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Abstract: 
 

Clustered Regularly Interspace Short Palindromic Repeats (CRISPR)-Cas9 genome editing 

methods provide the tools necessary to examine phenotypic impacts of targeted perturbations 

in high-throughput screens. While these technologies have the potential to reveal functional 

elements with direct therapeutic applications, statistical techniques to analyze noncoding 

screen data remain limited. We present CRISPR-Decryptr, a computational tool for the analysis 

of CRISPR noncoding screens. Our method leverages experimental design: accounting for 

multiple conditions, controls, and replicates to infer the regulatory landscape of noncoding 

genomic regions. We validate our method on a variety of mutagenesis, CRISPR activation, and 

CRISPR interference screens, extracting new insights from previously published data.    
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Main: 
 

Information garnered from pooled CRISPR perturbation screens impacts decisions that 

have therapeutic implications. Genome-wide knockout and noncoding screens have been used 

to identify new therapeutic targets, to reveal genes responsible for anti-cancer drug resistance, 

and to map functional elements in leukemia cell lines.1,2,3,4 As researchers in academia and 

industry make greater use of improving gene editing technologies, computational approaches 

that tackle the unique challenges posed by their experimental design are of increasing 

importance. Methods employed for knockout screens are designed to assess the impact of 

perturbing a genome-wide set of pre-delineated coding regions. 5,6 However, analysis of CRISPR 

noncoding screens, which employ saturated guide libraries to reveal cis-regulatory elements, 

necessitate distinct experimental considerations. Most importantly, classification of functional 

elements without a priori knowledge of their location or size requires integrating information 

across perturbations within genomic proximity, an aspect that renders existing knockout 

methods inapplicable to these experimental designs. Literature on methods for analyzing 

noncoding screens is scarce, with only a single method published that addresses one of the 

many aspects of noncoding screen analysis.7  

 

CRISPR-Decryptr utilizes techniques from Bayesian inference, signal processing, and 

latent variable models to integrate data and experimental design, allowing the end-user to 

make precise conclusions about their noncoding screen results (Figure 1; Methods). A Bayesian 

hierarchical generalized linear model (GLM) serves as the mathematical formulation from which 

perturbation-specific effect on phenotype are inferred8, 9. The model leverages experimental 
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conditions, controls, and replicates in a single numerical procedure implemented with Markov 

Chain Monte Carlo, allowing for rigorous statistical treatment of parameter uncertainty 

(Methods 2.2). Effects are mapped to a base-by-base level of granularity through a Gaussian 

process-based model (Methods 2.4)10. This deconvolution fully accounts for guide-specificity, 

off-target effects and, if applicable, double-strand break (DSB) repair uncertainty (Methods 

2.3)11, 12. A hidden semi-Markov model (HsMM) incorporates spatial information to decode the 

latent regulatory landscape of interest, revealing enhancers and silencers in the noncoding 

genome (Methods 2.5)13. Regulatory element calls and guide-specific effects are exported in 

bioinformatics file formats such as Browser Extendable Data (.bed) and Wiggle (.wig) that can 

easily be explored in genomic visualization software such as the Integrative Genomics Viewer 

(IGV)14.  
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Figure 1: Overview of the CRISPR-Decryptr method for the analysis of noncoding 

screens. The hierarchical GLM infers pertubation-specific regulatory effect on phenotype from 
raw guide RNA (gRNA) counts (top left). Guide RNA sequences are used to construct a 
convolution matrix accounting for specificity, off-target effects, and repair uncertainty in the 
case of mutagenesis screens (top right). Finally, iterating between Gaussian Process 
deconvolution and HsMM training and prediction reveals base-specific effects and ultimately 
the latent state path of interest (bottom half).  
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We validated CRISPR-Decryptr on noncoding screens of distinct experimental designs, 

including CRISPR mutagenesis, CRISPR activation (CRISPRa), and CRISPR interference (CRISPRi) 

screens (Figure 2) 4, 15, 16 . In the CRISPR mutagenesis screen (Canver et al.), three intronic DNAse 

hypersensitivity sites (DHS) within BCL11A were perturbed in human umbilical cord blood-

derived erythroid progenitor (HUDEP) cells15. These sites, termed DHS +62, +58, and +55, are 

known to impact fetal hemoglobin (HgF) levels from prior published research, with the 

enhancer identified in DHS +58 having proven a successful therapeutic target in two patients 

with hemoglobinopathies.17 When applied to this dataset, CRISPR-Decryptr produced 

regulatory state calls in agreement with the original analysis (Figure 2A and Supplementary 

Figure 3.1.1). The CRISPR activation screen we re-analyzed (Simionov et al.) targeted the IL2RA 

and CD69 gene loci in Jurkat T-cells.16  To measure phenotypic change, the FACS sort cells into a 

“negative”, “low”, “medium”, and “high” bins of IL2RA and CD69 based on expression levels. 

Analysis of the two gene loci with CRISPR-Decryptr recalls the enhancers from the original 

analysis, as well as novel putative enhancers that are correlated with DNAse-seq and H3K27ac 

from the Jurkat-T Cell line (Supplementary Figures 3.2.2 and 3.2.3). Finally, the re-analysis of 

the Fulco et al. CRISPRi screen of the GATA1 gene loci revealed similar regulatory element calls 

to the original analysis.4 (Figure 2C and Supplementary Figure 4.3.1).  

We have described a statistical technique for analyzing CRISPR noncoding screen data 

and illustrated the accuracy of CRISPR-Decryptr on three distinct perturbation technologies, 

demonstrating the method’s ability to reveal novel insights from a diverse set of experimental 

designs. CRISPR-Decryptr will be a valuable component in future attempts to identify functional 
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genomic elements and their link to phenotypic traits, enabling target identification and 

synthetic biology in biomedical and biotechnological settings.  

 
Figure 2: Regulatory elements classified by CRISPR-Decryptr for three published noncoding 
screens. A: Analysis mutagenesis screen targeting BCL11A DHS sites reveals similar enhancer 
and silencer locations as in the original publications. B: Analysis CRISPRa screen targeting CD69 
promoter region reveals novel enhancer calls. C: Analysis CRISPRi screen targeting GATA1 gene 
loci reveals the same enhancer calls as in the original analysis.    
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Section 1: Using CRISPR-Decryptr 
 
In this section, we present the usage and descriptions of each command in CRISPR-Decryptr for 
noncoding screens. https://github.com/anders-w-rasmussen/crispr_decryptr  
  
Step 1: Infer perturbation-specific regulatory effect from gRNA count data.  
 
Use:  Decryptr infer <count> <design_matrix> <replicate_information> [options] 

 
 

Positional Arguments:  
   
count_file 

 

Description: 
 
Tab-delimited file with columns containing gRNA counts from different samples. The first 
row should contain sample names corresponding to each column. CRISPR-Decryptr will 
extract columns from this file according to the sample names included in the design_matrix 
file. You may include other columns for your own reference (such as gene IDs, etc) but they 
will be ignored.  

 
design_matrix 
 
 
 
 
 
 
 
replicate_information 
 
 
 
 
 

Optional Arguments: 
 
--n_chains 
 
--batch_size 
 
 
--n_batches 
 
 
--n_samples 
 
--outfile 
 
--sample_file_prefix 
 
--logfilename 
 
--outfile_devs 
 
 

 
Tab-delimited file of design matrix for specific experimental design. The first column of the 
file should contain the samples you are considering, all of which must correspond to an 
entry in the first row of the count_file. The first row contains the names of the ‘effects’ you 
are considering. The rest of the file is 0s and 1s indicating which effects are to be 
considered in the linear predictor (see section 2.2) 
 
 
 
This file should have an identical first column to the design matrix. The second contains the 
word ‘replicate’ in the first row followed by integers indicating which replicate the sample 
in the first column is from.  
 
 
 

Description: 
 
Number of chains to use in MCMC sampling (default is 4).  
 
Number of guides per batch. Please see notes on the collapsed multinomial in section A.1. 
Larger batch sizes scale poorly. We recommend the default of 1000.  
 
The number of batches to run simultaneously. The number of processes spawned will be 
n_chains * n_batches.  
 
Number of samples for each chain. Default is 500.  
 
Out filename   
 
Prefix for sample filenames to be saved. The default is “samples.” 
 
