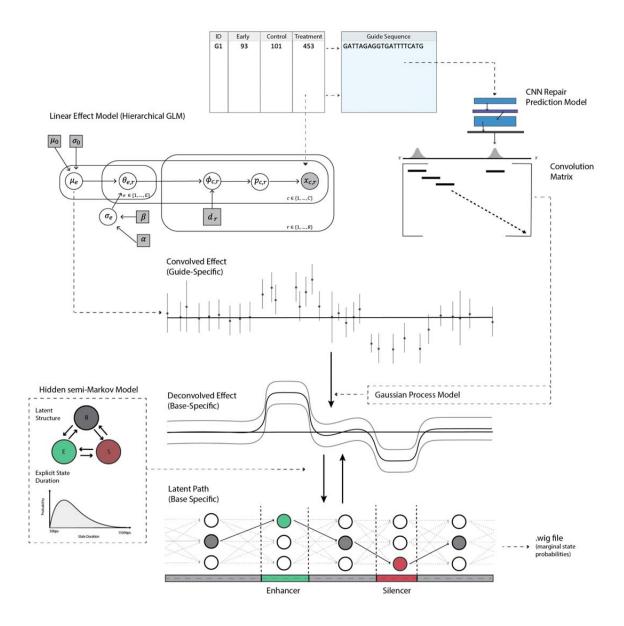
CRISPR-Decryptr reveals cis-regulatory elements from noncoding perturbation screens

3	
3 4	
5	Anders Rasmussen ^{1,*} , Tarmo Äijö ^{1,*} , Mariano Ignacio Gabitto ¹ , Nicholas Carriero ³ , Neville
6	Sanjana ⁴ , Jane Skok ⁵ , Richard Bonneau ^{1,2,5,**}
7 8	
	¹ Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
9	² New York University, Center for Data Science, New York, NY 10010, USA.
10	³ Scientific Computing Core, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA.
11	⁴ New York Genome Center, New York, NY, 10013, USA.
12	⁵ New York University, Department of Biology, New York, NY 10012, USA
13	* These authors contributed equally to this work
14	** To whom correspondence should be addressed
15	
16	
17	
18	Abstract:
19	
20	Clustered Regularly Interspace Short Palindromic Repeats (CRISPR)-Cas9 genome editing
21	methods provide the tools necessary to examine phenotypic impacts of targeted perturbations
22	
22	in high-throughput screens. While these technologies have the potential to reveal functional
23	elements with direct therapeutic applications, statistical techniques to analyze noncoding
24	screen data remain limited. We present CRISPR-Decryptr, a computational tool for the analysis
25	of CRISPR noncoding screens. Our method leverages experimental design: accounting for
26	multiple conditions, controls, and replicates to infer the regulatory landscape of noncoding
27	genomic regions. We validate our method on a variety of mutagenesis, CRISPR activation, and
28	CRISPR interference screens, extracting new insights from previously published data.

29 Main:

30 Information garnered from pooled CRISPR perturbation screens impacts decisions that 31 32 have therapeutic implications. Genome-wide knockout and noncoding screens have been used to identify new therapeutic targets, to reveal genes responsible for anti-cancer drug resistance, 33 and to map functional elements in leukemia cell lines.^{1,2,3,4} As researchers in academia and 34 35 industry make greater use of improving gene editing technologies, computational approaches 36 that tackle the unique challenges posed by their experimental design are of increasing 37 importance. Methods employed for knockout screens are designed to assess the impact of perturbing a genome-wide set of pre-delineated coding regions.^{5,6} However, analysis of CRISPR 38 39 noncoding screens, which employ saturated guide libraries to reveal *cis*-regulatory elements, 40 necessitate distinct experimental considerations. Most importantly, classification of functional 41 elements without a priori knowledge of their location or size requires integrating information 42 across perturbations within genomic proximity, an aspect that renders existing knockout 43 methods inapplicable to these experimental designs. Literature on methods for analyzing 44 noncoding screens is scarce, with only a single method published that addresses one of the many aspects of noncoding screen analysis.⁷ 45


