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Abstract13

Consumers make space use decisions based on resource quality. Most studies that investigate14

the influence of resource quality on the spatial ecology of consumers use diverse proxies for15

quality including measures based on habitat classification, forage species diversity and abun-16

dance, and nutritional indicators, e.g., protein. Ecological stoichiometry measures resource17

quality in terms of elemental ratios, e.g., carbon (C):nitrogen (N) ratio, but rarely have these18

currencies been used to study consumer space use decisions. Yet, elemental ratios provide19

a uniquely quantitative way to assess resource quality. Consequently, ecological stoichiom-20

etry allows for investigation of how consumers respond to spatial heterogeneity in resource21

quality by changing their space use, e.g. their home range size, and how this may influence22

ecosystem dynamics and trophic interactions. Here, we test whether the home range size of a23

keystone boreal herbivore, the snowshoe hare (Lepus americanus), varies with differences in24
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the C:N, C:phosphorus (P), and N:P ratios of two preferred forage species, lowland blueberry25

(Vaccinium angustifolium) and red maple (Acer rubrum). We consider forage resources with26

higher C content relative to N and P to be lower quality than resources with lower relative C27

content. We use a novel approach, combining elemental distribution models with herbivore28

home range size estimates to test our hypothesis that hare home range size will be smaller29

in areas with access to high, homogeneous resource quality compared to areas with access30

to low, heterogeneous resource quality during summer months. Our results support our pre-31

diction for lowland blueberry, but not for red maple. Herbivore home range size decreased32

with increasing blueberry foliage quality, but also with decreasing spatial heterogeneity in33

blueberry foliage quality, i.e. N or P content. Herbivores in the boreal forest face strong34

nutritional constraints due to the paucity of N and P. Access to areas of high, homogeneous35

resource quality is paramount to meeting their dietary requirements with low effort. In36

turn, this may influence community (e.g., trophic interactions) and ecosystem (e.g., nutrient37

cycling) processes. Paradoxically, our study shows that taking a reductionist approach of38

viewing resources through a biochemical lens can lead to holistic insights of consumer spatial39

ecology.40

Keywords: home range, ecological stoichiometry, snowshoe hare, boreal forest, resource41

quality, space use42

Introduction43

Environmental and organismal variability within ecosystems are tightly interconnected. Geo-44

chemical, atmospheric, and biological factors drive differences in the elemental composition45

of primary producers across landscapes (Ågren and Weih, 2012; Borer et al., 2015; He et46

al., 2015). For example, elemental ratios in marine phytoplankton can vary widely across47

latitudinal gradients of environmental variables (e.g., ocean temperature; Martiny et al.,48

2013). Indeed, environmental variability in the supply of key elements like phosphorus (P)49
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and nitrogen (N) is the single best predictor of differences in cellular concentrations of these50

elements among phytoplankton (Galbraith and Martiny, 2015). As well, species composition51

of local producer and consumer communities can influence carbon (C) and N concentrations52

in foliar tissues of plant species (Borer et al., 2015). This variability in elemental compo-53

sition of autotrophs produces areas of high and low quality resources for herbivores across54

landscapes (Jean et al., 2015; Leroux et al., 2017). In turn, spatial heterogeneity in resource55

elemental composition – i.e., their stoichiometry (Sterner and Elser, 2002) – can influence56

consumers’ foraging strategies (Ball, Danell, and Sunesson, 2000; Youngentob et al., 2011).57

However, few studies to date have investigated how consumers’ space use varies in response58

to variability in resource stoichiometry (but see McNaughton et al., 1989). Here, we inves-59

tigate how this mosaic of elemental hot and cold-spots in resource elemental composition60

(sensu Bernhardt et al., 2017; McClain et al., 2003) may influence the home range size of a61

small terrestrial mammal, the snowshoe hare (Lepus americanus).62

The home range, the area an animal routinely uses to meet its daily needs (Burt, 1943;63

Powell and Mitchell, 2012), varies in size within and across species under the effect of multiple64

variables (Table 1; Tamburello, Côté, and Dulvy, 2015). For instance, the higher energetic65

needs arising from bigger body size lead to larger home range size (Peters, 1983). Likewise,66

diet composition and ecosystem function can also influence the size of an individual’s home67

range (Tamburello, Côté, and Dulvy, 2015). Carnivores tend to have larger home ranges than68

omnivores and herbivores due to the patchier nature of the resources they seek (Tamburello,69

Côté, and Dulvy, 2015; Tucker, Ord, and Rogers, 2014). As well, species living in low70

productivity habitats tend to have larger home ranges than species living in high productivity71

ones, because they need to move more to find enough food to avoid starvation (Tucker,72