Specify the name for the .log file 
 
Write replicate level standard deviations of effects to this file. If not specified this file will 
not be written. These are not used by CRISPR-Decryptr.  
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Step 2: Create the convolution matrix.   
 
Use:  Decryptr predict <targets> <cas9_alg> [options] 

 
 
Positional Arguments:  
    
targets 
 
 
 
cas9_alg 
 
 
 
 
 

Other Arguments: 
 
--species 
 
 
 
--spacers 
 
 
--reference 
 
--uniqueness 
 
 
--ignore_specificity 
 
 
--filter_dev 
 
 
 
--filter_window 
 
 
--n_processes  
 
 
--logfilename 
 
--cmat_name 

 
Description: 
 
Single column file of target locations. First row should be chromosome, each subsequent 
row should be a genomic location on said chromosome. This file should have N_guides + 1 
rows and must be in the same order as the count_file.  
 
True / False. Type True if you wish to use off-target and repair prediction (for mutagenesis 
screens) or False if you wish to use Gaussian windows to construct the convolution matrix. 
If you choose True, you must include the --spacers and       --reference arguments. If you 
choose False, you must include the --filter_dev and ---filter_window arguments. 
 
 

Description: 
 
Species for uniqueness. Only hg19 is supported right now but we may add other genomes 
in the future. You can use –reference and –uniqueness if you want to use custom files for 
another species.   
 
Single column file containing spacer sequences of the guide library. These must correspond 
to the intended targets in the ‘targets’ file.  
 
.fasta file of the reference chromosome.  
 
Specify your own fixedStep .wig file of mappabilty/uniqueness of the region under 
consideration.  
 
If you set this to True, the algorithm will ignore guide-specificity in the convolution matrix.  
 
 
Standard deviation of Gaussian window. Larger perturbation profiles (such as for CRISPRa or 
CRISPRi) should have larger standard deviations. Please see section 2.3 for more detailed 
discussion of this parameter.  
 
Size of the Gaussian window. Larger windows will be more computationally expensive in 
the deconvolve step. Please see section 2.3 for more detailed discussion of this parameter.  
 
Number of processes Decryptr will spawn to create the convolution matrix (only applies if 
off_target is True).  
 
Name of the logfile to write 
 
Name the output convolution matrix. Default is convolution_matrix.p 
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Step 3: Classify regulatory elements with GP deconvolution and HsMMs 
   
Use:  Decryptr classify <effect_file> <targets> <conv_mat> 

 

 
Positional Arguments:  
    
effect_file 
 
targets 
 
 
 
conv_mat 
 
 

Optional Arguments: 
 
--hyperparameters 
 
--out_dir 
 
--logfilename 
 
--alpha 
 
--rho 
 
--sigma 
 
 
--bed_threshold 
 
--flip_enhancer 
 
 
 
--normalize 
 
 
 
 
 
--hampel_filter 
 
 

Description: 
 
Effect file as produced by the inference step (step 1). 
 
Single column file of target locations. First row should be chromosome, each subsequent 
row should be a genomic location on said chromosome. This file should have N_guides + 1 
rows and must be in the same order as the count_file.  
 
Convolution matrix as produced by the predict step (step 2).   
 
 

Description:  
 
Hyperparameter file for HsMM (see Section A.4 for details) 
 
Directory to write results files 
 
Name of the .log file  
 
Signal deviation parameter for the Gaussian process (see section 2.4) 
 
Length scale parameter for the Gaussian process (see section 2.4) 
 
Process noise parameter for the Gaussian process (see section 2.4) 
 
 
Marginal state probability above which a state is called in the .bed file (default 0.80) 
 
If default hyperparameters are used, this argument if True will flip the enhancer state to 
emit NEGATIVE regulatory effect. May be appropriate for certain experimental designs such 
as CRISPRi screens.   
 
When the normalize argument is True, the incoming convolved signal will be normalized to 
a standard score (subtracts the mean of the effect and divides this difference by the effect’s 
standard deviation). In application, this is very useful when effects in the region of interest 
are not of mean zero, or when we need to compare multiple effects that follow different 
distributions.  
 
When this argument is True, the algorithm attempts to remove outliers from the incoming 
convolved signal using a Hample Filter.  
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Section 2: Methods 

 

The objective of CRISPR-Decryptr is to reveal probabilistic locations of regulatory elements on 

the genome given gRNA counts from noncoding screens. We define a “regulatory landscape,” 

the set of hidden states at each base of the genomic region of interest (Section 2.1). To arrive at 

these state probabilities, we begin by accounting for experimental design and readout, inferring 

regulatory effects along the genome using a hierarchical generalized linear model (GLM) 

(Section 2.2). Next, we account for off-target and repair prediction, creating a convolution 

matrix mapping “guide-specific” effects to “base-specific” effects (Section 2.3). Finally, we 

implement a Gaussian process (GP) model and hidden semi-Markov model (HsMM) to 

deconvolve effects and classify the “regulatory landscape” at the base-by-base level (Section 

2.4, 2.5, 2.6). 

 

 

2.1 Defining the Regulatory Landscape 

 

We assume that perturbation of the noncoding region of interest can have any of 𝐸 user 

defined effects on phenotype. As such, the probability mass function of phenotypic readout for 

any perturbation 𝑥𝑝𝑒𝑟𝑡𝑢𝑏𝑎𝑡𝑖𝑜𝑛 can be written as a function of these effects, 

𝑓𝑝𝑒𝑟𝑡𝑢𝑏𝑎𝑡𝑖𝑜𝑛(𝑒1, 𝑒2, . . , 𝑒𝐸). The goal of the CRISPR-Decryptr method is to take a dataset of 

phenotypic readouts for various targeted perturbations 𝑿 and infer the probabilistic locations 

of regulatory elements within the targeted region that regulate these 𝐸 effects. We posit that 

each base 𝑏 ∈ {1,… ,𝐵} within the genomic region of length 𝐵 belongs to one of 𝑆𝑒  states. 

Denote the state of each 𝑒, 𝑏 pair 𝑠𝑒,𝑏 . A unique configuration of the entire region across effects 

is a set of states 𝒔 = ⋃  {𝑠𝑒,𝑏}𝑒 𝜖 {1,…,𝐸},𝑏 𝜖 {1,…,𝐵} . Given our screen data 𝒙, we wish to determine 

the marginal probability of each (𝑒, 𝑏) pair belonging to any given state, represented by the set 

of probability vectors  

 

𝚸 = ⋃ {[𝑝(𝑠𝑒,𝑏 = 1 |𝑿), 𝑝(𝑠𝑒,𝑏 = 2 | 𝑿),… , 𝑝(𝑠𝑒,𝑏 = 𝑆𝑒 |𝑿)]}

 𝑒∈{1,…,𝐸},   𝑏∈{1,…,𝐵}

.   

 

In the following sections, we walk through the model step-by-step, moving from the input data 

𝑿 to the set of marginal state probability vectors 𝚸. 
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2.2 Inferring Regulatory Effect  

 

The first part of our algorithm implements a generalized linear model (GLM) and Markov chain 

Monte Carlo to infer posterior distributions for effects of each perturbation on cell phenotype, 

denoted 𝒈𝒆  ∈  ℝ𝐼 ∀ 𝑒 𝜖 {1,… , 𝐸}, where 𝐼 is the number of guides.1,2 Allow 𝑐 𝜖 {1,… , 𝐶} to be 

condition within the set of 𝐶 conditions, and  𝑟 𝜖 {1,… , 𝑅} to be the replicate within the set of 

𝑅 replicates. gRNA count data for each 𝑐, 𝑟 pair is denoted by the vector 𝒙𝑐,𝑟  ∈ ℕ≥0
𝑁  consisting 

of individual guide specific counts 𝑥𝑐,𝑟,𝑖 where 𝑖 𝜖 {1,… , 𝐼}. We model 𝒙𝑐,𝑟 as being generated 

from a multinomial distribution with parameter 𝒑𝑐,𝑟. By using the standard unit Softmax 

function to map a real valued vector in ℝ𝑁 to the simplex ∆𝑁−1, we represent 𝒑𝑐,𝑟 as a function 

of a hierarchical linear predictor 𝒑𝑐, 𝑟 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝝓𝑐, 𝑟). The linear predictor takes the following 

form:  

 