46

47 CRISPR-Decryptr utilizes techniques from Bayesian inference, signal processing, and
 48 latent variable models to integrate data and experimental design, allowing the end-user to
 49 make precise conclusions about their noncoding screen results (Figure 1; *Methods*). A Bayesian
 50 hierarchical generalized linear model (GLM) serves as the mathematical formulation from which
 51 perturbation-specific effect on phenotype are inferred^{8, 9}. The model leverages experimental

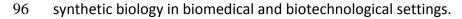
52	conditions, controls, and replicates in a single numerical procedure implemented with Markov
53	Chain Monte Carlo, allowing for rigorous statistical treatment of parameter uncertainty
54	(Methods 2.2). Effects are mapped to a base-by-base level of granularity through a Gaussian
55	process-based model (<i>Methods 2.4</i>) ¹⁰ . This deconvolution fully accounts for guide-specificity,
56	off-target effects and, if applicable, double-strand break (DSB) repair uncertainty (Methods
57	2.3) ^{11, 12} . A hidden semi-Markov model (HsMM) incorporates spatial information to decode the
58	latent regulatory landscape of interest, revealing enhancers and silencers in the noncoding
59	genome (<i>Methods 2.5</i>) ¹³ . Regulatory element calls and guide-specific effects are exported in
60	bioinformatics file formats such as Browser Extendable Data (.bed) and Wiggle (.wig) that can
61	easily be explored in genomic visualization software such as the Integrative Genomics Viewer
62	(IGV) ¹⁴ .

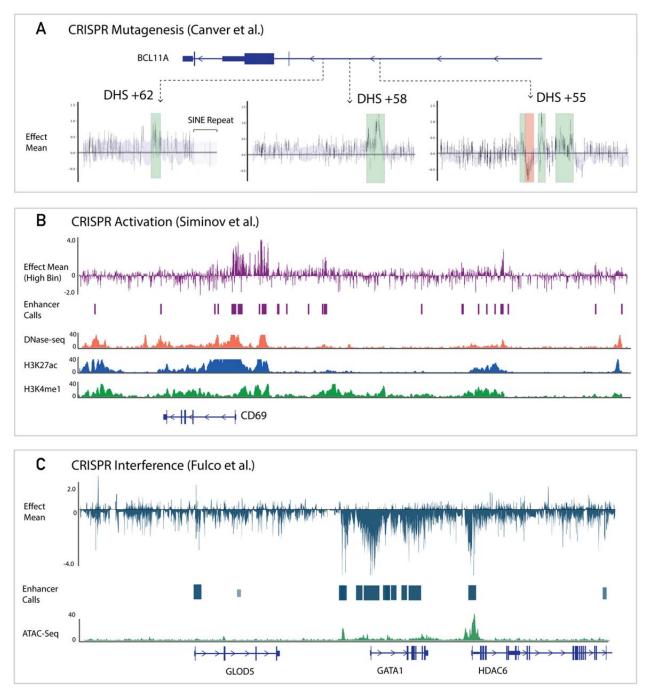
63

64

65

Figure 1: Overview of the CRISPR-Decryptr method for the analysis of noncoding
 screens. The hierarchical GLM infers pertubation-specific regulatory effect on phenotype from
 raw guide RNA (gRNA) counts (*top left*). Guide RNA sequences are used to construct a
 convolution matrix accounting for specificity, off-target effects, and repair uncertainty in the
 case of mutagenesis screens (*top right*). Finally, iterating between Gaussian Process
 deconvolution and HsMM training and prediction reveals base-specific effects and ultimately
 the latent state path of interest (*bottom half*).