Ord, and Rogers, 2014). For example, experimental evidence points to terrestrial herbivores73

responding to variability in both quantity and quality of their preferred resources at multiple74

spatio-temporal scales (e.g., Ball, Danell, and Sunesson, 2000; Nie et al., 2015). Yet, studies75

often rely on proxies to measure variability in resource quality and these proxies can vary76
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among study systems, from forage species identity (van Beest et al., 2011), to nutritional77

value (e.g., carbohydrate content; Saïd et al., 2009), to forage availability (Duparc et al.,78

2020). Within the framework of ecological stoichiometry, resource quality is often defined79

based on the elemental composition of the resource — that is, its content of key nutrients80

such as C, N, and P (Leal, Seehausen, and Matthews, 2017). Here, we argue that spatial81

variability in a resource’s elemental composition may inform consumer space use.82

Animals make space use decision at multiple spatio-temporal scales, from which food83

items to forage on in a patch to where to establish their geographic range(Johnson, 1980).84

Within a patch, available food items vary in their quality and quantity and animals, in85

turn, forage only on some of these food items (4th order selection; Johnson, 1980). Koalas86

(Phascolarctos cinereus) and greater gliders (Petauroides volans) prioritize use of high-quality87

Eucalyptus spp. patches, albeit in different ways: while koalas search for and forage longer88

on trees whose leaves have high N concentrations (Marsh et al., 2014; Moore et al., 2010),89

greater gliders actively avoid those trees with high levels of N-based secondary metabolites in90

their leaves (Youngentob et al., 2011). Thus, animals tend to use some areas of the landscape91

more than others (3rd order selection; Johnson, 1980). For instance, in Scandinavia, moose92

(Alces alces) and mountain hare (Lepus timidus) visited white birch (Betula pubescens) and93

Scots pine (Pinus sylvestris) more frequently in N-fertilized areas compared to unfertilized94

controls (Ball, Danell, and Sunesson, 2000). Home ranges arise from these patch use patterns.95

For example, bamboo-exclusive giant pandas (Ailuropodia melanoleuca) seasonally shift their96

range and vary their home range size in response to variation in N, P, and calcium content97

in their food — consistently foraging on the highest-quality food available as a result (Nie98

et al., 2015).99

As these examples show, resource elemental composition can play an important role in100

determining how animals use their space: where they forage, what they forage on, for how101

long, and when. With the recent development of new statistical methods to predict resource102

stoichiometry at landscape extents (e.g., Galbraith and Martiny, 2015; Leroux et al., 2017;103
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Soranno et al., 2019), we can investigate how resource elemental composition influences104

consumers’ distribution beyond the local patch. For example, stoichiometric distribution105

models (henceforth, StDMs) can predict element distributions over landscapes and allow106

identification of hot and cold spots of resource elemental composition across spatial extents107

(Leroux et al., 2017). StDMs allow for studying patterns of consumers’ space use and108

distribution in a stoichiometrically informed way. For instance, Leroux et al. (2017) used109

StDMs predictions to investigate the spatial distribution of moose (A. alces) at the landscape110

extent, in the boreal forests of northern Newfoundland. Spatial distribution models of moose111

performed consistently better when including a measure of forage elemental composition112

(e.g., elemental dry weight, % content, or ratios), providing evidence that spatial gradients113

in plant stoichiometry may influence herbivores’ space use decisions (Leroux et al., 2017).114

Consequently, as in the case of the giant panda mentioned above (Nie et al., 2015), spatial115

variability in forage elemental composition may also drive an animal’s home range size.116

Here, we use elemental distribution models, i.e., StDMs, to investigate the relationship117

between summer home range size and resource elemental composition in snowshoe hares118

(L. americanus). Snowshoe hares are a keystone herbivore in the boreal forests of North119

America (Feldhamer, Thompson, and Chapman, 2003). Snowshoe hare habitat is strongly120

N and P-limited (Price et al., 2013), and these constraints influence their ecology, behavior,121

and physiology (Murray, 2002; Thornton et al., 2013). These characteristics make snowshoe122

hares uniquely suited to address these questions. We use stoichiometric ratios — e.g., C:N,123

C:P, N:P ratios — as proxies for resource quality for snowshoe hares. High C:N or C:P124

forage tends to be woody, hence less digestible, whereas high N:P forage may not offset the125

boreal forest’s strong P-limitation (Leroux et al., 2017; Townsend et al., 2007). Hence, we126

consider food items with low C:N, C:P, and N:P ratios as higher quality resources than those127

with high C:N, C:P, or N:P ratios. As well, snowshoe hares may respond to the overall128

quality of an area – i.e., the area’s average quality — or to the variation in quality within an129

area – i.e., how heterogeneous the quality of an area is (Zweifel-Schielly et al., 2009). Thus,130
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we test the hypothesis that spatial differences in average resource quality, the variability of131

resource quality, or both influence snowshoe hare home range size (Figure 1). We predict132

that (i) snowshoe hares in areas of homogeneous resource quality (low variability) will have133

smaller home ranges than individuals in areas with more spatially heterogeneous resources.134