𝝓𝑐, 𝑟 = 𝒅𝑐 [𝜽1, 𝑟 , 𝜽2, 𝑟, … 𝜽𝐸, 𝑟], ∀ 𝑐 𝜖 {1,… , 𝐶},  𝑟 𝜖 {1,… , 𝑅} 

𝜽𝑒, 𝑟 ~ N(𝝁𝒆, 𝑑𝑖𝑎𝑔(𝜎𝑒)),  ∀ 𝑒 𝜖 {1,… , 𝐸}, 𝑟 𝜖 {1,… , 𝑅} 

𝒖𝒆 ~ N(𝑢0, 𝑑𝑖𝑎𝑔(𝜎0)),  ∀ 𝑐 𝜖 {1,… ,𝐸}, 

𝜎𝑒
2 ~ InvGamma(𝛼, 𝛽) ,  ∀ 𝑒 𝜖 {1,… , 𝐸} 

 

The predictor 𝝓𝑐, 𝑟 is a linear combination of replicate-specific effect vectors 

𝜽𝑒, 𝑟 𝜖 {𝜽1, 𝑟 ,… , 𝜽𝐸, 𝑟} with weights dictated by 𝒅𝑐 row 𝑐 of the design matrix 𝑫. Each entry in 

the replicate-specific effect vector is distributed normally according to 𝑢𝑒,𝑖 and 𝜎𝑒: guide-

specific regulatory effect and a single inferred standard deviation shared across guides.  𝑢0, 

𝜎0 , 𝛼, 𝛽 are fixed hyperparameters. Allow 𝝑 = { 𝜽𝟏, 𝟏 
… , 𝜽𝑬, 𝑹  , 𝝁𝟏, … , 𝝁𝑬 , 𝜎1, … , 𝜎𝑒 }  to be 

the set of model parameters and 𝜻 = {𝑢0, 𝜎0 , 𝛼, 𝛽 }  to be the set of hyperparameters.  

We write the joint posterior distribution for the model variables using Bayes formula as,  

 

𝑓𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟( 𝝑 | 𝒙, 𝜻 ) =  
𝐿( 𝒙 | 𝝑 ) 𝑓𝑝𝑟𝑖𝑜𝑟( 𝝑 | 𝜻 )

∫ 𝐿( 𝒙 | 𝝑 ) 𝑓𝑝𝑟𝑖𝑜𝑟( 𝝑 | 𝜻 ) 𝑑𝝑
 

 

Where 𝑓𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  is the posterior density function of the model parameters given the data and 

hyperparameters, 𝑓𝑝𝑟𝑖𝑜𝑟  is the prior density function of the model parameters given the 

hyperparameters, and 𝐿 is the likelihood of the data given model parameters. Closed-form 

representation of the joint posterior is not possible, as evaluation of the marginal likelihood is 

intractable. To arrive parameter estimates, we sample from the posterior distribution using 

Hamiltonian Monte Carlo (HMC) implemented in Stan, which will produce 𝐻 sampled values of 

each parameter. Allow 𝝑ℎ to be the set of sampled parameters for sample ℎ 𝜖 {1,… ,𝐻 }.  

We calculate the posterior means of each 𝝁𝒆,  and 𝜎𝑒
2 as follows: 
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𝝁𝝁𝒆
=  

1

𝐻
∑ 𝝁𝒆,𝒉 ∀ 𝑒 𝜖 {1,… , 𝐸}ℎ∈𝐻 ,     𝜇𝜎𝑒

2 = 
1

𝐻
∑ 𝜎𝑒,ℎ

2  ∀ 𝑒 𝜖 {1,… , 𝐸}ℎ∈𝐻  

 

We can now express the guide-specific regulatory effects as,  

 

𝒈𝑒 ~ 𝑁 (𝝁𝝁𝒆
, 𝑑𝑖𝑎𝑔(𝜇𝜎𝑒

2))∀ 𝑒 𝜖 {1,… , 𝐸}. 

 

 

 
Supplementary Figure 2.2: Plate diagram of hierarchical Generalized Linear Model for effect 
inference. White circles represent latent model parameters to be inferred, while grey circles 
represent observed quantities. Grey squares are user-defined parameters, while circular nodes 
are model variables.  
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2.3 Constructing a Convolution Matrix  

 

In Section 2.1, we defined the latent regulatory landscape 𝒔 as being the set of base and effect-

specific states ⋃  {𝑠𝑒,𝑏}𝑒 𝜖 {1,…,𝐸},𝑏 𝜖 {1,…,𝐵} . In Section 2.2 above, we described a numerical 

method to infer perturbation specific effects 𝒈𝑒  ∈  ℝ𝐼. However, to examine regulatory 

elements at the base-by-base level of granularity we must arrive at a base-specific effect 

vectors 𝒃𝒆  ∈  ℝ𝐵 ∀ 𝑒 ∈ {1,… , 𝐸}. We do so by positing that there exists a linear map 𝑓: ℝ𝐵  →

 ℝ𝐵 that can be represented as an 𝐼 × 𝐵 convolution matrix 𝑪, such that 𝒈𝑒  =  𝑪𝒃𝒆  ∀ 𝑒 ∈

{1,… , 𝐸}. We define the entries 𝑐𝑖𝑏 of matrix 𝑪 as representing the probability of guide 𝑖 

perturbing base 𝑏. As such, we construct the convolution matrix guide-by-guide by calculating 

Cas9-binding and perturbation probabilities across the region of interest. The raw data, as well 

as our inferred effects, are specific to guide 𝑖 with target sequence, 𝑡𝑎𝑟𝑔𝑒𝑡𝑖. We define the 

target DNA sequence as the sequence complementary to the guide RNA. For mutagenesis 

screens, we assume the probability of guide 𝑖 inducing a mutation at base 𝑏 can be written 

 

𝑐𝑖𝑏  =  ∑ 𝑝𝑖,𝑏′
𝑏𝑖𝑛𝑑(𝑡𝑎𝑟𝑔𝑒𝑡𝑖)  ×  𝑝

𝑏,𝑏′
𝑝𝑒𝑟𝑡

𝑏′∈ {1,… ,𝐵}

 

 

where 𝑏′ is the base where Cas9 binds, defined as the most 3’ nucleotide in the PAM sequence 

NGG on the both strands.  𝑝𝑖,𝑏′
𝑏𝑖𝑛𝑑  is the probability that Cas9 fused with guide 𝑖 binds at base 𝑏′. 

𝑝𝑏,𝑏′
𝑝𝑒𝑟𝑡  is the probability that a Cas9 binding event at base 𝑏′ results in a genomic perturbation at 

base 𝑏.  

 

We calculate each binding probability  𝑝𝑖,𝑏′
𝑏𝑖𝑛𝑑(𝑡𝑎𝑟𝑔𝑒𝑡𝑖)  ∀  𝑖 ∈ {0,… , 𝐼}, 𝑏′ ∈ {0,… , 𝐵} using 

the scoring methodology presented in Hsu et al. (2013)3. Any base that is not the last 

nucleotide in an NGG motif is assigned a Cas9 binding of zero. Allow 𝑡𝑎𝑟𝑔𝑒𝑡𝑖[𝑏] to be the b-th 

nucleotide in the target sequence and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑏′[𝑏] to be the b-th nucleotide in the 20 base-

pair sequence beginning 23 bases in the 5’ direction of 𝑏′ and terminating 3 bases in the 5’ 

direction of 𝑏′. We define the Hsu tensor 𝐻𝑠𝑢[𝑡, 𝑐, 𝑏] as a 4 ×  4 ×  20 tensor of Hsu scores 

defined in Supplementary Table 2.3. 

