Positives (none UPS/spiked-in peptides mis-identified as DE) in benchmark datasets with
MAR-type missing values. (d) Precision versus True Positives. Proportion of True Posi-
tives (peptides from UPS/spiked-in proteins correctly detected as differentially expressed)
from all differential expression calls versus number of True Positives per imputation pro-
cedure in six benchmark datasets. The secondary axis captures False Discovery Rate
(FDR). High precision and small FDR are desired in DE analysis.
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Figure 3: Impact of imputation on Differential Expression Analysis at the peptide level
in MNAR data. (a) Number of peptides from UPS/spiked-in proteins in top N differen-
tially expressed peptides (b) Ranking of the UPS/spiked-in peptides in top N differential
expression calls and false discoveries made by each imputation technique (c) True Posi-
tives (UPS/spiked-in peptides correctly called DE) vs False Positives (none UPS/spiked-in
peptides mis-identified as DE) (d) Precision versus True Positives.
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Figure 4: Performance of an imputation procedure depends on the nature of missingness
in the dataset. Heatmap of detection patterns (1 if observed, 0 if missing) of high biological
dropout (HBD) peptides in MAR (a) and MNAR datasets (b). In MNAR data, dropout
probability of a peptide depends on other missing peptides and dropout often occurs in a
group of similar samples. Hence, MNAR can be identified by detection of block of missing
values (i.e. related peptides from the same protein missing in one biological/experimental
group). However, the block-wise missing structures are absent in MAR settings. Rows
are peptides and columns are samples. Columns are annotated by experimental group.
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Figure 5: Mean RMSE and distortion to local and global structures in simulated data.
Average RMSE (averaged over all missing peptides) in MAR (a) and MNAR (b) set-
ting. Percentage of preserved k-nearest neighbor runs (samples) and class means, and the
pair-wise Pearson correlation between runs in original and imputed data in MAR (c) and
MNAR (d). Squared Gromov-Wasserstein distance for benchmark datasets used in differ-
ential expression analyses. For each dataset we normalize the distances by the maximum
GW 2.
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Figure S1: Peptides are selected for amputation according to a weighted sampling pro-
cedure. The sampling procedure employed reflects the mean-dropout trend commonly
observed in proteomics data, where low abundance peptides have higher dropout rate.
Dropout rate decreases for peptides with high average intensity Right Each peptide is
assigned a weight according to its average log2 intensity during sampling. Left Coeffi-
cient of variation versus average log2 intensity for all peptides and peptides selected for
amputation according to the weighted sampling scheme.
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Figure S2: Empirical evaluation of RMSE and distortion to local and global structures in
real data. RMSE versus Average intensity in simulated MAR (PXD011691 DIA) dataset
(a, upper panel), and MNAR (PASS00589 DDA) dataset (a, lower panel) by impu-
tation method. Average RMSE (averaged over all missing peptides) in MAR (b, upper
panel) and MNAR (c, upper panel) setting. Percentage of preserved k-nearest neigh-
bor runs (samples) and class means, and the pair-wise Pearson correlation between runs
in original and imputed data in MAR (b, lower panel) and MNAR (c, lower panel).
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Figure S3: Top3 analysis. Linearity of observed UPS2 protein abundances with theoret-
ical concentrations is maintained by all imputation approaches, except Zero replacement.
Black dash line is the linear fit to the data points, red solid line is a loess (non-linear)
fit. For all methods except Zero replacement, the linear and non-linear fits overlap, which
indicates that overall the observed UPS2 protein abundances maintain linearity with the-
oretical concentrations.
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