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The emergence of large-scale brain networks, and their continual refinement, represent 
crucial developmental processes that can drive individual differences in cognition and 
which are associated with multiple neurodevelopmental conditions. But how does this 
organization arise, and what mechanisms govern the diversity of these developmental 
processes? There are many existing descriptive theories, but to date none are 
computationally formalized. We provide a mathematical framework that specifies the 
growth of a brain network over developmental time. Within this framework macroscopic 
brain organization, complete with spatial embedding of its organization, is an emergent 
property of a generative wiring equation that optimizes its connectivity by renegotiating 
its biological costs and topological values continuously over development. The rules 
that govern these iterative wiring properties are controlled by a set of tightly framed 
parameters, with subtle differences in these parameters steering network growth 
towards different neurodiverse outcomes. Regional expression of genes associated 
with the developmental simulations converge on biological processes and cellular 
components predominantly involved in synaptic signaling, neuronal projection, 
catabolic intracellular processes and protein transport. Together, this provides a 
unifying computational framework for conceptualizing the mechanisms and diversity 
of childhood brain development, capable of integrating different levels of analysis – 
from genes to cognition. 
 
Macroscopic brain organization is present early in life, even prenatally1,2, and continues to 
develop through adolescence and into early adulthood3. The emergence and continual 
refinement of large-scale brain networks, connecting neuronal populations across anatomical 
distance, allows for increasing functional integration and specialisation4,5. This process is 
thought crucial for the growth of complex cognitive processes such as language6 and 
executive function7-12. However, there are individual differences in the trajectories of these 
networks, and these mirror differences in cognitive development. Indeed, differences in 
macroscopic networks have been implicated across multiple neurodevelopmental 
conditions13, including ADHD14, autism15,16, and language disorders17. 
 
But what mechanisms govern the growth of macroscopic brain networks? And how do these 
mechanisms give rise to individual differences in developmental outcomes? There are 
numerous descriptive theories of typical and atypical neurodevelopment18-22 that speculate 
about how different levels of analysis (e.g. genes, brain structure and function) interact to 
guide development. However, to date there are no generative models of neurodevelopment. 
That is, no existing theories are sufficiently specified that they can simulate individual-level 
brain networks. In the absence of computational models of development, it is difficult to 
establish mechanistic links between different observations (e.g. genes, biological pathways, 
system wide organization). This theory gap represents a major limitation for developmental 
systems neuroscience. The purpose of this study is to address precisely this gap, by modelling 
the generative wiring properties of the developing brain, guided by a simple principle: the 
brain’s structural organization is shaped by an economic trade-off between minimising wiring 
costs and adaptively enhancing valuable topological features23. We hypothesize that the 
emergence of whole-brain organization reflects the continual trade-off of these factors over 
developmental time and that tiny differences in the parameters governing the trade-off can 
produce the neurodiverse outcomes we observe. Somewhat counterintuitively, tight 
parameter constraints likely enable macroscopic neurodiversity, because large changes in 
these parameters would produce networks with configurational states that are not observed 
in reality. Instead, narrow boundaries reflect parameter conditions within which networks can 
be different, but still maintain adequate structural properties to be functional. 
 
We used generative network modelling24,25 in an intentionally heterogeneous sample of 
children (N=270), and: (i) tested which topological features should be valued in the growth 
trade-off to produce highly accurate individual child connectomes; (ii) tested how small 
changes in these growth parameters alter the organizational properties of the resulting 
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networks; (iii) established relationships between these different growth parameters and 
cognitive development; (iv) identified genes with expression profiles that were spatially co-
located with those topological features; and (v) established the biological pathways that are 
enriched in these gene lists. Together, this provides a computational framework that 
mathematically specifies the growth of a network over developmental time, captures individual 
differences in brain organization and cognition, and incorporates the genetic and biological 
pathways that likely constrain this development. 
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RESULTS 
 
The generative network model 
 
The generative network model (GNM) can be expressed as a simple wiring equation19,20 (Fig. 
1a), which formalizes a trade-off between costs and adaptive value when brain regions form 
connections probabilistically over time: 
 

P(ni,nj) = D(ni,nj)h x K(ni,nj)g (1) 
 

Where D(ni,nj) represents the Euclidean distance between nodes ni and nj (i.e. ‘costs’), and 
K(ni,nj) reflects the value (i.e. ‘attractiveness’) in forming a connection. P(ni,nj) represents the 
wiring probability resulting from the product of the parameterized costs and value. 
 
D is parameterized by the scalar h, which influences how node-to-node distances influence 
their probability of connecting. For example, when h is negative, wiring probabilities decline 
when distances increase, and this reflects the costliness of forming connections with nodes 
that are distant. This is traded-off against K, which represents some relationship between 
nodes. K can be thought of as a topological value (or ‘rule’) driving the intention for node ni to 
connect with node nj. K is parameterized by a distinct scalar g. K can take a range of different 
forms and can, in principle, be selected from any non-geometric growth rule used to model 
social and economic networks26-29. One simple example is the ‘matching’ rule24: nodes form 
connections with other nodes on the basis of their normalized overlap in neighborhood – i.e. 
whether nodes are connected to similar nodes to themselves (also termed homophily). 
 