 𝑝𝑖,𝑏′
𝑏𝑖𝑛𝑑(𝑠𝑒𝑞𝑖) =  ∏ 𝐻𝑠𝑢[𝑡𝑎𝑟𝑔𝑒𝑡𝑖[𝑏] , 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑏′[𝑏] , 𝑏]

20

𝑏=1

  

 

The prediction of perturbation profile is dependent on experimental design, for CRISPR 

mutagenesis screens that induce cleavage events, we can calculate perturbation probabilities at 

each base around the binding site  𝑝
𝑏,𝑏′
𝑝𝑒𝑟𝑡

(𝑡𝑎𝑟𝑔𝑒𝑡𝑖) using a Convolutional Neural Network 

trained on a database of double stranded break outcomes in Allen et al (2017)4. Please see 
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Section A.3 on more details on CNN model performance. Allow 𝒔𝒆𝒒𝒃′ to be a 4 ×  41 one-hot 

encoding of the sequence beginning 20bps in the 5’ direction of 𝑏′ and ending 20bps in the 3’ 

direction of 𝑏′. We allow 𝒑:,𝒃′
𝒎𝒖𝒕 to be the 1 ×  41 vector [𝑝𝑏′−20,𝑏′

𝑚𝑢𝑡 , 𝑝𝑏′−19,𝑏′
𝑚𝑢𝑡  …. 𝑝𝑏′+20,𝑏′

𝑚𝑢𝑡 ]. As 

such, the CNN model approximates a function 𝑓𝐶𝑁𝑁: 𝒔𝒆𝒒𝒃′  ↦  𝒑:,𝒃′
𝒎𝒖𝒕.  

 

 

 
 
Supplementary Figure 2.3: Illustration CRISPR-Decryptr’s method for convolution matrix 
construction. For Cas9 mutagenesis screens, repair prediction is performed by a convolutional 
neural network model, taking one-hot encoded sequence as an input and outputting a 
sequence-specific pertubation profile. The guide is also aligned to the reference genome based 
on its Hsu score, determining the position and weighting the perturbation profile in the 
convolution matrix.  

 

 

For CRISPRi and CRISPRa screens, we construct the convolution matrix out of Gaussian 

Windows of user defined standard deviation 𝜎𝑤𝑖𝑛𝑑𝑜𝑤 and odd integer window size 𝑊, centered 

on 𝑏′
𝑖, defined as the most 3’ nucleotide in the PAM sequence of the intended target of guide 𝑖. 

We write the entries of the convolution matrix as follows: 

 

𝑐𝑖𝑏 = ∑   𝑝𝑖,𝑏′
𝑏𝑖𝑛𝑑(𝑠𝑒𝑞𝑖)    ×   {

 exp {−
1

2
 (

𝑏− 𝑏′
𝑖

𝜎𝑤𝑖𝑛𝑑𝑜𝑤 
𝑊

2
 
)

2

}   if 𝑏 ∈ {𝑏′ − 
𝑊

2
, 𝑏′ + 

𝑊

2
}

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   𝑏′∈ {1,… ,𝐵} ∀ 𝑖 ∈ {0,𝑁}, 𝑏 ∈ {0,𝑀}   
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2.4 Gaussian Process Deconvolution 
 
 
In section 2.3 we constructed a convolution matrix that satisfies the equation 𝒈𝑒  =  𝑪𝒃𝒆  under 

our assumptions. However, the problem of solving for a vector of base-specific effect 𝒃𝒆  , given 

a vector of guide-specific effect, is ill-posed, as the matrix 𝑪 is singular. To solve the inverse 

problem, we implement a Gaussian Process model by defining a Gaussian process prior on 

𝒃𝒆  such that 𝒃𝒆   ~ 𝐺𝑃(𝟎, 𝑲)5. 𝑲 is a kernel matrix approximating the covariance structure as a 

squared exponential function of the distance between guides 𝑖 and 𝑗,  𝐾𝑖,𝑗 =

𝛼2exp {−
1

2𝜌2 (𝑞𝑖 − 𝑞𝑗)}, where 𝑞𝑖 , 𝑞𝑗 are the genomic positions of 𝑖 and 𝑗 respectively. The 

characteristic-length scale 𝜌 and signal variance 𝛼2 are inferred parameters. Note that ∘ 

denotes the Hadamard or element-wise product.  

 

Given the linear map 𝑪 defined in 2.3, we write the likelihood for the guide specific effect 

variables as 𝒈𝒆  ~ 𝑵(𝑪𝒃𝒆  , 𝑑𝑖𝑎𝑔(𝜎2)) where 𝜎2 is a process-noise term to be inferred.  The 

joint distribution of 𝒈𝒆  and 𝒃𝒆  can now be written: 

 

(
𝒈𝒆

𝒃𝒆
) =  𝑁 ((

𝟎
𝟎
) , (

𝑪𝑲𝑪𝑻 + 𝑑𝑖𝑎𝑔(𝜎2) 𝑪𝑲

𝑲𝑪𝑻 𝑲
)) 

 

The posterior predictive distribution for 𝒃𝒆 now takes the closed-form solution, 

 

𝒃𝒆 = 𝑲𝑪𝑻 (𝑪𝑲 𝑪𝑻 +  𝑑𝑖𝑎𝑔(𝝈𝟐))𝑻𝒈𝒆 

 

The parameters 𝜌, 𝛼2, 𝜎2 can optionally be set by the user. By default, CRISPR-Decryptr sets 

𝛼2 and 𝜎2 both to the average variance in the guide-specific effect signal and sets the length 

scale 𝜌 to the average distance between saturated guides (defined as guides within 100bps). 

 

By default, CRISPR-Decryptr does not normalize the incoming effect 𝒈𝑒 . However, if desired, 

the classify step can use the convolved effect’s standard score  (𝒈𝑒 − 𝑬[𝒈𝑒 ]) / √𝑽𝒂𝒓[𝒈𝑒 ]  if 

the --normalize argument is set to True (see section 1). As the GP prior has a fixed mean of zero, 

this can influence the results of the deconvolution if the difference between zero and 𝑬[𝒈𝑒 ] is 

large.    
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2.5 Decoding Latent State Variables with Hidden semi-Markov Models 
 
We model the latent state path as following a discrete time semi-Markov process, where the 

effect specific state of each base is denoted 𝑠𝑒,𝑏 . In a standard Markov process, the duration – 

or sojourn time – spent within any given state, follows a geometric distribution, an assumption 

we believe to be in conflict with the distribution in sizes of experimentally measured regulatory 

elements. As such, we implement a Hidden semi-Markov Model with state durations that 

follow a negative binomial distribution with state-specific parameters, written 

𝐷𝑠,𝑒 ~ 𝑁𝐵(𝑟𝑠,𝑒 , 𝑝𝑠,𝑒)
6. For CRISPR-Decryptr, we assume the HsMM has a latent model structure 

comprised of an arbitrary number of states 𝑛 (default is two). The transition matrix and initial 

probability vector for each effect 𝑒 take the form: 

 

𝐴𝑒 =  

[
 
 
 

0 𝑎12,𝑒 …  𝑎1𝑛,𝑒

 𝑎21,𝑒 0  𝑎2𝑛,𝑒

⋮ ⋱
 𝑎𝑛1,𝑒  𝑎𝑛2,𝑒 0 ]

 
 
 

 ,   𝜋𝑒 =  [

𝜋1,𝑒

𝜋2,𝑒 
⋮

𝜋𝑛,𝑒

] 

 

Where 𝑎𝑖𝑗,𝑒 represents the probability of transitioning from effect-specific state i to state j and 

𝜋𝑖,𝑒 represents the probability of base 0 being the effect-specific state i.  

 

We now define the emission probabilities for each state. We assume the base-specific mean for 

effect 𝑒, 𝜇𝑒,𝑏 follows a Normal distribution with inferred mean 𝜇𝑒,𝑠 and precision 𝜏𝑒,𝑖 = 
1

𝜎𝑒,𝑖
2, 

where 𝜎𝑒,𝑏  was the standard deviation of the effect mean at base b. We write this probability as 

follows: 

𝑝(𝜇𝑒,𝑏 | 𝑠𝑏 = 𝑠) =   √ 
𝜏𝑒,𝑖

2𝜋
 exp {

𝜏𝑒,𝑖(𝜇𝑒,𝑖 − 𝜇𝑒,𝑠)
2

2
} 

 

To maintain a Bayesian approach, we define prior distributions on model parameters as follows: 

 

𝑝𝑒,𝑠 ~ 𝐵𝑒𝑡𝑎(𝛼𝑠,𝑒, 𝛽𝑠,𝑒)  ∀  𝑠 ∈ {1,… , 𝑆}, 𝑒 ∈ {1,… ,𝐸} 

𝑎𝑒,𝑠,∶ ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜂𝑠)  ∀  𝑠 ∈ {1,… , 𝑆}, 𝑒 ∈ {1,… , 𝐸} where 𝜂𝑠 ∈  ℝ𝑆 

𝜋𝑒~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜂𝜋,𝑒) where 𝜂𝜋,𝑒 ∈  ℝ𝑆    

𝜇𝑒,𝑠 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑒,𝑠,0 ,
1

𝜏𝜇,0
 )  ∀  𝑠 ∈ {1,… , 𝑆}, 𝑒 ∈ {1,… , 𝐸}  

 

Implementation of the Baum-Welch algorithm leads to estimates for marginal state-probability 

vectors 𝚸 as described in section 2.1.  
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Section 3: Analysis of Published Screens 
 
3.1 Mutagenesis Screen of BCL11A DNase Hypersensitivity Sites (Canver et al.) 
 
The BCL11A gene is a validated repressor of fetal hemoglobin (HbF) level. In their 2013 paper, 

Bauer et al. label three DNAse hypersensitivity sites (DHS) that overlap with single nucleotide 

polymorphisms (SNPs) that impact HbF levels in genome-wide association studies (GWAS)7. 