We further predict that (ii) snowshoe hares in areas of lower average forage C:N or C:P135

ratio will have smaller home ranges than individuals in areas in which these forage ratios are136

higher. For N:P ratio, we predict (iii) that snowshoe hares will have larger home ranges in137

areas of high N:P ratio, i.e. P-limited, than in areas of low N:P ratio, i.e. N-limited. Finally,138

we expect (iv) that in areas with low and spatially homogeneously stoichiometric ratios (low139

mean and low variation), snowshoe hares will have smaller home ranges compared to areas140

where these metrics are both high or where one is high and the other is low.141

Methods142

Study Area143

We conducted our study in four boreal forest stands in eastern Newfoundland, Canada,144

in and around Terra Nova National Park (48°31′50′′ N, 53°55′41′′ W;Figure S1). We se-145

lected forest stands based on snowshoe hare habitat preferences and along a forest stand age146

chronosequence with four categories; 20–40 years old, 41–60 y. o., 61–80 y. o., and 81–100147

y. o. (see SI Section S3 for more details). In all four forest stands, black spruce (Picea mar-148

iana) dominates the canopy, which also comprises balsam fir (Abies balsamea), red maple149

(Acer rubrum), white birch (Betula papyrifera), and white spruce (Picea glauca). Lowland150

blueberry (Vaccinium angustifolium), Sheep laurel (Kalmia angustifolia), and Labrador tea151

(Rhododendrum groenlandicum) dominate the understory. In May 2016, we established a152

500m×500m snowshoe hare live trapping grid housing 50 Tomahawak live traps (Tomahawk153

Live Trap Company, Hazelhurst, WI) along a meandering transect in each of the four forest154

stands (see SI section S3 and fig. S2).155
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Spatial Variability in Food Stoichiometry156

We collected plant samples, ∼20 g wet weight, in and around each trap location on the157

four live-trapping grids during the summer months of 2016 and 2017. We focused on three158

important summer forage species for snowshoe hares (Dodds, 1960): lowland blueberry (V.159

angustifolium), red maple (A. rubrum), and white birch (B. papyrifera). Our sampling160

attempted to replicate hare browsing by collecting only new growth material — that is, new161

leaves and terminal ends of branches. We shipped 10 g dry weight from each sample to the162

Agriculture and Food Laboratory at the University of Guelph to measure content of C, N,163

and P for each of our three plant species of interest (listed above; henceforth, SOI).164

In our analyses, we used quantitative predictions of foliar C:N, C:P, and N:P ratios165

obtained from fitting StDMs to the stoichiometry data obtained from plant samples from all166

four grids. We built five StDMs. Here we briefly describe the procedure behind building and167

fitting StDMs (see Heckford et al., n.d., in revision for detailed methods and Leroux et al.,168

2017, for general background on StDMs). To build each StDM, we used three types of plant169

SOI data: (i) sampling plot density data from a shrub belt sampled along the South-North170

diameter (22.6m) of the plot, divided into 4 height classes; (ii) elemental percentages, i.e., %171

C, N, P, extracted from foliar samples; and (iii) biomass data collected in areas adjacent to172

our sampling grid. We first fit allometric models for each study species using the formula:173

log(biomass) ∼ log(basal diameter + height). At the sampling plot level, this allowed us174

to estimate density of plant SOI by height class based on shrub belt data, and to use these175

estimates to predict plant SOI biomass by height class in each sampling plot. We then176

calculated C, N, P foliar content per SOI per plot by dividing a SOI’s total plot biomass177

by the product of plot area and foliar elemental content (% dry weight). We obtained C,178

N, P quantity estimates by dividing elements’ foliar content by their molar weight, and179

stoichiometric ratios from these estimates (C:N, C:P, N:P; Heckford et al., n.d., in revision).180

Each StDM included spatially explicit covariates, grouped into four categories: land181

cover, productivity, biotic, and abiotic factors. Preliminary analyses of yearly variation in182
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plant SOI stoichiometry showed negligible variability between 2016 and 2017 (Richmond et183

al., n.d., in review). Hence, we did not include year of sampling as a covariate in our StDMs.184

We fit a set of 15 Generalized Linear Models based on a priori hypotheses (see Heckford185

et al., n.d., in revision), including a null model, to nine response variables: percent element186

content (% C, N, P), quantity element content (C, N, P, g/m2), and stoichiometric ratios (C:N,187

C:P, N:P). We used the Akaike Information Criterion corrected for small sample size (AICc;188