Imagine the following scenario: nodes in a network are growing according to the matching 
rule, preferentially attaching to nodes which are both similarly connected and spatially 
proximal. In the wiring equation, this would be represented as h being negative (e.g. h = -1), 
K represented as normalized neighborhoods between nodes (i.e. matching) and its parameter 
g being positive (e.g. g = 1). In short, a node being far away makes it less likely that a new 
connection will be formed, but it having a similar a neighborhood increases the likelihood. 
Suppose that the right caudal anterior cingulate (Node 2, n2) is going to wire to one of its six 
nearest neighbors. Initially, due to an absent network topology, spatial proximity has a great 
influence in the formation of new connections – it will be wired to its nearest neighbor (Fig. 
1b). However, gradually over time, the network’s developing structural topology means that K 
(i.e. the relationships between nodes) may now have a greater influence on wiring 
probabilities. Indeed, the right caudal anterior cingulate may later wire with a node that, 
although it is further away than other available nodes, has a greater value (i.e. matching) than 
the others (Fig. 1c). As the wiring equation separately parameterize costs and value, the 
presence of a single connection can heavily influence the topology of the network and thus 
the wiring probabilities. This is because new connections can lead to entirely new overlapping 
neighbors, which may include distant nodes. As a result, wiring probabilities can change 
considerably from moment to moment, despite costs remaining fixed (Fig. 1d).  
 
The GNM simulates this process across the whole brain, until the overall number of 
connections matches those in the real brain network. Subsequently, to test whether the model 
has produced a network that closely approximates real brain networks, an energy function, E, 
must be defined which measures the dissimilarity between simulated and observed 
networks24,25: 

E = max(KSk,KSc,KSb,KSe) (2) 
 

Where KS is the Kolmogorov-Smirnov statistic comparing degree k, clustering coefficient c, 
betweenness centrality b and edge length e distributions of simulated and observed networks. 
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Minimising E finds GNM parameters h and g which generate networks that most closely 
approximate the observed network. 
 

 
 

Figure 1 Updating wiring probabilities within the generative network model iteratively, based on 
dynamically changing graphical structures. (a) The brain’s structural connectivity is modelled as a 
generative network which grows over time according to parametrized connection costs, D(ni,nj)h, and 
values, K(ni,nj)g. In this illustration, we use subject one’s optimal model. (b) Early in network 
development, the absence of a topology leads to proximal nodes being much more likely to form 
connections. The displayed distances and probabilities are from the right caudal anterior cingulate (n2), 
which corresponds to row D(n2,:) and P(n2,:). We display it’s six nearest cortical regions. (c) Later, the 
relative values (K) between nodes influence connection probabilities, such that nodes which are more 
distant (e.g. left rostral anterior cingulate, n59 in red) may be preferred to nodes which are closer (e.g. 
right superior frontal cortex, n27 in cyan). (d) As costs and values are decoupled, the wiring probability 
can be rapidly recomputed when dynamic changes in graphical structure occur over developmental 
time. 
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Small variations in GNM parameter combinations produce accurate and spatially 
embedded networks 
 
We computed the subject-wise optimal GNM (i.e. network with lowest energy) over a range of 
10,000 evenly-spaced parameter combinations (h ± 7, g ± 7) using thirteen different generative 
rules (for rule formulae, see Supplementary Table 1) across our large sample of children (N 
= 270, 178 males, 92 females, mean age = 9yrs 10m, SD age = 2yrs 2m). In each case, we 
computed energy landscapes to contextualize how they perform based on their class (e.g. 
degree) and computation (e.g. product) (Fig. 2a-2d). Mirroring previous findings in adult 
samples24,25,29, we found that models driven by geometry and topology outperform the pure 
geometric spatial model and homophily-based models achieve the lowest energy for our 
pediatric sample (Fig. 2e). In other words, when one combines the distance penalty with the 
‘matching rule’ we described in our example (as shown in Fig. 1), it produces the most 
plausible brain networks.  
 
It is notable that across the matching energy landscape, the most plausible networks exist 
within an extremely narrow parameter window. That is, as a proportion of the parameter space, 
the matching rule (and the other homophily-based model ‘neighbors’) contain the least number 
of low-energy networks relative to other rules. But as Figure 2e shows, these networks are 
the closest to real networks. Thus, varying homophily-based parameters produces the most 
realistic networks, yet has the lowest variability in the space. 
 
While small, variability within this narrow matching window determines inter-individual 
differences in brain network growth. This is because small changes in parameters (i.e. the 
magnitude and direction in which costs and values influence wiring probabilities) can lead to 
networks which are diverse yet include basic structural properties common to all participants. 
To derive more precise estimations of optimal generative parameter combinations, we 
subsequently generated a new set of 50,000 evenly-spaced simulated networks over this 
narrow low-energy matching window (-3.606 < h < 0.354, 0.212 < g < 0.495). Focusing on this 
energy crevasse allows us to detect individual differences in optimal parameter combinations 
with much greater specificity. 
 
Within this refined window, we calculated optimal wiring parameters for each subject in our 
sample. In Figure 2f, we show the spatial distribution of top performing parameter 
combinations and Supplementary Table 2 documents their summary statistics. Intuitively, 
lower-energy networks were found than before due to a much higher resolution of parameter 
selection. In Supplementary Figure 1a-d we detail how KS statistics vary across the same 
space. 
 