These sites, DHS +62, +58, and +55, are named according to their distance in kilobases from the 

TSS of BCL11a. The HbF-associated SNPs rs1427407 and rs7606173 are located within DHS +62 

and DHS +55 respectively. DHS +58 has proven a successful therapeutic target in patients with 

hemoglobinopathies using CRISPR-Cas9 gene editing technology. Due to their function being 

known a priori and validated in application through therapeutic interventions, these three sites 

are ideal for exploring experimental and computational approaches to interrogating cis-

regulatory elements. In Canver et al., these sites are perturbed in human umbilical cord blood-

derived erythroid progenitor (HUDEP) cells CRISPR-Cas98. The phenotypic readout for this 

experiment is gRNA counts from cells FACS sorted into a HbF high and HbF low bin and an early 

condition as control. The original analysis defines HbF enrichment as the log2 fold-change 

between the normalized HbF high and HbF low bins and utilizes a three-state Hidden Markov 

Model (HMM) to classify silencers and enhancers. We re-analyze this data with CRISPR-

Decryptr, implementing a design matrix for effect inference as follows:  

 

 

[
     1           1            1      

0 1 1
0 0 1

] 

 

We utilize the following hyperparameters for the Hidden semi-Markov Model: 

 
STATE E_MU E_TAU_0 NB_R NB_SUCC NB_FAIL 

BACKGROUND 0 1 2 1 500 

SILENCER -2 1 2 1 40 

ENHANCER 2 1 2 1 40 

 

 

From the high-specific effect, we arrive at a regulatory landscape in concordance with the 

original analysis. The common and early effects also yield insight into other phenomena 

impacting gRNA counts in the other bins. Targeting the Alu SINE repeat in the DHS +62 region 

impacts cell viability in both the early and later bins, a phenomenon that was also noted in the 

original analysis.   

High-Specific 

Common 

Early 

High Low Early 
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Supplementary Figure 3.1.1: Results from the analysis of guides targeting BCL11A DHS 
hypersensitivity sites in Canver et al. The high-specific effect reveals similar enhancer and 
silencer calls as in the original analysis.  
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3.2 CRISPR Activation Screen at IL2RA and CD69 Gene Loci (Simeonov et al.) 
 
Simeonov et al. introduce the CRISPR activation screen, which utilizes a mutated version of 

Cas9 (dCas9) without endonuclease activity which - when fused with gRNA and transcriptional 

activators – is able to activate regulatory elements on the genome9. To validate the approach, 

the authors target IL2RA and CD69 gene loci in two different pooled screens, by transducing 

Jurkat-T cells with a dCas9-VP64 activator. To measure phenotypic change, the authors FACS 

sort cells into a “negative”, “low”, “medium”, and “high” bins of IL2RA and CD69 based on 

expression levels, as well as a non-transduced control group. We re-analyze this screen using 

the following design matrix: 

 

 

 

[
 
 
 
 
      1           0            0           0           0      

 1 1 0  0  0 
 1 0 1 0 0
 1 0 0 1 0
 1 0 0 0     1    ]

 
 
 
 

 

 

 

For the creation of the convolution matrix, we use the gaussian window method described in 

section 2.3 with default parameters. For the HsMM, we utilized default hyperparameters.  

 

CRISPR-Decryptr successfully recalls all the putative regulatory elements from the Simionov et 

al. analysis. The two putative regulators CaRE1 and CaRE6, revealed solely in the “low” bin in 

the original analysis, are now revealed “medium” bin as well. Additionally, CRISPR-Decryptr 

calls novel putative enhancers of varying strengths, many of which are highly correlated with 

DNAse-seq and the active enhancer mark H3K27ac from the Jurkat-T Cell line. These putative 

enhancers include the nearby RBM17 and PFKFB3 gene promoters.   

 

Putative enhancers of different strengths (marginal state probability > 0.95, > 0.85, and > 0.75 

for Strong, Moderate, and Faint calls respectively) included in figure 3.2.2 illustrates how the 

method’s output of marginal state probabilities provides an easily interpretable metric by 

which to rank regulators.  

 

 

 

 

Background 

Medium 

Background Negative Low Medium High 

Negative 

Low 

High 
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Figure 3.2.2: Analysis of Simenov et al. CRISPRa screen of the IL2RA gene locus. High, Medium, 
and Low effects are inferred from the inference step of CRISPR-Decryptr, with enhancer state 
calls from the HsMM of varying strengths displayed below respective bins (marginal state 
probability > 0.95, > 0.85, and > 0.75 for Strong, Moderate, and Faint calls respectively). 
H3K27ac, DNAse-seq, and HiChIP contacts, are correlated with active enhancers.  
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At the CD69 gene loci, we consider the “high” expression bin as in the original analysis. Similar 
to the IL2RA gene loci, we recall the original enhancers and elucidate new enhancer calls in 
strong agreement with chromatin accessibility data and histone marks.  
 
 

 
 

 

Figure 3.2.3: Analysis of Simenov et al. CRISPRa screen of the CD69 gene locus with the 
deconvolved effect from the “high” bin displayed above “strong” enhancer calls (p > 0.95). 
H3K27ac, DNAse-seq, and H3K4me1 are displayed to compare results with chromatin 
accessibility and active enhancer markers.  
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3.3 CRISPR Interference Screen at the GATA1 Gene Locus (Fulco et al.) 
 
In a noncoding screen targeting the GATA1 loci, Fulco et al. fuse inactivated dCas9 with Krüppel 

associated box (KRAB) domain to repress transcriptional activation – an approach termed 

CRISPR Interference10. K562 erythroleukemia cells which express the KRAB-dCas9 doxycycline-

inducible promoter were infected with a custom gRNA library. As GATA1 impacts K562 

proliferation, phenotypic readout is gRNA counts, where depletion implies decreased gene 

expression. As such, the targeting of an enhancer should result in negative inferred regulatory 

effect around the site of perturbation. For the analysis, we utilize a filter standard deviation of 

30, set the --flip_enhancer argument to True in the classify step, and use a design matrix of the 

following form: 

 

[
   1  0   
   1  1   

] 

 

In addition to calling the same putative regulators as in the original analysis, CRISPR-Decryptr 

reveals one faint novel enhancer at the GATA1 loci within the GLOD5 intron. From ChIPseq of 

K562 cells, we see this call is at the binding site of a CEBPB transcription factor, a known 

regulator of inflammatory processes which is also bound at other regions demonstrating gRNA 

depletion in the GATA1 loci.  

 

 

 
Figure 4.3.1: Analysis of gRNAs fused with KRAB-dCas9 targeting the GATA1 gene loci. In 
addition to enhancers identifies in the original analysis, CRISPR-Decryptr reveals a novel 
enhancer targeting an experimentally validated CEBPB transcription factor binding site in K562 
cells. 
  

Early 

Late 

Early Late 
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Section 4: Discussion  
 
4.1 Discussion of Existing Methods 
 
CRISPR noncoding screens represent a relatively new method for interrogation of functional 

elements in the noncoding genome. We believe any method aiming to classify de novo 

regulatory elements must be able to accomplish two tasks: firstly, the algorithm should be able 

to take raw screen data and translate it into some quantity representing the effect of 

perturbation on phenotype. Second, the algorithm should classify regulatory element locations 

using this quantity. At the time of this submission, two methods have been published in the 

literature, both of which address some part of a complete noncoding screen analysis. CRISPR-

SURF,11 a deconvolution framework employing Lasso regularization, and MAUDE13 a method for 

the analysis of gene expression changes in sorting-based CRIPSR screens, such as the CRISPRa 

screens discussed in section 3.2. 