Burnham and Anderson, 2002) to assess the weight of evidence supporting each model. After189

removing uninformative parameters (sensu Leroux, 2019), we used the top-ranked model for190

each SOI-stoichiometric ratio pair to produce predictive plant SOI stoichiometry surfaces as191

proxies for resource quality available within hare home ranges.192

Home range size and stoichiometry193

In May-November of 2016 through 2019, we live-trapped and radio-collared snowshoe hares194

in the youngest forest stands, 20–40 years old (henceforth, hare study area). We baited each195

trap at dusk with apple slices, alfalfa, and rabbit chow, and checked them the following dawn.196

We collected body weight (g) and other demographic data of each hare, before fitting it with197

a 25 g radio collar (M1555, Advanced Telemetry Systems, Isanti, MN) and releasing it. We198

did not fit individuals with radio-collars when the weight of the collar was ≥5% of the hare’s199

own body weight. The Animal Care Committee of Memorial University of Newfoundland200

approved our live-trapping and handling protocol with permit 18-02-EV. Further details on201

our live-trapping protocol can be found in SI section S3.202

In May-September of 2017 through 2019, we located snowshoe hares using handheld203

receivers (Biotracker, Lotek, Ontario, CA) and VHF antennas (RA–23K, Telonics, AZ).204

We collected three or more azimuths per hare per day, storing them in an electronic data205

collection form on an iPad (FileMaker Pro Advanced, v. 14; Claris International Inc., 2015)206

and using digital maps (Avenza Maps, v. 3.7; Avenza Systems Inc., 2020) to check the207

triangulation polygon’s size. We estimated home range size and ran all subsequent analyses208
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in R (v. 4.0.1; R Core Team, 2020). For each hare in our sample (n = 30), we used package209

razimuth to estimate collar location based on the Azimuthal Telemetry Model (Gerber210

et al., 2018). From these locations, we estimated the Utilization Distribution (UD) of our211

snowshoe hares using the autocorrelated Kernel Density Estimator corrected for small sample212

size (AKDEc) using the ctmm R package (Fleming and Calabrese, 2017; Fleming, Noonan,213

et al., 2019). From the UDs, we estimated home range area in hectares (ha) at the 50%,214

75%, and 90% isopleths. For more details on our home range estimation workflow, please215

see SI section S5 and the Supporting Code document.216

We used function extract from the raster R package (Hijmans, 2020) to overlay the217

boundary of each snowshoe hare’s home range area estimate, i.e, the 50%, 75%, 90% UD218

isopleths, on the stoichiometric surfaces and get C:N, C:P, and N:P values for every pixel219

covered by the home range (see Supporting Code for more details). From these data, for each220

home range, we estimated (i) each stoichiometric ratio’s mean value and (ii) its coefficient221

of variation. The coefficient of variation (henceforth, CV), the ratio of a sample’s standard222

deviation to its mean value, provides an easy-to-interpret assessment of how variable the223

predicted SOI stoichiometry of a given home range is, compared to its mean value. See224

Supporting Code for more details.225

Statistical Analyses226

We used linear models to investigate the effects of resource stoichiometry, i.e., mean, CV,227

and their interactive effects, and body weight on the size of the home range of snowshoe hares228

estimated at the 50% (i.e., the core area; Börger et al., 2006), 75%, and 90% isopleths. We229

included body weight to capture potential intraspecific variability in home range size due to230

an individual’s ecology and physiology (Peters, 1983). Conversely, we did not include year of231

sampling, as preliminary analyses provided no evidence it influenced home range size of our232

snowshoe hares (see Supplementary Code; Börger et al., 2006). As well, we did not include233

sex in our models as evidence for snowshoe hares points to this variable being correlated with234
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body weight (Feldhamer, Thompson, and Chapman, 2003) and does not appear to influence235

the elemental composition of snowshoe hares (Rizzuto et al., 2019). For each combination of236

plant SOI and C:N, C:P, and N:P (n = 5), to test prediction (i) we fit a model including each237

stoichiometric ratio’s CV. Likewise, to test predictions (ii) and (iii) we fit a model including238

the ratios’ mean values. To test prediction (iv) we fit a model including the additive effects239

and a model including the additive and interactive effects of the ratios’ mean and coefficient240

of variation. For each model, we also fit a version that included the hares’ body weight.241

We fit this set of 8 models, plus a null model, to our dataset and used function AICc in the242

AICcmodavg R package to select top models based on parsimony (Burnham and Anderson,243

2002; Mazerolle, 2017). Following Leroux (2019), we removed uninformative parameters244

from the model set of each stoichiometric ratio. Below, we report summary AICc tables and245

refer the interested reader to the Supporting Code document for full AICc tables.246

Results247

StDMs of red maple C:N, N:P ratios, and lowland blueberry C:N, C:P, N:P ratios all ranked248

above the null model whereas all other StDMs (i.e., red maple C:P ratio, white birch C:N,249