Due to the stochastic nature of GNMs, the energy of optimal parameter combinations varies 
with an average standard deviation (SD) of 0.045 across the sample (1000 independent runs). 
Therefore, for the rest of this study we quote our parameter analyses averaged across a 
variable number of wiring parameters which achieved networks with the lowest energy in the 
space: N = 1 (equating to 0.002% of the space) N = 10 (0.02%), N = 100 (0.2%) and N = 500 
(1.0%). We find that optimal h and g parameters are significantly negatively correlated with 
each other, such that subjects with large g parameters tend to have larger negative h (Best 
N=1 network: R = -0.284, P = 2.07 x 10-6; N = 10 networks: R = -0.403, P = 6.08 x 10-12; R = -
0.460, P = 1.58 x 10-15; N = 100 networks: R = -0.460, P = 1.58 x 10-15, N = 500 networks: R 
= -0.497, P = 3.21 x 10-18) (Supplementary Fig. 1e). Optimally simulated networks, using this 
simple wiring equation, are so similar to the actual networks that a support vector machine is 
unable to distinguish them using the parameters from the energy equation (2) (mean accuracy 
= 50.45%, SD = 2.85%). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.249391doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.249391


 

 7 

 
 
Figure 2 Sample-averaged energy landscape visualization and generative rule comparisons. (a) 
Homophily based methods. Matching and neighbors algorithms calculate a measure of shared 
neighborhood between nodes. (b) The spatial method. This ignores g entirely, judging networks only on 
the basis of their spatial relationship. (c) Clustering based methods. These calculate a summary 
measure between two nodes in terms of their clustering coefficients. (d) Degree based methods. These 
calculate a summary measure between two nodes in terms of their degree. (e) Energy statistics from 
the best performing simulation across generative rules, showing that matching achieves lowest energy 
networks. A tabulated form of this figure is provided in Supplementary Table 1. (f) A further 50,000 
simulations were undertaken in the refined matching window, as these defined boundary conditions for 
which low-energetic networks were consistently achieved. Each cross represents a subject’s 
individually specific wiring parameters that achieved their lowest energy simulated network. Energy 
coloring is taken from group averages. 
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Simulated networks are optimized using the energy equation (2), and the best performing 
networks capture the statistical properties of the observed networks (Fig. 3a-d)24,25. But will 
the best networks also capture crucial network properties not included in the energy equation, 
like the spatial embedding of the statistical properties within the network? We next examined 
if the spatial patterning of topological and network characteristics spontaneously arises from 
the constraints of the wiring equation. 
 
Across the sample, optimally performing generative models (i.e. those using the ‘matching’ 
rule) produce networks which significantly correlate with observed networks in terms of their 
degree (R = 0.522, P = 4.96x10-5), edge length (R = 0.686, P = 1.11x10-11) and betweenness 
centrality (R = 0.304, P = 0.012) but not clustering coefficient (R = -0.054, P = 0.663) (Fig. 3e-
h). That is, the spatial embedding of these network properties spontaneously emerges, to 
mirror those of the observed networks, despite this not being specified in the growth process. 
We extended this analysis to new measures outside of the energy equation (Supplementary 
Fig. 2). While local efficiency and assortativity cannot be significantly predicted across the 
sample (R = 0.211, P = 0.084 and R = -0.096, P = 0.116 respectively), optimally performing 
simulated and observed networks correlate positively in terms of their global number of rich 
clubs (R = 0.316, P = 1.11x10-7), maximized modularity (R = 0.349, P = 3.84x10-9) and 
transitivity scalar (R = 0.411, P = 2.11x10-12). In short, this simple growth rule also generates 
many of the crucial properties of real brain networks, despite them not being specified in the 
growth process.  

 
 
Figure 3 Cumulative density functions of topological and network features included in the energy 
equation and predictions of their spatial embedding. Each point in the scatter is the across-subject 
average nodal measure from the observed and optimal simulated networks in terms of (a) Degree (b) 
Clustering coefficient (c) Betweenness centrality (d) Edge length. (e-h) Linear correlations between 
observed and optimally simulated networks across the sample for each measure. Supplementary 
Figure 2 shows a parallel analysis for measures outside of the equation. Boldened values are significant 
correlations at P<0.05. 
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Individual differences in parameters mirror connectome organization and morphology 
 
So far, wiring equations need to incorporate a ‘matching rule’ to best approximate real brain 
networks. Tiny changes in the wiring parameters are needed to best approximate individual 
connectomes across our diverse sample. But do these differences in wiring parameters 
influence structural brain organization and do they reflect any observed features of a subject’s 
brain? We next quantified how a subject’s h and g individually relate to global measures of 
their observed connectome. Furthermore, for all 270 subjects, cortical morphology data were 
also available. In Figure 4 we show that a subject’s h and g are associated with a range of 
global network and morphological measures, both inside and outside of the energy equation. 
This is an important step in validating that these parameters generalize to distinct measures 
(e.g. morphological observations) not used to train the generative models. 
 
Across subjects, h correlates negatively with mean degree (R = -0.185, P = 0.002), global 
clustering (R = -0.634, P = 9.79x10-32), mean betweenness centrality (R = -0.139, P = 0.022) 
and positively with mean edge length (R = 0.493, P = 6.66x10-18). g correlates positively with 
mean degree (R = 0.595, P = 3.21x10-27), global clustering (R = 0.829, P = 1.87x10-69), mean 
edge length (R = 0.249, P = 3.47x10-5) and negatively with mean betweenness centrality (R = 
-0.442, P = 2.30x10-14) (Fig 4a). Despite not being explicitly minimized, h correlates negatively 
with transitivity (R = -0.580, P = 2.49x10-25) and modularity (R = -0.237, P = 8.16x10-5). It does 
not correlate with global efficiency (R = -0.46, P = 0.452), the number of rich clubs (R = 0.021, 
P = 0.736) or assortativity (R = 0.053, P = 0.385). By contrast, g correlates positively with 
global efficiency (R = 0.434, P = 7.89x10-14), number of rich clubs (R = 0.400, P = 8.44x10-12), 
transitivity (R = 0.669, P = 2.179x10-12) and negatively with assortativity (R = -0.160, P = 
0.0083) and modularity (R = -0.254, P = 2.34x10-5) (Fig 4b). To summarize briefly: at a global 
level, the tiny amounts of variability in these two parameters across the children significantly 
predict a wide range of properties of their observed connectomes.  
 