 

In CRISPR-SURF each gRNA’s effect on phenotype is calculated as the Log2 fold change (Log2FC) 

across a pair of conditions and/or timepoints for a specific perturbation. When calculating the 

ratio between counts, small denominators lead to exaggerated fold changes. Similarly, large 

count differences have the tendency to be underexaggerated by the transformation. Please see 

section A.1.1 for simulated illustrations of the drawbacks of fold changes when applied to 

simulated gRNA count data. Additionally, the fold change calculation provides no intuitive way 

to account for experimental design or combine information across replicates without crude 

calculations such as averaging fold changes. CRISPR-SURF primarily serves as a deconvolution 

method, modeling experiment specific perturbation profiles and mapping guide-specific 

quantities to base-specific quantities using a deconvolution operation implemented through 

Lasso, a common technique in machine learning for solving ill-posed inverse problems. In the 

case of CRISPR mutagenesis screens, CRISPR-SURF applies a user-defined perturbation profile to 

all guides, however, research on measured repair outcomes from Cas9 cleavage in Allen et. al. 

indicates that perturbation profile is sequence specific. Additionally, CRISPR-SURF does not 

account for off-target effects or sequence specificity, a major concern with any experiment or 

therapy using CRISPR technology. CRISPR-Decryptr explicitly models sequence specific repair 

profiles and off-target effects for CRISPR mutagenesis screens, predicting posterior effect 

variables at each base in the noncoding region using a Gaussian Process (GP) Model for 

deconvolution. In contrast with techniques such as Lasso or Tikhonov regularization, the GP 

framework is able to account for uncertainty estimates from the guide-specific inference step 

when predicting base-specific effect parameters. 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.13.247007doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.247007
http://creativecommons.org/licenses/by-nd/4.0/


 28 

MAUDE takes a statistical approach that is designed specifically for binned count readouts, an 

experimental design where mutated cells are FACS sorted based on their expression level as in 

the IL2RA/CD69 CRISPRa screen (Simionov et al) presented in section 3.2. The authors propose 

a model that accounts for gRNA count distributions across these FACS sorted bins, accounting 

for control guides to arrive at guide-specific Z-score which serves as their metric of effect on 

expression level. As this method is designed specifically to account for binned gRNA counts, it 

does not have the ability to account for other screen designs. Additionally, the statistical model 

does not provide a statistical treatment of parameter uncertainty that utilizes information 

across replicates. For classification of regulatory elements, MAUDE utilizes a sliding window 

method of arbitrary size to group guides, CRISPR-Decryptr’s HsMM step decodes the marginal 

probabilities of regulatory state-space configurations of individual nucleotides, fully capturing 

spatial information in the deconvolved effect signal. In section A.1.2, we present simulations to 

demonstrate the limitations of sliding window analysis and relative outperformance of HsMMs.  

 

Neither CRISPR-SURF nor MAUDE account for guide specificity, off-target effect, or repair 

outcome. We believe these are factors that should not be ignored when analyzing CRISPR 

noncoding screens. The authors of MAUDE claim their algorithm outperforms other methods 

due to the fact that it classifies 12 new regulatory elements when analyzing the CD69 CRISPRa 

screen (section 3.2). While 10 of these region appear to downregulate CD69, the authors do not 

account for the fact that these regions are overlapping extremely non-unique sequences, such 

as SINE repeats. As we discuss in a brief note in section A5, non-specific guides appear to be 

consistently depleted in some experimental designs, including the CD69 screen. By not 

accounting for guide-specificity, we believe the majority of MAUDEs regulatory element calls in 

their validation to be false positives. This highlights the importance of considering guide-

specificity through all steps of the analysis of CRISPR noncoding screens.  

 

CRISPR-Decryptr is the most complete framework for analyzing CRISPR noncoding screens of 

various experimental designs. As a fully generative model, CRISPR-Decryptr has an explicit 

model formulation and clear mathematical assumptions. The Generalized Linear Model 

implemented in section 2.2 captures the compositional nature of gRNA counts, and able to 

model a diverse set of experimental designs through the user defined design matrix. The 

Gaussian Process utilized in section 2.4 provides deconvolution framework similar to that in 

CRISPR-SURF, while also accounting for off-target effects, guide specificity, and probabilistic 

repair outcomes. The Hidden semi-Markov Model in CRISPR-Decryptr provides accurate state 

classification at the base-by-base level of granularity. Finally, by employing Bayesian inference 

techniques, CRISPR-Decryptr models parameter uncertainty at all stages of the analysis.  
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Table 4.1.1: Table comparing how the three algorithms approach what we believe to be the 

three requisite aspects of a complete CRISPR noncoding screen analysis. 

 

  
CRISPR-SURF 

 
  MAUDE 

 
        CRISPR-DECRYPTR 

ACCOUNTS FOR EXPERIMENTAL 
DESIGN 

No Yes Yes 

COMBINES INFORMATION ACROSS 
REPLICATES 

No No Yes 

STATISTICAL MODEL SPECIFICALLY 
DESIGNED FOR BINNED SCREENS 

No Yes No 

STATISTICAL TREATMENT OF 
PHENOTYPIC EFFECT UNCERTAINTY 

No No Yes 

DECONVOLUTION FRAMEWORK TO 
ACCOUNT FOR PERTURBATION 
PROFILE 

Yes No Yes 

OFF-TARGET PREDICTION No No Yes 

REPAIR OUTCOME PREDICTION No No Yes 

GUIDE-SPECIFICITY ADJUSTMENT No No Yes 

BASE-BY-BASE CLASSIFICATION OF 
REGULATORY ELEMENTS  

No No Yes 

 

Table 4.1.2: Table comparing CRISPR-SURF, MAUDE, and CRISPR-Decryptr on various attributes.   

  

CRISPR-SURF 

 

MAUDE 

 

CRISPR-DECRYPTR 

MODEL FOR INFERENCE 

OF GUIDE-SPECIFIC 

EFFECT 

 

Log2 Fold Change Statistical Model for Binned 

gRNA Counts 

Generalized Linear Model with Flexible 

Linear Predictor. MCMC Bayesian 

Inference.  

MAPPING GUIDE-

SPECIFIC EFFECT TO BASE-

SPECIFIC EFFECT 

Lasso-based Deconvolution None Gaussian Process Model with Off-

Target Alignment, Specificity 

Adjustment, and Repair Outcome 

Prediction 

CLASSIFICATION METHOD None Sliding Window Statistical 

Tests 

Bayesian Hidden semi-Markov Model 
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4.2: Discussion of Future Research 
 

As each step in the CRISPR-Decryptr method has been designed as a modular component, they 

are readily adaptable as new research and technologies in gene editing emerge. Here we 

present our thoughts on some opportunities for future research: 

 

Future research may support new generative model formulations that differ from the GLM 

implemented in section 2.2 

 

In section 2.2 we choose to implement a generalized linear model with a multinomial 

distribution due to the compositional nature of gRNA count data and simplicity of the canonical 

GLM framework. It is possible that different formulations could be proposed through future 

research and experience with the analysis of CRISPR Screens. The infer command’s GLM model, 

implemented primarily in STAN, can be readily modified.  

 

Research could help with more accurate construction of convolution matrices  

 

In this paper, we use two published works (Allen et al. and Hsu et al.) in our construction of the 

convolution matrix from section 2.33, 4. It is likely there are other current or future publications 

that can help in more accurately predicting the perturbations of gRNAs from sequence or other 

features. By simply replacing the predict step with another means of convolution matrix 

construction, the CRISPR-Decryptr method is readily adaptable.  

 

Research has the potential to build upon the GP deconvolution step  

 

We believe the GP deconvolution is a powerful framework for deconvolving guide-specific 

effects. Future research could explore alternative kernels to the squared exponential loss that 

may better capture the underlying process dynamics. Additionally, if computationally feasable, 

the Gaussian Process parameters could be fit in a Bayesian manner. 

