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Abstract: 18 
 19 

Clustered Regularly Interspace Short Palindromic Repeats (CRISPR)-Cas9 genome editing 20 

methods provide the tools necessary to examine phenotypic impacts of targeted perturbations 21 

in high-throughput screens. While these technologies have the potential to reveal functional 22 

elements with direct therapeutic applications, statistical techniques to analyze noncoding 23 

screen data remain limited. We present CRISPR-Decryptr, a computational tool for the analysis 24 

of CRISPR noncoding screens. Our method leverages experimental design: accounting for 25 

multiple conditions, controls, and replicates to infer the regulatory landscape of noncoding 26 

genomic regions. We validate our method on a variety of mutagenesis, CRISPR activation, and 27 

CRISPR interference screens, extracting new insights from previously published data.   28 
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Main: 29 
 30 

Information garnered from pooled CRISPR perturbation screens impacts decisions that 31 

have therapeutic implications. Genome-wide knockout and noncoding screens have been used 32 

to identify new therapeutic targets, to reveal genes responsible for anti-cancer drug resistance, 33 

and to map functional elements in leukemia cell lines.1,2,3,4 As researchers in academia and 34 

industry make greater use of improving gene editing technologies, computational approaches 35 

that tackle the unique challenges posed by their experimental design are of increasing 36 

importance. Methods employed for knockout screens are designed to assess the impact of 37 

perturbing a genome-wide set of pre-delineated coding regions. 5,6 However, analysis of CRISPR 38 

noncoding screens, which employ saturated guide libraries to reveal cis-regulatory elements, 39 

necessitate distinct experimental considerations. Most importantly, classification of functional 40 

elements without a priori knowledge of their location or size requires integrating information 41 

across perturbations within genomic proximity, an aspect that renders existing knockout 42 

methods inapplicable to these experimental designs. Literature on methods for analyzing 43 

noncoding screens is scarce, with only a single method published that addresses one of the 44 

many aspects of noncoding screen analysis.7  45 

 46 

CRISPR-Decryptr utilizes techniques from Bayesian inference, signal processing, and 47 

latent variable models to integrate data and experimental design, allowing the end-user to 48 

make precise conclusions about their noncoding screen results (Figure 1; Methods). A Bayesian 49 

hierarchical generalized linear model (GLM) serves as the mathematical formulation from which 50 

perturbation-specific effect on phenotype are inferred8, 9. The model leverages experimental 51 
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conditions, controls, and replicates in a single numerical procedure implemented with Markov 52 

Chain Monte Carlo, allowing for rigorous statistical treatment of parameter uncertainty 53 

(Methods 2.2). Effects are mapped to a base-by-base level of granularity through a Gaussian 54 

process-based model (Methods 2.4)10. This deconvolution fully accounts for guide-specificity, 55 

off-target effects and, if applicable, double-strand break (DSB) repair uncertainty (Methods 56 

2.3)11, 12. A hidden semi-Markov model (HsMM) incorporates spatial information to decode the 57 

latent regulatory landscape of interest, revealing enhancers and silencers in the noncoding 58 

genome (Methods 2.5)13. Regulatory element calls and guide-specific effects are exported in 59 

bioinformatics file formats such as Browser Extendable Data (.bed) and Wiggle (.wig) that can 60 

easily be explored in genomic visualization software such as the Integrative Genomics Viewer 61 

(IGV)14.  62 

 63 

 64 
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 65 
Figure 1: Overview of the CRISPR-Decryptr method for the analysis of noncoding 66 

screens. The hierarchical GLM infers pertubation-specific regulatory effect on phenotype from 67 
raw guide RNA (gRNA) counts (top left). Guide RNA sequences are used to construct a 68 
convolution matrix accounting for specificity, off-target effects, and repair uncertainty in the 69 
case of mutagenesis screens (top right). Finally, iterating between Gaussian Process 70 
deconvolution and HsMM training and prediction reveals base-specific effects and ultimately 71 
the latent state path of interest (bottom half).  72 
  73 
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We validated CRISPR-Decryptr on noncoding screens of distinct experimental designs, 74 

including CRISPR mutagenesis, CRISPR activation (CRISPRa), and CRISPR interference (CRISPRi) 75 

screens (Figure 2) 4, 15, 16 . In the CRISPR mutagenesis screen (Canver et al.), three intronic DNAse 76 

hypersensitivity sites (DHS) within BCL11A were perturbed in human umbilical cord blood-77 

derived erythroid progenitor (HUDEP) cells15. These sites, termed DHS +62, +58, and +55, are 78 

known to impact fetal hemoglobin (HgF) levels from prior published research, with the 79 

enhancer identified in DHS +58 having proven a successful therapeutic target in two patients 80 

with hemoglobinopathies.17 When applied to this dataset, CRISPR-Decryptr produced 81 

regulatory state calls in agreement with the original analysis (Figure 2A and Supplementary 82 

Figure 3.1.1). The CRISPR activation screen we re-analyzed (Simionov et al.) targeted the IL2RA 83 

and CD69 gene loci in Jurkat T-cells.16  To measure phenotypic change, the FACS sort cells into a 84 

“negative”, “low”, “medium”, and “high” bins of IL2RA and CD69 based on expression levels. 85 

Analysis of the two gene loci with CRISPR-Decryptr recalls the enhancers from the original 86 

analysis, as well as novel putative enhancers that are correlated with DNAse-seq and H3K27ac 87 

from the Jurkat-T Cell line (Supplementary Figures 3.2.2 and 3.2.3). Finally, the re-analysis of 88 

the Fulco et al. CRISPRi screen of the GATA1 gene loci revealed similar regulatory element calls 89 

to the original analysis.4 (Figure 2C and Supplementary Figure 4.3.1).  90 

We have described a statistical technique for analyzing CRISPR noncoding screen data 91 

and illustrated the accuracy of CRISPR-Decryptr on three distinct perturbation technologies, 92 

demonstrating the method’s ability to reveal novel insights from a diverse set of experimental 93 

designs. CRISPR-Decryptr will be a valuable component in future attempts to identify functional 94 
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genomic elements and their link to phenotypic traits, enabling target identification and 95 

synthetic biology in biomedical and biotechnological settings.  96 

 97 
Figure 2: Regulatory elements classified by CRISPR-Decryptr for three published noncoding 98 
screens. A: Analysis mutagenesis screen targeting BCL11A DHS sites reveals similar enhancer 99 
and silencer locations as in the original publications. B: Analysis CRISPRa screen targeting CD69 100 
promoter region reveals novel enhancer calls. C: Analysis CRISPRi screen targeting GATA1 gene 101 
loci reveals the same enhancer calls as in the original analysis.    102 
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Code Availability: 103 
 104 
CRISPR-Decryptr code and readme are located at: 105 
https://github.com/anders-w-rasmussen/crispr_decryptr  106 
 107 
Data Availability: 108 
 109 
All data is available at https://github.com/anders-w-rasmussen/crispr_decryptr 110 
  111 
No restrictions on data are applicable here. All data used were publicly available. 112 
 113 
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