74 We validated CRISPR-Decryptr on noncoding screens of distinct experimental designs, including CRISPR mutagenesis, CRISPR activation (CRISPRa), and CRISPR interference (CRISPRi) 75 screens (Figure 2)^{4, 15, 16}. In the CRISPR mutagenesis screen (Canver *et al.*), three intronic DNAse 76 77 hypersensitivity sites (DHS) within BCL11A were perturbed in human umbilical cord bloodderived erythroid progenitor (HUDEP) cells¹⁵. These sites, termed DHS +62, +58, and +55, are 78 79 known to impact fetal hemoglobin (HgF) levels from prior published research, with the 80 enhancer identified in DHS +58 having proven a successful therapeutic target in two patients with hemoglobinopathies.¹⁷ When applied to this dataset, CRISPR-Decryptr produced 81 82 regulatory state calls in agreement with the original analysis (Figure 2A and Supplementary 83 Figure 3.1.1). The CRISPR activation screen we re-analyzed (Simionov et al.) targeted the IL2RA and *CD69* gene loci in Jurkat T-cells.¹⁶ To measure phenotypic change, the FACS sort cells into a 84 85 "negative", "low", "medium", and "high" bins of IL2RA and CD69 based on expression levels. 86 Analysis of the two gene loci with CRISPR-Decryptr recalls the enhancers from the original 87 analysis, as well as novel putative enhancers that are correlated with DNAse-seg and H3K27ac 88 from the Jurkat-T Cell line (Supplementary Figures 3.2.2 and 3.2.3). Finally, the re-analysis of 89 the Fulco et al. CRISPRi screen of the GATA1 gene loci revealed similar regulatory element calls to the original analysis.⁴ (Figure 2C and Supplementary Figure 4.3.1). 90 91 We have described a statistical technique for analyzing CRISPR noncoding screen data


92 and illustrated the accuracy of CRISPR-Decryptr on three distinct perturbation technologies,

93 demonstrating the method's ability to reveal novel insights from a diverse set of experimental

94 designs. CRISPR-Decryptr will be a valuable component in future attempts to identify functional

95 genomic elements and their link to phenotypic traits, enabling target identification and

97

98 **Figure 2:** Regulatory elements classified by CRISPR-Decryptr for three published noncoding

99 screens. A: Analysis mutagenesis screen targeting BCL11A DHS sites reveals similar enhancer

and silencer locations as in the original publications. **B**: Analysis CRISPRa screen targeting CD69

101 promoter region reveals novel enhancer calls. **C**: Analysis CRISPRi screen targeting GATA1 gene

102 loci reveals the same enhancer calls as in the original analysis.

103 104	Code Availability:
104 105 106 107	CRISPR-Decryptr code and readme are located at: https://github.com/anders-w-rasmussen/crispr_decryptr
108 109	Data Availability:
110 111	All data is available at https://github.com/anders-w-rasmussen/crispr_decryptr
112 113 114	No restrictions on data are applicable here. All data used were publicly available.
115 116	Acknowledgements:
117 118 119 120 121	This research was made possible by the Simons Foundation. RB and MG acknowledge support from the following sources: NIH R01DK103358, Simons Foundation, NSF-IOS-1546218, R35GM122515, NSF CBET-1728858, and NIH R01AI130945
122 123	Contributions:
124 125 126 127 128 129 130 131 132 133 134 135 136	A.R. conceived of the model with guidance and oversight from R.B. and T.Ä. The inference step of the method and Gaussian Process deconvolution were formulated and coded by T.Ä. Off- target, repair outcome prediction, and the Gaussian Process / HsMM iterative procedure were formulated by A.R. The majority of HsMM code is adapted from previous work by done by M.I.G and A.R. in developing the ChromA algorithm. Rules for HsMM parameter updates and variational methods were developed by M.I.G. N.C. was instrumental in advising on high- performance computing considerations. N.S. and J.S. provided important insight into noncoding screens from the viewpoint of experimentalists and were central in bringing the need for this statistical method to A.R. and R.B.'s attention. A.R. did analyses of published data, wrote the paper supplement, and wrote the CRISPR-Decryptr software. All authors contributed to the writing of the manuscript.
137 138	Competing Interests:
139 140	A.R. owns stock in Editas medicine and 10x Genomics. T.Ä. owns stock in 10x Genomics.
141 142	R.B. has ongoing or recent consulting or advisory relationships with Eli Lily, Merus, Merck and Epistemic AI.