 

Classification of regulatory elements should leverage multiple technologies 

 

We believe it is optimal to combine results from multiple technologies in the inference of 

regulatory element locations. Within the scope of the paper, we compare regulatory element 

state calls with other genomic signals, such as histone marks and ATAC-seq. However, in 

practice it would be ideal to leverage information from multiple signals in one inference 

procedure. This could be done by adding emissions for these technologies to the HsMM in 

section 2.5.  
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The techniques presented in CRISPR-Decryptr may be of use in other analyses 

 

The core model components of CRISPR-Decryptr also have applications to other problems in 

computational biology. The canonical GLM model can be extended to readouts following other 

distributions from the exponential family, a broad group of probability distributions that offer 

both discrete (binomial, poisson) and continuous (normal, exponential, gamma) supports. 

Additionally, the formulation of the linear predictor can be modified to account for new 

experimental designs or insights and account for a priori knowledge about model parameters. 

These factors establish Bayesian GLMs as a robust approach for inferring effects of genomic 

perturbations induced by CRISPR-Cas9 cleavage or future editing technologies. Outside of gene 

editing technologies, the Gaussian Process model can serve to deconvolve a variety of sparse 

genomic signals if the model assumptions hold on the data in question. Additionally, the 

HsMMs implemented in section 2.5 can be used to decode latent state variables from a variety 

of genomic signals, including those with missing observations. We have implemented similar 

HsMM models to annotate accessible chromatin using ATAC-seq and DNAse-seq data and 

intend to continue the development of these models.6  

 

Deep learning algorithms could learn generative models  

 

Generative Bayesian models are readily interpretable and provide a statistical framework to 

utilize prior knowledge of uncertain systems. It is our belief that these models are invaluable for 

unsupervised learning tasks in computational biology, however, their proclivity to become 

computationally expensive can make their application to analyses of entire genomes difficult. 

We believe learning generative models with deep neural networks may allow for extremely fast 

applications of complicated models. This could be done by applying generative models to 

simulated or real data and using the results produced to train deep neural networks.  
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APPENDIX: 
 
A.1. Simulation Studies 
 
A.1.1 Log2 Fold-Change on Simulated Data 
 
The Log2 Fold-Change is used the quantify the change in gRNA counts across conditions in some 

methods for noncoding and knockout screens (see section 9.1). This could be viewed as 

analogous to determining ‘regulatory effect’ of a targeted perturbation, as discussed further in 

section 2.2 and section 9.1. Fold change calculations are commonly implemented in genomics 

and other sciences. However, the drawbacks of fold changes are well known when applied to 

other technologies such as RNA-seq for differential expression. The calculation is undefined 

with zero in the denominator and exhibits bias in that it emphasizes small denominators. 

Conversely, in cases where two counts are high, the ratio between them may understate the 

difference in counts. We demonstrate this visually in figure 4.1 below. When considering gRNA 

counts, we do not believe the ratio between two measurements is an appropriate way to 

quantify the impact of targeted perturbations. The bias of the fold change transformation has a 

greater impact on correct identification of enriched guides at smaller read depths and signal 

strengths. We utilize forward simulations from the CRISPR-Decryptr generative model and 

evaluate performance of the Log2 fold-change to demonstrate this phenomenon.  We perform 

7,000 forward simulations of 10,000 gRNA counts in two conditions from the CRISPR-Decryptr 

at three read depths (1, 2, and 4 million reads) and calculate the Log2 fold change as follows: 

 

 

𝐱background ~ Multinomial(Softmax(𝛉background), Depth) 

𝐱experimental ~ Multinomial(Softmax(𝛉background + 𝛉experimental),Depth) 

Log2FCi = Log2 ( 
xexperimental,i

xbackground,i
 ) ∀  i ∈ {1,… , 10000} ,  

 

 

Where 𝐱background, 𝐱experimental, 𝛉background, and 𝛉experimental  ∈  ℝ10000 and Depth ∈

{1000000, 2000000, 4000000}. We set 𝛉background to 1, and allow 500 entries in 

𝛉experimental to be equal to 𝜇 ∈ {0, 0.05, 0.10,… . . 1}, while the other 9,500 entries are set to 

zero. We consider the non-zero entries to be effects of “enriched” guides, while the zero 

entries are effects of “control” guides.  For each read depth and value of 𝜇, we calculate the 

expected number of simulated control guides that are within the top 95th percentile of Log2FC, 

while simultaneously have background counts (xbackground,i) in the bottom 5th percentile. This 

metric allows us to quantitatively demonstrate the tendency of the Log2 fold-change to appear 

extreme in cases where background counts are very small, as well as examine how this 
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phenomenon is impacted by read depth and how strong the enrichment signal is in the data. In 

figure 4.2, we see that smaller read depths (Depth) and signal (𝜇) lead to higher numbers of 

small background counts leading to extreme Log2 fold-changes in simulated data.  

 
 
 

 
 
Figure 4.2: Mean number of simulated control guides that are within the top 95th percentile of 
Log2FC, while simultaneously have background counts xbackground,i in the bottom 5th 

percentile vs. signal strength (𝜇𝑅𝐸  ) for three read depths (1 million, 2 million, and 4 million 
reads).   

Num Guides  
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A.1.2. Classification of Simulated Regulatory Elements  
 
In this section, we will examine the performance of hidden semi-Markov models vs. sliding 

windows for classification of enriched regulatory elements. Our goal is to demonstrate the 

robust ability of HsMMs to fit and classify data and contrast this with the limitations of sliding-

window methods with arbitrary parameters. An analysis of HsMM performance on data 

generated from the CRISPR-Decryptr generative model (as in the previous sections) would have 

been a task in classifying data using an identical model to that which it was generated from. As 

such, we do not generate data with a HMM or Negative Binomial state durations, but instead 

simulated 3kb stretches of chromatin, randomly placing up to three regulatory elements of 

uniform size 𝑑RE ~ Uniform(0, 200). Bases within regulatory elements emit a normally 

distributed regulatory effect 𝑒RE ~ N(𝜇𝑅𝐸 , 1), while bases outside of regulatory elements emit 

a normally distributed regulatory effect 𝑒RE ~ N(0, 1). We classify regulatory elements using 

the HsMM model implemented in CRISPR-Decryptr, as well as a sliding window method which 

calculates a Z-score for each window via Stouffer’s Method using four different parameter 

choices for window and step size. Iterating through 20 equally spaced 𝜇RE  ∈ {0, 0.05, 0.1,… ,1} 

, we perform 500 simulations at each 𝜇𝑅𝐸  and compare AUPR values for each method.   

 
 

 
Supplementary Figure 5: Performance of HsMM vs. Windowing Method on Simulated Data 
Average Precision Recall curves across varying  𝜇𝑅𝐸  values, the mean of the regulatory elements 
effect distribution. Lines indicate the mean AUPR, while the shaded region represents +/- one 
standard deviation.  
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The hidden semi-Markov model demonstrates outperformance when compared to sliding 

window methods, quantified by average precision recall across signal strengths.  Our simulation 

demonstrates that the arbitrary parameters, window size and step size, greatly impact 

classification performance. As window size becomes large in comparison to regulatory element 

size (best illustrated in the window=500, step=50 series) classification performance becomes 

limited even given high signal strength. At the other extreme, as window size becomes too 

small (best illustrated by the window=10, step=5 series) model performance is dramatically 

reduced at lower signal strengths, as the model is unable to incorporate spatial dependencies 

of bases outside the window. Even a sliding window with the same size as the expectation of 

regulatory element sizes (100bps) underperforms the HsMM model. With little a priori 

knowledge about the size of regulatory elements, parameters for sliding window methods are 

generally selected arbitrarily. The HsMM model implemented in CRISPR-Decryptr does not have 

user-defined parameters, but instead fits latent parameters using the expectation maximization 

algorithm. 
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A.2. Mathematical Notes 
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A.3. Performance of CNN model for Repair Prediction 
 
To demonstrate the predictive performance of the convolutional neural network used in the 

repair outcome prediction step, we benchmarked its performance on held-out data from the 

original dataset of repair outcomes from Allen et al. To do this, we randomly choose 80% of 

repair outcome profiles as training data, on which we trained the CNN, a 5-Nearest Neighbor 

Algorithm, and a predictor that guesses the average profile from the training set independent 

of sequence. Using remaining 20% of the dataset, we tested these three methods by predicting 

and evaluating their accuracy using two performance metrics: the sum of the mean squared 

error (MSE) and KL-divergence between predicted and realized profiles. As reported below 

(Table A.3), the CNN outperforms the other prediction methods as measured by both metrics. 