Finally, we tested for this correspondence in a totally different type of neuroimaging data – 
cortical morphology. h correlates negatively with mean cortical grey matter (R = -0.180, P = 
0.003), surface area (R = -0.163, P = 0.007) and thickness (R=-0.198, P = 0.001). By contrast, 
g is positively correlated with mean cortical grey matter (R = 0.222, P = 2.41x10-4), surface 
area (R = 0.208, P = 5.76x10-4) and thickness (R=0.187, P = 0.002) (Fig. 4c).  These global 
findings are stable, regardless of how many high performing parameters are averaged across, 
and they are all outlined in Supplementary Table 3. 
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Figure 4 Variations in a subject’s wiring parameters h and g relate to global structural properties of their 
brain networks and their cortical morphology. These parameters were calculated by averaging across 
the top N = 500 simulated networks, but findings for variable N networks are provided in 
Supplementary Table 3. (a) h and g significantly relates to all measures in the energy equation. (b) h 
relates to transitivity and modularity, but not efficiency, number of rich clubs or assortativity all of which 
were not minimized in the energy equation. g relates to all examined measures not included in the 
energy equation. (c) h is negatively correlated with morphological findings, while g is positively 
correlated with morphological findings. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.249391doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.249391


 

 11 

Variability in neurodevelopmental trajectories arises through value-updating over time 
and relates to cognitive outcomes 
 
While small generative parameter differences result in differential network properties, we have 
yet to show how this variability occurs over developmental time. That is, how do differences 
in parameter combinations across subjects manifest themselves when the brain network is 
developing? To address this, we examined how between subject-variability in optimal GNMs 
emerge at the level of cortical nodes and their connections. This is possible by simply 
decomposing the optimal simulation into its constituent parametrized costs (Dh), values (Kg) 
and wiring probabilities (P) at each time point, for each subject (Fig. 5a-b). This allows us to 
quantify growth trajectories and thus establish which aspects of network emergence vary most 
in the sample. 
 
For each subject, we computed the coefficient of variation (CV, s/µ) of their parameterized 
costs, matching values and wiring probabilities to compare subject-specific variability, as it 
emerges throughout the simulated growth of connectomes. This allows for a comparison in 
variability between components of the wiring equation. While subjects exhibit some variability 
in how parameterized costs influence wiring probabilities (mean CV 2.27), this is dwarfed by 
their parameterized matching over time (mean CV 33.02). This is because the matching value 
is dynamic, changing at each iteration (as in Fig. 1d) unlike relative Euclidean distance 
between nodes, which is static. The result is that significant inter-individual variability arises in 
the probability of connections forming (mean CV 53.08), leading to the emergence of divergent 
brain organization (Fig. 5c-f). Furthermore, the regional patterning of costs and values is not 
random (Fig. 5g). Nodes and edges with high matching values decline in their variability, 
suggesting a consistency across subjects in highly ‘attractive’ nodal structures and their 
connections. Across the sample, cheaper regions occupy the medial aspects of the cortex 
while highly valuable regions generally reside in the left temporal cortex. 
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Figure 5 Wiring equation (1) decomposition and the subsequent variability across subjects in our 
heterogeneous sample. (a) For each subject, a simulated network is produced by minimizing the energy 
between the observed and simulated network. Here we present visualizations for subject one (red). (b) 
Costs (D) are static, while values (K) dynamically update according to the matching rule, which enables 
the computation of wiring probability (P). (c) The mean and standard deviation for each subject of their 
edge-wise parameterized costs, (d) parameterized matching and (e) wiring probabilities. (f) Histograms 
of each subject’s coefficient of variation (CV) showing that subjects are more variable in theirs value-
updating compared to costs, which leads to large wiring probability variation. (g) Regional patterning of 
sample-averaged nodal parameterized costs and values, showing highly valuable patterning in the left 
temporal lobe and cheap regions generally occupying medial aspects of the cortex. Variability declines 
as value increases, but increases for costs. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.249391doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.249391


 

 13 

We have shown that the complex architecture of a child’s connectome can emerge simply by 
estimating the changing wiring properties over its development, generalizing to multiple 
different properties of their observed connectomes and cortical morphology data. But do these 
growth parameters relate to their cognition? If wiring parameters are indeed accurate 
decompositions of an individual’s structural network, we should find that they predict cognitive 
outcomes equivocally to observed features of the connectome. For all 270 subjects we had 
data from a battery of cognitive tasks, including measures of executive function, phonological 
awareness, working memory, fluid reasoning and vocabulary.  
 
We tested the relationship between a subject’s cognition and (i) their optimal wiring 
parameters and (ii) global measures of their structural connectome (using measures included 
in the energy equation). This was done using partial least squares (PLS), a multivariate 
statistical technique which extracts optimally covarying patterns from two data domains30. We 
undertook two separate PLS analyses, which correlated (i) optimal wiring parameter 
combinations or (ii) global connectome measures across our sample, with cognitive 
performance in the nine tasks, respectively (Fig. 6a). For both analyses, PLS1 was significant 
in the amount of explained covariance (76.2% explained, pcorr = 0.009 and 62.6%, pcorr = 0.049 
respectively). PLS1 score predictions, and their cognitive loadings, are extremely similar 
between wiring parameters and connectome features (R = 0.191, P = 1.63 x 10-3 and R = 
0.210, P = 5.29 x 10-4) (Fig. 6b-c). 
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Figure 6 Partial least squares (PLS) regression was used to identify covarying patterns of wiring parameters and 
global connectome features with cognitive performance across nine cognitive tasks. (a) A visual representation of 
the two PLS analyses undertaken. PLS1 was statistically significant (pcorr = 0.009 and pcorr = 0.049 respectively) for 
both analyses, accounting for 76.2% and 62.6% of the covariance between predictors and cognition respectively. 
(b) There is a significant positive correlation between parameter scores and PLS-derived cognitive scores. Each 
parameter loads with similar magnitude onto PLS1 (note that h is a negative value) (c) There is an analogous 
significant positive correlation between connectome scores and PLS-derived cognition scores. 
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Genomic patterning of network growth 
 