C:P, N:P ratios) were not supported by the data (Heckford et al., n.d., in revision). We used250

this suite of five StDMs to produce geo-referenced predictions of resources’ spatial variability251

in and around our hare study area.252

Our sample of radiocollared snowshoe hares included 30 individuals: 4 followed during253

summer 2017, 6 in summer 2018, and 20 during summer 2019. We followed four snowshoe254

hares for two consecutive sampling years: three in the 2018 and 2019 sampling seasons and255

one in the 2017 and 2018 sampling seasons. For the individuals sampled in more than one256

year, we included in the analyses only the home range size estimate from the year with the257

most telemetry points. Our results are not sensitive to this decision (see Supplementary258

Code). Our sample included 14 females, 12 males, and 4 individuals of unknown sex. Adult259

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.248831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.248831
http://creativecommons.org/licenses/by-nc-nd/4.0/


hares comprised the majority of our sample (n=27), with two young-of-the-year and one260

unknown. Mean core area size was 4.292 ha (range: 0.835–11.465) for 2017, 3.104 ha (range:261

0.215–6.163) for 2018, and 2.68 ha (range: 0.486–7.403) for 2019 (3-year mean± SD: 2.996 ha262

± 2.300). For lowland blueberry, within the core area, predicted C:N ratio ranged from 45.32263

to 49.17 (median: 47.15), predicted C:P ratio ranged from 1201 to 2277 (median: 1279), and264

predicted N:P ratio from 25.15 to 45.42 (median: 28.09). For red maple, predicted C:N ratio265

ranged from 23.26 to 39.79 (median: 30.89) and predicted N:P ratio ranged from 28.39 to266

39.09 (median: 34.13).267

We found mixed support for prediction (i), resource quality heterogeneity influencing268

home range size. The CV of lowland blueberry C:N ratio and red maple N:P ratio appeared269

in the top models for home range core area size (slope = 3.429 ± 0.664, R2 = 0.548, and270

slope = 0.866 ± 0.378, R2 = 0.15, respectively; Table 2 and fig. 2). This trend holds at all271

kUD isopleths for lowland blueberry, but not for red maple (Tables S1 and S2). Indeed, the272

CV of lowland blueberry C:N ratio explained a higher portion of the variation in snowshoe273

hare home range size, compared to the mean value of this ratio (CV-only model R2 = 0.376,274

mean-only model R2 = 0.102; Table 2). We found no evidence of this relationship for the275

CV of lowland blueberry C:P, N:P ratios, and only weak evidence supporting this trend for276

the CV of red maple C:N ratio for home range size estimates at 50% (slope = 0.127± 0.089,277

R2 = 0.166; Table 2) and 75% kUD (Table S1).278

We found mixed support for our prediction (ii) on the effects of average C:N ratio and C:P279

ratio on home range size. The mean values for lowland blueberry foliage C:N ratio and C:P280

ratio appeared in top models (slope = 4.224± 1.316, R2 = 0.548, and slope = 0.008± 0.004,281

R2 = 0.116, respectively; Table 2 and fig. 2), with the trend holding at all three isopleths for282

average C:N ratio, but only at the 75% isopleth for average C:P ratio (Tables S1 and S2).283

While the top model included both mean and CV of lowland blueberry C:N ratio, the mean-284

only model was ranked 3rd overall and explained 10% of the variation in hare home range285

size (Table 2). No support for this prediction came from models using average red maple286
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C:N ratio (Tables S1, 2 and S2). As well, we found weak evidence supporting prediction287

(iii), home range size increasing as resources’ N:P ratio increases, from lowland blueberry288

foliage (slope = 0.327 ± 0.245, R2 = 0.159; Table 2) but the trend does not hold at either289

the 75% or 90% isopleth (Tables S1 and S2). We found no support for prediction (iv) at290

any kUD isopleth for C:N and C:Pany of the three ratios considered, as the top models for291

lowland blueberry C:N ratio and C:P included the additive effects of mean and CV and only292

the mean, respectively (Table 2, and Tables S1 and S2).293

Discussion294

Animals forage on a variety of resources whose elemental composition may influence space use295

and foraging patterns at multiple spatial scales (Duparc et al., 2020; Lima and Zollner, 1996;296

van Beest et al., 2011). We found evidence that spatial differences in a preferred resource’s297

predicted average elemental composition or its variability correlated with herbivore home298

range size. Additionally, forage species identity may also play a role, further influencing299

these relationships. Together, our results provide evidence supporting the role that resources’300

elemental content plays in influencing consumers’ spatial ecology. Our results suggest that301

exploring the fundamental question of animal space use through an elemental lens may302

allow researchers to better trace the feedbacks between animals and ecosystem functions,303

e.g., elemental cycling (Schmitz et al., 2018).304

The boreal forest is a strongly N and P-limited ecosystem (Price et al., 2013). Snowshoe305

hares need to carefully balance their intake of C-heavy plant food against their N and P306

growth requirements (Sterner and Elser, 2002). Our results provide explicit evidence of307

this elemental trade-off at the home range scale and highlight how differences in resource308

elemental phenotype within and across areas used by snowshoe hares underlie variation309

in home range size in a heterogeneous landsacpe. In particular, results for both lowland310

blueberry foliage C:N ratio and red maple foliage N:P ratio support prediction (i), that311
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variability in N and P content within a home range core area can influence its size (Table 2).312