It is worth noting that the CNN was trained using an MSE loss function.  

 
 

 
 MEAN SQUARED ERROR KL-DIVERGENCE 

 

CONVOLUTIONAL 
NEURAL NETWORK 

 

8.83e-05 

 

7.81 Bits  

 

AVERAGE PROFILE  

 

 

 

1.23e-04 

 

9.24 Bits  

5-NN PREDICTIONS 

 

1.50e-04 11.46 Bits  

 
Table A.3. Sum of Mean Squared Error and KL-Divergence of realized and predicted repair 
profiles for CNN, Average Profile, and 5-NN algorithms. The CNN outperforms both alternative 
prediction methods by both metrics. 
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Figure A.3. Predicted profiles and realized repair profile for the target sequence 
CCAGACAACAAAGCTGCCCTCGGGTAAGGATGTAGGGAGGG from the CNN model, average profile 
prediction, and the 5-NN.  
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A.4. Notes on HsMM Hyperparameters 
 
By default, CRISPR-Decryptr initializes a two-state HsMM with hyperparameters based on the 

length of the region being analyzed and the observed effect signal. Allow 𝑁𝑏𝑎𝑠𝑒𝑠  to be the 

length of the region and 𝜎𝑒 to be the standard deviation of the observed effect.  

 
 

𝜇𝑒,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  ~ 𝑁(0, 200 × 𝑁𝑏𝑎𝑠𝑒𝑠) 

𝑅𝑒,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 3 

𝑝𝑒,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝐵𝑒𝑡𝑎(0.002 × 𝑁𝑏𝑎𝑠𝑒𝑠 , 0.501 × 𝑁𝑏𝑎𝑠𝑒𝑠) 

𝜇𝑒,𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟  ~ 𝑁(𝜎𝑒, 200 × 𝑁𝑏𝑎𝑠𝑒𝑠) 

𝑅𝑒,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 3 

𝑝𝑒,𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝐵𝑒𝑡𝑎(0.002 × 𝑁𝑏𝑎𝑠𝑒𝑠 , 0.201 × 𝑁𝑏𝑎𝑠𝑒𝑠), or 1 success 200 failures per 1kb 

 

 

 

Expressed in terms of pseudocounts, hyperparameters for the parameter 𝑝𝑒,𝑠 represent 1 
success and 500 failures per 1kb for the background state and 1 success and 200 failures per 
1kb for the enhancer state.  
 
 
CRISPR-Decryptr provides an argument to specify prior hyperparameters for the emission and 

duration distributions of the model. Unlike the default HsMM initialization, these 

hyperparameters are not functions of the region length or observed signal variance. Recall that 

the HsMM is comprised of an arbitrary number of states with of negative binomial duration, 

with normal emission distributions (Figure A.4). The parameter r of the negative binomial can 

be specified by the user if desired, with a default of three. The precision of the normal 

distribution emission is determined at each base (Section 2.5). As such, parameter posteriors 

that will be calculated by the EM procedure are the emission means 𝜇𝑒,𝑠, negative binomial 

parameters 𝑝𝑒,𝑠.  
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Figure A.4. Example distributions for model parameters and priors with different 
priors/hyperparameters. A: Distribution of effect specific mean at base b 𝜇𝑒,𝑏  follows a normal 

distribution with fixed precision at each base. B: Prior distribution of 𝜇𝑠,𝑒  is normally distributed 
with hyperparameters 𝜇0, 𝜏𝑢,0 which can be specified by the user. C: State duration is Negative 
Binomially distributed with user defined parameter 𝑟𝑠 and inferred parameter 𝑝𝑒,𝑠. D: Prior 

distribution for parameter 𝑝𝑒,𝑠 follows a beta distribution.  
 
 
  

A B 

C D 

𝜇𝑒,𝑠 ~ 𝑁(𝜇0, 𝜏𝑢,0) 
𝜇𝑒,𝑏 ~ 𝑁(𝜇𝑒,𝑠, 𝜏𝑒,𝑏) 

𝐷𝑠,𝑒 ~ 𝑁𝐵(𝑟𝑠, 𝑝𝑒,𝑠) 𝑝𝑒,𝑠 ~ 𝐵𝑒𝑡𝑎(𝛼𝑠, 𝛽𝑠) 

  𝑝𝑒,𝑠 = 0.007 

  𝑝𝑒,𝑠 = 0.010 

  𝑝𝑒,𝑠 = 0.013 
 

 

 

 

 𝛼𝑠 = 1, 𝛽𝑠 = 95 

 𝛼𝑠 = 1, 𝛽𝑠 = 100 

 𝛼𝑠 = 1, 𝛽𝑠 = 105 

 

 

 

 

  𝜇𝑒,𝑠 =  1 

       𝜇𝑒,𝑠 = −1.5 

 𝜇𝑒,𝑠 = 0 
 

 

 

 

  𝜇0 =  1, 𝜏𝑢,0 = 4 

  𝜇0 = −1.5, 𝜏𝑢,0 = 5 

   𝜇0 =  0, 𝜏𝑢,0 = 8 
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The optional --priors argument takes a tab delimited file following the format of Table A.4. The 

columns of the table are defined as follows: 

 

 
 
Column Name:  
   
mu_0 
 
tau_0 
 
NB_r 
 
NB_succ 
 
 
 
 
 
 
NB_fail 
 
 

 

Description: 

 

mean hyperparameter 𝜇0 (figure A.4.B) of prior distribution 𝜇𝑠,𝑒. 

 
precision hyperparameter 𝜏𝑢,0 (figure A.4.B) of prior distribution 𝜇𝑠,𝑒. 
 
r parameter for the negative binomial duration distribution (figure A.4.C) 
 
Think of NB distribution (with parameter r) as the distribution of number of 
succeed/fail coin flips performed (where success probability is pe,s) before 

reaching r successes. This parameter represents the pseudocount of number of 
successes “pseudo-observed” which constructs the prior. From figure A.4.D  𝛼𝑠 =

𝑁𝐵𝑠𝑢𝑐𝑐,𝑠. The expected state duration will be  
NBfail+NBsucc

NBsucc
 ×  r.  

 
This parameter represents the pseudocount of number of failures “pseudo-
observed” which constructs the prior (see above).  
 

 
 
 
 
 
 
 
 
 
 
Table A.4: Example of .tsv file containing hyperparameter information for a three-state model.  
 
 
  

state e_mu_0 e_tau_0 NB_r NB_succ NB_fail 

background 0 5000000 3 1000 500000 

silencer 1 5000000 3 1000 200000 

enhancer -1 5000000 3 1000 200000 
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A.5. Brief note on gRNA specificity 
 
In the course of constructing CRISPR-Decryptr, we have made note of guide depletion when 
targeting certain repeat elements or regions of low sequence specificity. To our knowledge, this 
phenomenon has not been significantly researched, but was noted in the Canver et al. paper 
where the authors targeted an Alu SINE repeat in BCL11a DHS +62 (Figure 3.1.1). CRISPR-
Decryptr accounts for guide-specificity by default, however, in our analysis of the CRISPRa CD69 
screen (section 3.2), we also see gRNA depletion at repeat elements with low specificity if we 
disable all guide-specificity options. In this paper, we are unable to provide a biological 
argument as to why this would be the case in both CRISPR mutagenesis and CRISPR activation 
screens. However, we are confident that this phenomenon has great potential to lead to false 
positives. In section 4.1 we note the propensity of the MAUDE algorithm to pick up on this 
“non-specificity effect,” and subsequently erroneously classify repeat regions as putative 
regulators. Future research appears indicated if this phenomenon is to be modeled in future 
methods.  
 

 

 

 
 

 
Figure A.4: Selected region downstream of CD69 showcasing gRNA depletion at repeat 
elements (red boxes) as seen in the inferred regulatory effect (low bin effect, see section 3.2).  
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Code Availability: 
 
CRISPR-Decryptr code and readme are located at: 
https://github.com/anders-w-rasmussen/crispr_decryptr  
 
Data Availability: 
 
gRNA count data and input files for the screens analyzed can be found at the following link: 
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