Underlying these macroscopic changes in brain organization across time are a series of 
complex molecular mechanisms. These are partly governed by genetically coded processes 
that vary across individuals. We next tested whether these processes may steer the brain 
network towards a particular growth trajectory within our GNMs. 
 
Nodal cost and nodal ‘matching’ value patterning alongside regional gene expression profiles 
of 10,027 genes using human adult brain microarray data31,32 were integrated into two PLS 
analyses for each subject. For all analyses, gene expression scores at each node were used 
as the predictor. For each subject’s first analysis, their parameterized nodal costs (calculated 
as Dh as visualized for subject one in Fig. 4b; left) was used as the response variable. For 
each subject’s second analysis, their mean parameterized values (calculated as Kg averaged 
over time, as visualized for subject one in Fig. 4b; middle) was used as the response variable. 
Each analysis defined PLS components independently which were linear combinations of the 
weighted gene expression scores at each node (predictor variables) that were most strongly 
correlated with the subject’s nodal costs and nodal values of their simulated growth trajectory. 
To limit the variability across regions in terms of the samples available, only left hemispheric 
gene data were analyzed.27   
 
Across our sample, the first PLS component (PLS1) explained on average 65.0% (SD 1.3%) 
and 56.9% (SD 9.2%) of the covariance between genetic expression and nodal-costs, and 
nodal-values respectively. The average nodal-costs PLS1 score significantly correlates with 
average nodal-costs (R = 0.794, P = 2.07x10-8). Similarly, the average nodal-values PLS1 
score significantly correlates with average nodal-values (R = 0.718, P = 1.71x10-6) (Fig. 7a-
b).  
 
To then characterize the genetic profiles associated with each PLS analysis, we permuted the 
response variable 1000 times to form a null distribution for the loading of each gene, across 
each subject’s PLS1. This provides an estimate of how strong the loading would be by chance, 
and thus which genes exceed pcorr<0.05. Across subjects, PLS1 provided an average of 581.5 
significant genes (SD 101.4) for nodal costs and 437.6 significant genes (SD 167.4) for nodal 
values (Supplementary Fig. 3a). 
 
Genes do not act in isolation, but instead converge to govern biological pathways across 
spatial scales. To move from individual genes to biological processes (BPs) and cellular 
components (CCs), we performed a pathway enrichment analysis33. Pathway enrichment 
analysis summarizes large gene sets as a smaller list of more easily interpretable pathways 
that can be visualized to identify main biological themes. Genes were ordered according to 
their frequency in being significantly associated with connectome growth across subjects for 
that component. For example, for nodal-values PLS1, top of the list was the gene associated 
with connectome growth in the most subjects (CHI3L1; significant for 49.4% of our sample), 
the next was the second most frequent gene (PRKAB2; 36.4% of our sample) and so on. Our 
list stopped when genes were significant for less than 10% of the sample. This left the nodal-
costs PLS1 with a list of 1427 genes and the nodal-values PLS1 with a list of 1584 genes 
ordered in terms of importance, which were submitted to pathway enrichment analysis 
(Supplementary Fig. 3b). 
 
The genes identified within the subject-wise PLS are not random, but instead converge on 
particular biological processes (BP) and cellular components (CC). The nodal costs PLS1 was 
most prominently enriched for genes associated with biological processes including catabolic 
processes and protein localization (32 BPs; all padj < 9.58 x 10-3), cell projection (14 BPs; all 
padj < 4.39 x 10-2), immunological processes (34 BPs; all padj < 4.82 x 10-2), regulation of 
metabolic processes (8 BPs; all padj < 4.75 x 10-2) and regulation of cell development and 
differentiation (4 BPs; all padj < 3.87 x 10-2). In terms of cellular components, nodal costs PLS1 
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was enriched for genes associated with the ribosome (14 CCs; all padj < 2.15x10-2), vesicular 
and endoplasmic membranes (19 CCs; all padj < 4.90 x 10-2) and intracellular organelles 
(8CCs; all padj < 4.97 x 10-2) (Fig. 7c).  
 
The nodal values PLS1 was most prominently enriched for genes associated with biological 
processes including synaptic signaling (29 BPs; all padj < 3.96 x 10-2), neuronal projection and 
development (26 BPs; all padj < 4.21 x 10-2) and synapse organization (2 BPs; all padj < 2.92 x 
10-2). In terms of cellular components, nodal values PLS1 was enriched for genes associated 
with synaptic membranes (60 CCs; all padj < 3.15 x 10-2) and ion channel complexes (7 CCs; 
all padj < 1.18 x 10-2) (Fig. 7d). 
 