143144 References:

145 146	¹ Wei, L., Lee, D., Law, C. <i>et al.</i> Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. <i>Nat Commun</i> 10 , 4681 (2019).
140	a childai dhiver for Soraremb resistance in Acc. Nat Commun 10, 4681 (2019).
147	² Lau, M., Ghazanfar, S., Parkin, A. <i>et al.</i> Systematic functional identification of cancer multi-
148	drug resistance genes. <i>Genome Biol</i> 21, 27 (2020).
149	
150	³ Fellmann, C., Gowen, B., Lin, P. <i>et al.</i> Cornerstones of CRISPR–Cas in drug discovery and
151	therapy. Nat Rev Drug Discov 16, 89–100 (2017).
152	(10) (2017).
154	⁴ Fulco, C.P, Munschauer, M. Anyoha, R. Systematic mapping of functional enhancer–promoter
155	connections with CRISPR interference. <i>Science</i> 354 , 769–773 (2016).
156	
157	⁵ Li, W., Xu, H., Xiao, T. <i>et al</i> . MAGeCK enables robust identification of essential genes from
158	genome-scale CRISPR/Cas9 knockout screens. <i>Genome Biol</i> 15 , 554 (2014).
159	
160	⁶ Allen, F., Khodak, A. Behan, F. <i>et al.</i> JACKS: joint analysis of CRISPR/Cas9 knockout screens.
161	Genome Research 29 , 464-471 (2019)
162	
163	⁷ Hsu, J.Y., Fulco, C.P., Cole, M.A. <i>et al.</i> CRISPR-SURF: discovering regulatory elements by
164	deconvolution of CRISPR tiling screen data. <i>Nat Methods</i> 15 , 992–993 (2018).
165	
166	⁸ Gelman A, Hill J. <i>Data analysis using regression and multilevel/hierarchical models</i> (Cambridge
167	university press, Cambridge, 2006).
168	
169	⁹ Gelman, Andrew, et al. <i>Bayesian data analysis</i> (CRC press, Boca Raton, FL, 2013).
170	
171	¹⁰ Rasmussen, C.E., Williams, C.K. <i>Gaussian Processes for Machine Learning</i> (The MIT Press,
172	Cambridge, MA, 2006)
173	
174	¹¹ Hsu, P., Scott, D., Weinstein, J. <i>et al.</i> DNA targeting specificity of RNA-guided Cas9 nucleases.
175	Nat Biotechnol 31, 827–832 (2013).
176	
177	¹² Allen, F., Crepaldi, L., Alsinet, C. <i>et al.</i> Predicting the mutations generated by repair of Cas9-
178	induced double-strand breaks. Nat Biotechnol 37, 64–72 (2019).
179	
180	¹³ Gabitto, M.I., Rasmussen, A., Wapinski, O. <i>et al.</i> Characterizing chromatin landscape from
181	aggregate and single-cell genomic assays using flexible duration modeling. Nat Commun 11, 747
182	(2020).
183	
184	¹⁴ Robinson, J., Thorvaldsdóttir, H., Winckler, W. <i>et al</i> . Integrative genomics viewer. <i>Nat</i>
185	Biotechnol 29, 24–26 (2011).

- 186
- ¹⁵ Canver, M., Smith, E., Sher, F. *et al. BCL11A* enhancer dissection by Cas9-mediated *in situ* saturating mutagenesis. *Nature* 527, 192–197 (2015).
- 189
- ¹⁶ Simeonov, D., Gowen, B., Boontanrart, M. *et al.* Discovery of stimulation-responsive immune
 enhancers with CRISPR activation. *Nature* 549, 111–115 (2017).
- 192
- ¹⁷ Bauer DE, et al. An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines
 Fetal Hemoglobin Level. *Science* **342**, 253–257 (2013).
- 195
- 196
- 197
- 198