Snowshoe hares in our study appear to readily respond to stoichiometric changes in lowland313

blueberry, one of their preferred summer forage (Dodds, 1960). Variability in the elemental314

phenotype of the main components of a consumer’s diet appears to influence both their315

spatial and temporal distribution over the environment (McNaughton et al., 1989; Nie et al.,316

2015). In our study area, lowland blueberry is more abundant than red maple as well as,317

overall, more browsed (SI Figure S7). A higher sensitivity to the variability in quality of this318

resource, then, may point to the elemental composition of these two plant species playing319

a fundamental role in a snowshoe hare’s efforts to meet its high nutritional requirements320

(Murray, 2002).321

Furthermore, we find evidence that elements can influence home range core area size322

even when considering an area’s average quality — i.e., when smoothing the variation to323

a single value — in accordance with predictions (ii) and (iii). In particular, low average324

values of C:N, C:P, and N:P ratios for lowland blueberry consistenly correspond to smaller325

home range size (Table 2 and Figure 2). This held true for C:N ratio whether estimated326

home range size from the core area or from larger UD slices — suggesting that resource327

quality may influence space use decisions at a higher order of selection (i.e., landscape or 3rd328

order of selection Johnson, 1980). Interestingly, we additionally find evidence that a ratio’s329

coefficient of variation may add an additional side to this relationship, as it appears in the330

top model for lowland blueberry foliage C:N ratio at all three UD slices. Indeed, hares living331

in areas of high mean and high coefficient of variation for the foliage C:N ratio of lowland332

blueberry appear to have larger home ranges than those living in areas where mean values333

are high but the coefficient of variation is small (Figure 1, panel d, Table 2, and Tables S1334

and S2). Thus, consumers may use different information cues to make space use decisions335

at different spatial scales — e.g., acros vs. within patches on the landscape.336

Similar effects of resource quality on herbivore space use patterns have been described337

in other study systems. For instance, other species of leporids, as well as ungulates, tend338
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to increase use of areas where they have access to forage with higher content of limiting339

nutrients (Ball, Danell, and Sunesson, 2000). In turn, this preferential use of areas where340

forage is high in limiting nutrient content appears related to reproductive and physiological341

benefits (Mcart et al., 2009) or to population dynamics (Merkle et al., 2015). Overall, the342

elemental composition of forage items appears to be a fundamental driver of herbivore space343

use across spatial scales; from which food items to eat within a patch, to which habitats344

to establish a home range in, to which areas to visit over the landscape (Ball, Danell, and345

Sunesson, 2000; Nie et al., 2015; Zweifel-Schielly et al., 2009).346

Evidence of resource quality influence on space use decisions of consumers arising from347

several study system corroborates this result (e.g., Nie et al., 2015; Saïd et al., 2009; van348

Beest et al., 2011). Indeed, the majority of the hares in this study appear to live in areas349

of relatively high N and P values in the foliage of both red maple and lowland blueberry350

(Figure 1, panel d). The few cases of use of areas with high resource heterogeneity may351

result from population dynamics, particularly the increase in hare numbers from 2017 to352

2019. In 2017, our collared snowshoe hares all had home ranges in relatively high quality353

areas for lowland blueberry. As more snowshoe hares appeared on the landscape in 2018354

and 2019, new individuals increasingly established larger home ranges that extended beyond355

the areas of lower heterogeneity or higher overall N or P availability. Furthermore, the high356

degree of overlap we found between home range estimates calculated for hares with more357

than one year of telemetry data may point to a limited ability of older snowshoe hares to358

retain their range across years (Table S3 and Figures S3 to S6). Other herbivores appear to359

have similar growth-dependent colonization of less-favorable areas of a landscape. Among360

bison (Bison bison), individuals appeared to expand their population range to include areas361

of lower resource quality and establish larger home ranges in them as population density362

increased over time (Merkle et al., 2015). Similar patterns of population spatial distribution363

driven by resource availability and foraging strategies are fairly well-known among passerine364

birds (Piper, 2011). The elemental composition of foraging resources, then, may not only365
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influence the size of a consumer’s home range, but also its location over the landscape.366