In Supplementary Table 4 we provide links so that readers can run our precise gene ontology 
queries within a browser and in Supplementary Figure 3c-d we show a visualization of these 
enriched gene sets. 
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Figure 7 PLS regression identifies over expressed genes which explain variance in parameterized 
costs and values across subjects. Both PLS1 components across subjects are enriched for functionally 
specific biological processes and cellular components. Node size represents the number of genes in 
the set. The edges relate to gene overlap. (a) Sample averaged parameterized costs significantly 
correlates with sample averaged PLS1 nodal gene scores, explaining on average 65.0% covariance 
(b) Sample averaged parameterized values significantly correlates with sample averaged PLS1 nodal 
gene scores explaining on average 56.9% covariance (c) Nodal-costs PLS1 is enriched for genes 
predominantly associated with protein localization, catabolic processes and ribosomal/membrane 
cellular components (d) Nodal-values PLS1 is enriched for genes predominantly associated with 
synaptic signaling, neuronal projection and synaptic membranes. 
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DISCUSSION 
 
The principles of the development of macroscopic human brain organization can be modelled 
as a generative network, that optimizes its connectivity by renegotiating its costs and value23,24 
continuously over time. Despite the simplicity of this equation, it results in the dynamic 
updating of wiring probabilities over development, with multiple network properties, like spatial 
embedding, being an emergent property of this dynamic updating. This resonates with 
theoretical perspectives that implicate dynamic interactions between brain systems over 
development in progressive, integrative, specialisation34. We have formalized this process in 
the context of neurodevelopmental diversity; offering a new perspective on the emergence of 
macroscopic organization, its possible biological underpinnings, and the association with 
functional outcomes like cognitive performance. This reflects a theoretical step-change in the 
study of human brain development, in being sufficiently well-specified to generate 
macroscopic brain networks. In turn, this formalization allows for the unpacking of the 
computational and/or biological constraints that shape the trajectories of networks. Indeed, we 
anticipate that GNMs may be a powerful tool to model the growth and diversity of real and 
biologically-feasible artificial networks across many scales. 
 
Small changes in growth parameters of the GNM lead to divergent macroscopic brain 
networks, with systematically different network properties. Within the model, the key factor 
that drives individual differences in growth trajectory is the dynamic nature of updating 
preferences. Specifically, as nodes form new connections this dynamically changes their 
neighborhoods, and in turn this quickly changes which nodes become ‘attractive’ for 
subsequent connections. Importantly, individual differences in this process correspond 
significantly to independent structural data of the same individuals. 
 
Why do the homophily-based generative rules approximate whole-brain networks so well? We 
propose that the superordinate goal of any developing brain network is to achieve the optimal 
computational capacity required of it, given finite biological resources. In this light, we suggest 
that matching produces the lowest-energetic networks precisely because it provides the 
closest heuristic estimate (compared to those tested here and in other works24,25,28) of the 
genuine dynamic reappraisals that occur over developmental time. This is because by virtue 
of preferentially wiring with nodes with shared neighborhoods, modular architectures emerge, 
and this reflects the brain’s overarching structure. The modular architecture of the brain has 
been well studied, and has numerous properties enabling effective flexible computations likely 
important for functional integration35. Finally, by virtue of only requiring knowledge of 
neighborhood overlap, homophily-based methods may incur less informational costs36 relative 
to other methods which require global information, and therefore may be more biologically 
plausible. 
 
Our current GNMs operate at a whole-brain level – i.e. a global set of rules governing growth. 
But this could likely be made more biologically realistic by integrating regional differences that 
capture the potential long-term benefits of forming a connection. For instance, methodological 
improvements might be achieved by integrating reinforcement learning models with GNMs. 
This would model regional brain structures as agents aiming to optimize their connectivity 
dynamically over time to maximize their long-term reward. Many superficial strategies could 
be used to achieve this, and the appearance of the network’s “growth rules” would likely 
change considerably at different time points to achieve the superordinate goal. For example, 
while in earlier stages rewards may best be attained via the rapid generation of the modular 
network, once a sufficient architecture is produced it may be better attained via its remodeling 
to reduce maintenance costs23. Such a model may also incorporate wider factors, such as 
environmental influences, which may influence reward predictions and thus affect the steering 
of the network’s trajectory. This conceptual understanding of network growth complements 
the wider literature surrounding “computationally rational”37 navigational strategies (such as 
the successor representation38 or intuitive planning39) that can be taken by agents in a dynamic 
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environment under constraints. This area of study has mainly focused on understanding how 
agents can represent and optimize navigation through cognitive maps to attain some reward 
(e.g. such as accumulating rewards in a maze). However, the application of these approaches 
may prove useful to understand how networks themselves optimize their connectivity at 
different stages of development.  
 
Regional variation in nodal costs and values closely mirrored the expression profiles for 
different sets of genes, which in turn govern different biological processes and cellular 
components. Since the advent of genome-wide association studies (GWAS), a huge number 
of genes have been implicated in developmental disorders, including schizophrenia40 and 
autism41, but also general cognitive functioning42. It has been challenging to interpret the 
consequences of these individual implicated genes. The enrichment analysis that 
accompanied our GNM takes a very different approach. As far as we are aware, this is the 
first study aiming to bridge models of whole brain organizational emergence and genetics in 
this way (for work using generative models, see refs24,25,29,43,44 and work that integrates Allen 
Brain Atlas gene data with functional and structural brain imaging, see refs45-48). Nodal costs 
covaried with genes enriched for highly costly metabolic processes, including catabolic 
processes, protein transport and cellular components centered around the ribosome and 
endoplasmic membranes. On the other hand, nodal values covaried with those enriched for 
trans-synaptic signaling, neuronal projection and the synaptic membrane. 
 
The omnigenic model49 suggests that complex traits are driven by genes that do not have 
direct effects on the trait per se, but instead propagate through regulatory networks on much 
smaller numbers of core genes, with more direct effects. This model explains the vast number 
of GWAS hits for complex traits, as “peripheral” genes necessarily outnumber “core” genes 
and thus the sum of their small effects exceeds the contribution of core genes. We suggest 
the omnigenic model may apply to some aspects of gene-development relationships. That is, 
the many genes that contribute to each PLS1 may not directly contribute to developmental 
processes themselves, but in the regulation of activity and growth within brain areas that are 
particularly important for neurodevelopment. Crucially there is variability in enriched genes 
across subjects (Supplementary Fig. 3a). 
 
This work presents a challenge to the developmental field which has a long history of 
categorizing neurodevelopment into discrete groupings based on observed cognitive and/or 
behavioral traits. Instead, we suggest that neurodevelopment may be better thought of as a 
trajectory in which divergent outcomes arise via slight trajectory changes that fall out of the 
continual negotiation of brain connectivity optimization. While likely that generative 
preferences are initialized via an individual’s genetic preprograming, small changes in wiring 
preferences over time – possibly via complex interactions of their time course, 
endocrinological exposure, learning and environment – have profound effects on the 
emergence of the developmental trajectory. What results is a continual interaction between 
network growth preferences and the dynamically developing brain, leading to neurodiverse 
outcomes.  
 
This computational framework has a number of limitations that provide scope for future 
improvements. Our generative models are limited to the binary connections which are 
assumed to be anatomical24,25. This is inevitably a gross simplification of the complex weighted 
structure of the connectome. Devising ways in which network connections can change in a 
more graded fashion is a necessary next step to modelling more complete developmental 
processes. In the future we will need to capture both the strengthening and weakening of 
connections that has been shown to occur in human brain development50,51. Secondly, we 
currently use one rule, but it is conceivable that different rules govern growth at different points 
in the trajectory. It may be possible to accurately approximate the rules governing the 
remodeling of networks over time, modelled either by changing heuristic estimates (e.g. 
changing of generative rules over time) or attempting to optimize a superordinate goal (e.g. 
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computational efficiency and/or flexibility).  Thirdly, our gene enrichment results are 
correlational, not causative. There remains an explanatory gap in determining whether and 
how these specific gene profiles support the sensitivity to connection formation. And crucially, 
the expression data are derived for a microarray analysis of post-mortem tissue samples from 
human adults25. The next steps will involve validating these findings in large scale 
developmental cohorts with available gene data, and forming casual links by applying GNMs 
to individuals with neurodevelopmental disorders of known genetic origin46,47,52. 
 
In conclusion, we provide a unifying computational framework for conceptualizing the 
emergence of structural brain networks and their diversity. The emergence of brain networks 
can be understood as occurring via continual renegotiations of costs and values, but 
individuality emergences from their slightly different parameterization. 
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METHODS  
 
Participants 
 
Our sample were made up of children referred by practitioners working in specialist 
educational or clinical services to the Centre for Attention Learning and Memory (CALM), a 
research clinic at the MRC Cognition and Brain Sciences Unit, University of Cambridge (see 
Holmes, J. et al.53 for the full protocol of assessment, and refs9-13 for prior work using the same 
cohort). This cohort of children is intentionally heterogenous. Referrers were asked to identify 
children with cognitive problems related to learning, with primary referral reasons including 
difficulties with ongoing problems in “language”, “attention”, “memory”, or “learning / poor 
school progress”. Exclusion criteria were uncorrected problems in vision or hearing, English 
as a second language, or a causative genetic diagnosis. Children could have single, multiple 
or no formally diagnosed learning difficulty or neurodevelopmental disorder. The CALM cohort 
contains N=967 total children (N=805 referred; N=162 unreferred). Of these, N=299 undertook 
MRI scanning of which N=279 had usable MRI data (see MRI acquisition and pre-processing). 
N=270 of these had cognitive data available (see Cognitive and learning assessments). This 
sample includes 65.9% boys, mean age 117.8 months, age range was 66-223 months and 78 
that came from the non-referred comparison sample. Demographic information of the N=270 
subjects included in our sample is provided in Supplementary Table 5. 
 
MRI acquisition and pre-processing  
 
Magnetic resonance imaging data were acquired at the MRC Cognition and Brain Sciences 
Unit in Cambridge, on the Siemens 3 T Tim Trio system (Siemens Healthcare) using a 32-
channel quadrature head coil. N=299 CALM children underwent MRI scanning. 20 scans were 
not useable due to excessive motion (>3 mm movement during the diffusion sequence 
estimated through FSL eddy), leaving an MRI sample of N=279 children. T1-weighted volume 
scans were acquired using a whole brain coverage 3D Magnetization Prepared Rapid 
Acquisition Gradient Echo (MP RAGE) sequence acquired using 1 mm isometric image 
resolution. Echo time was 2.98ms, and repetition time was 2,250ms. Diffusion scans were 
acquired using echo-planar diffusion-weighted images with an isotropic set of 60 noncollinear 
directions, using a weighting factor of b = 1,000s × mm−2, interleaved with a T2-weighted 
(b = 0) volume. Whole brain coverage was obtained with 60 contiguous axial slices and 
isometric image resolution of 2 mm. Echo time was 90ms and repetition time was 8,400ms. 
 
Connectome construction 
 
MRI scans were converted from the native DICOM to compressed NIfTI-1 format. Next, 
correction for motion, eddy currents, and field inhomogeneities was applied using FSL eddy. 
Furthermore, we submitted the images to nonlocal means de-noising54 using DiPy v0.1155 to 
boost signal-to-noise ratio. A constant single angle (CSA) model was fitted to the 60-gradient-
direction diffusion-weighted images using a maximum harmonic order of 8 using DiPy. Whole-
brain probabilistic tractography was performed with 8 seeds on all voxels. The step size was 
set to 0.5 and the maximum number of crossing fibers per voxel to 2. For ROI definition, T1-
weighted images were submitted to nonlocal means denoising in DiPy, robust brain extraction 
using ANTs v1.956, and reconstruction in FreeSurfer v5.3 (http://surfer.nmr.mgh.harvard.edu). 
 