However, to our knowledge, this study is the first to show that key chemical elements may367

drive animal space use decisions.368

We modeled our measure of forage quality, forage stoichiometry, based on a suite of en-369

vironmental, biotic, and abiotic covariates (Heckford et al., n.d., in revision). This approach370

may help investigate direct drivers of consumer space use and shed light on ecosystem char-371

acteristics allowing high-quality resources to persist in an area. In turn, the environmental372

drivers that correlate with forage stoichiometry may indirectly influence a consumer’s spa-373

tial ecology even in the absence of the resource itself. Further, StDMs allow accounting374

for multiple ecological currencies shaping a consumer’s ecology at varying spatio-temporal375

scales (Levin, 1992; Lima and Zollner, 1996). Thus, applying stoichiometric measures of376

forage to model consumer space use may be a fundamental tool in bridging metabolic, nu-377

tritional, landscape, and behavioural ecology (Sterner, 2004). In turn, this may allow us378

to disentangle the ubiquitous relationships and feedbacks among consumer, resources, and379

the environmental and ecological processes they are part of (Levin, 1992; Lima and Zollner,380

1996). Furthermore, our StDM-driven approach explains a large portion of the variance ob-381

served in our sample, albeit with some variability among model sets (see Tables S1 and S2).382

Indeed, the elemental composition of resources has been shown to accurately describe and383

predict the spatial distribution patterns of consumers in a variety of biomes, from boreal384

(this study), to tropical (McNaughton et al., 1989), to temperate (Merems et al., 2020; Nie385

et al., 2015).386

Overall, our results provide evidence that ecological stoichiometry may help researchers387

understand fundamental components of consumers’ space use. Based on the emergent field388

of spatial stoichiometry (Galbraith and Martiny, 2015; Leroux et al., 2017; Soranno et al.,389

2019) and our own results, we argue that using the elemental composition of resources to390

investigate patterns of consumer space use may provide a comparable and potentially more391

parsimonious approach than other, more widespread methods — e.g., habitat classification392
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(Zweifel-Schielly et al., 2009), forage species identity (van Beest et al., 2011), or availability393

(Duparc et al., 2020). Focusing on stoichiometric currencies would allow for consistency in394

defining and measuring fundamental metrics, e.g., resource quality, across studies and study395

systems. It would also reduce the need to rely on elemental conversion factors, increasingly396

recognized as problematic due to their lack of generality across different food items and397

outdated estimation methods (Mariotti, Tomé, and Mirand, 2008). As well, stoichiometric398

currencies may help investigate the different experiential layers that make up an animal’s399

home range (sensu Powell and Mitchell, 2012), further refining how researchers measure,400

describe, and interpret animal space use at multiple spatio-temporal scales (Levin, 1992).401

Finally, rooting theoretical models of ecological processes in stoichiometric units may make402

them more widely applicable to real world scenarios (Schmitz et al., 2018).403

Life builds itself using a limited subset of elements (Kaspari and Powers, 2016). These404

are continuously transformed and exchanged, globally, among organisms and their abiotic405

environment, and within and across ecosystem borders. Ecological stoichiometry offers an406

ultimately reductionist approach that, by providing common units of measurement with407

which to describe both actors and currencies involved in these exchanges, may effectively408

provide researchers with a holistic perspective to explore animal space use.409
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Tables582

Table 1: Environmental and ecological drivers of home range size among mammals.

Variable Effect References
Body Size larger body mass corresponds to

larger home ranges
Jetz (2004), Kelt and Van Vuren
(2001), Mace and Harvey (1983),
Ofstad et al. (2016), Peters
(1983), and Tucker, Ord, and
Rogers (2014)

Habitat richer habitats usually corre-
sponds to smaller home ranges

Dussault et al. (2005), Fridell
and Litvaitis (1991), Ofstad et al.
(2016), Tucker, Ord, and Rogers
(2014), Walton et al. (2017), and
Willems and Hill (2009)

Information previous knowledge of an area’s
distribution of resources, risk
sources, mates, and refugia varies
how individuals use available
space

Merkle et al. (2015), Powell and
Mitchell (2012), Spencer (2012),
and Zweifel-Schielly et al. (2009)

Diet carnivores have larger home
ranges than herbivores and
omnivores

Kelt and Van Vuren (2001), Mace
and Harvey (1983), and Tucker,
Ord, and Rogers (2014)

Energy increasing energetic demands lead
to larger home ranges

Kelt and Van Vuren (2001) and
Mcart et al. (2009)

Behaviour sociality can reduce home range
size by allowing for more efficient
foraging (e.g., pack hunting)

Carbone, Teacher, and Rowcliffe
(2007)
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Table 2: Top ranking GLMs describing the relationship between home range core area
and resource stoichiometry, after removing uninformative parameters (see Supporting Code
for full AICc tables). For each plant SOI and stoichiometric ratio pair, we report the top
model, any model above the intercept, and the intercept. For coefficients, we report values
as estimate (±SE). Column headers: K, number of parameters in the model; LL, log-
likelihood; CV, Coefficient of Variation; BW, body weight.

Coefficients
K ∆AICc LL R2 Intercept Mean CV BW

Blueberry C:N top models

4 0.000 −55.783 0.548 -199.097
(±62.029)

4.224
(±1.316)

3.419
(±0.664)

3 7.025 −60.634 0.376 0.058
(±0.789)

3.110
(±0.757)

3 17.952 −66.098 0.102 -148.049
(±84.809)

3.208
(±1.802)

2 18.792 −67.707 0.000 2.974
(±0.430)

Blueberry N:P top models

3 0.000 −65.859 0.116 -3.230
(±7.684)

0.327
(±0.245)

-0.002
(±0.001)

2 0.033 −67.707 0.000 2.974
(±0.430)

Blueberry C:P top models

3 0.000 −65.859 0.116 -7.999
(±5.741)

0.008
(±0.004)

2 1.218 −67.707 0.000 2.974
(±0.430)

Red Maple N:P top models

3 0.000 −65.130 0.158 0.162
(±1.291)

0.866
(±0.378)

2 2.676 −67.707 0.000 2.974
(±0.430)

Red Maple C:N top models

4 0.000 −64.980 0.166 5.080
(±2.338)

0.127
(±0.089)

-0.002
(±0.001)

3 0.000 −66.318 0.088 1.644
(±0.908)

0.149
(±0.090)

2 0.299 −67.707 0.000 2.974
(±0.430)
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Figure Legends583

Figure 1. Predictions of the relationship between resource elemental composition and home584

range size in snowshoe hares. (a): as variability in resource elemental composition increases,585

home range size will also increase, as per predictions (i) and (iii). (b): with increasing av-586

erage resource elemental composition, home range size will increase, as per predictions (ii)587

and (iii). (c): jointly, these two dimensions of variation produce a “resource quality space”,588

where they interact to influence home range size — as per prediction (iv). In this space,589

where average resource quality is high and its variability low, herbivore home range size will590

be small (quadrant 1). Conversely, when variability is high and average quality is low, home591

range size will be large (quadrant 3). When either average quality is high and its variability is592

low or vice versa, home range size will be intermediate between the two extremes (quadrants593

2 and 4). (d): distribution of snowshoe hare home range size estimates (ha) from this study594

(n = 30) in lowland blueberry resource quality space, defined by foliage C:N ratio. Most595

hares in our sample live in areas of moderate lowland blueberry C:N content and variability.596

Some individuals maintain small home ranges in areas of relatively homogeneous, medium-597

to-high lowland blueberry foliage C:N ratio (e.g., A1673, A2702, A2081). Conversely, a few598

snowshoe hares with large home ranges live in areas of heterogeneous, low-quality lowland599

blueberry (e.g., A3705). The empty lower left corner may indicate that no areas of high and600

homogenous resource quality are available in our study area, or that no hares are using it if it601

is present. Data point size reflects 50% UD home range size; different colors identify different602

individuals. Different shapes separate individuals with more than one year of telemetry sam-603

pling (squares, A1425; diamonds, A1698; triangles, A3719; upside-down triangles, A3769)604

from individuals with only one year of telemetry (circles). The Supplementary Information605

contains additional details on the degree of overlap between home ranges from consecutive606

years for these four individuals (Table S3 and Figures S3 to S6).607

Figure 2. Relationship between lowland blueberry foliage C:N ratio quality metrics608

and home range size, at 50%, 75%, and 90% UD. Upper panels: the size of home range609
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core area for our snowshoe hares is smaller in areas of lower mean lowland blueberry foliage610

C:N ratio and increases with the ratio’s mean value (panel a). Home range sizes estimated611

from larger isopleths shows similar trends (panels b, c). Higher values of C:N ratio point612

towards lower availability of N in blueberries, so that individuals living in such areas (e.g.,613

A2084) may have to forage over larger areas to meet their elemental requirements of N to614

survive (Sterner and Elser, 2002). Lower panels: at increasing values of the variability in615

lowland blueberry foliage C:N ratio corresponds a sharp increasing in home range core area616

size of snowshoe hares (panel d), a trend repeated at larger isopleths (panels e, f). Snowshoe617

hares in areas of high variability of lowland blueberry N content may resort to foraging over618

much larger areas than individuals that have access to food items of less variable quality —619

regardless of whether this is high or low quality. Grey lines are regression lines drawn from620

the top-ranking model for lowland blueberry C:N ratio at the relevant UD isopleth (Table 2621

and Tables S1 and S2) and light grey shaded areas around them represent 95% Confidence622

Intervals. All other specifications as in Figure 1.623
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