Regions of interest (ROIs) were based on the Desikan-Killiany parcellation of the MNI 
template57 with 34 cortical ROIs per hemisphere. To construct the connectivity matrix, the 
number of streamlines intersecting both ROIs was estimated and transformed into a density 
map for each pairwise combination of ROIs. A symmetric intersection was used so that 
streamlines starting and ending in each ROI were averaged. Self-connections were removed. 
To produce binarized connectomes from the resulting 68-by-68 streamline matrix, we enforced 
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an average connectome density of r=10% (as in Betzel et al.25), resulting in a streamline 
threshold of 18 streamlines (i.e. a minimum of 18 streamlines must have connected two 
regions for us to consider the presence of an anatomical connection). 
 
Generative network models  
 
Starting with a sparse seed network (25 bi-directional edges that were common across all N 
= 270 subjects), edges were added one at a time over a series of steps until a total number of 
connections were placed that equaled that of the target observed connectome (group level 
connections, mean = 231.4 and SD = 19.1). Each step allows for the possibility that any pair 
of unconnected nodes will be connected. Connections are formed probabilistically, where the 
relative probability of connection formation, between nodes nu and nv, is given by equation (1). 
We used thirteen previously studied non-geometric rules24,25 to produce energy landscapes. 
Topological parameters were computed using our own internally developed functions that 
originated from the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/)58.  
 
To evaluate the fitness of synthetic networks and optimize models, we defined an energy 
function that measures how dissimilar a synthetic network is to the observed network as 
defined by Betzel, R.F. et al.25. This is given in equation (2). Initially, we ran simulations across 
a defined a parameter space of 10,000 evenly-spaced combinations of h ± 7 and g ± 7, for 
each generative rule (Fig. 2a-d). This was to capture their respective energy landscapes and 
to estimate their relative effectiveness at generating plausible networks. We then computed a 
further a set of 50,000 simulations within a much narrower low-energy window (-3.606 ≤ h ≤ 
0.354 and 0.212 ≤ g ≤ 0.495) of the matching algorithm (Fig. 2f) for all subsequent analysis. 
This is because the matching algorithm attained the lowest-energy networks and therefore 
best approximated individual-level connectomes. 
 
Cognitive and learning assessments  
 
A large battery of cognitive, learning, and behavioral measures was administered in the CALM 
clinic.53 Nine cognitive tasks were used in the current study. N=9 children did not have 
available cognitive data (of the N=279 MRI sample) and were therefore excluded, leaving the 
final sample N=270 children. These children had no missing data. For full details of the 
processing of cognitive data, see Siugzdaite, R. et al13. 
 
The following measures of fluid and crystallized reasoning were included: Matrix Reasoning, 
a measure of fluid intelligence59 (Wechsler Abbreviated Scale of Intelligence, WASI); Peabody 
Picture Vocabulary Test60 (PPVT). Phonological processing was assessed using the 
Alliteration subtest of the Phonological Awareness Battery61 (PhAB). Verbal and visuo-spatial 
short-term and working memory were measured using Digit Recall, Dot Matrix, Backward Digit 
Recall, and Mr X subtests from the Automated Working Memory Assessment62,63 (AWMA). 
Learning measures (literacy and numeracy) were taken from the Wechsler Individual 
Achievement Test II64 (WIAT II) and the Wechsler Objective Numerical Dimensions65 (WOND), 
apart from 78 of controls for which we used multiple subtests from the Woodcock Johnson for 
Verbal ability66.  
 
Gene expression data  

Regional microarray expression data were obtained from six post-mortem brains provided by 
the Allen Human Brain Atlas (http://human.brain-map.org/).31,32 These datasets were based 
on microarray analysis of post-mortem tissue samples from six human donors aged between 
18 and 68 years with no known history of neuropsychiatric or neurological conditions.26 Data 
were imported from Arnatkevičiūtė, A. et al.32 Since only two of the six brains included samples 
from the right hemisphere, analyses were conducted on the left hemisphere only. Probes 
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where expression measures do not exceed the background in >50% samples were removed 
and genes that did not have a corresponding RNA-seq measure were removed. Probes with 
a Spearman’s correlation <0.2 with RNA-seq data were removed, and a representative probe 
with the highest correlation to RNA-seq data was selected for each gene. Sample assignment 
was computed by applying a 2 mm distance threshold. In total, a mean of 37.8 ± 22.5 (SD) 
samples were assigned to each ROI (min= 5; max = 92)32. 

The fully pre-processed gene data comprised of a 34 by 10,027 matrix (Supplementary Fig. 
7) of microarray array gene expression data. These data were used for a subsequent PLS 
analysis (see Statistics; PLS analysis) and pathway enrichment analysis (see Gene 
enrichment analysis and visualization). 

Statistics  
 
Predictions of spatial embedding. To assess the performance of the optimal matching GNMs 
to produce networks with spatial embedding of topological characteristics, we averaged 
across each subject’s best performing simulation (which achieved the lowest energy; 
descriptive statistics shown in the top row of Supplementary Table 2) to produce a single 68 
(ROIs) by 1 vector for each measure. We did the same for their observed connectomes. 
Figure 3 shows their linear correlations. In Supplementary Figure 2a we run the same 
process for local efficiency (not included in the energy equation). For Supplementary Figure 
2b-e we correlate the same networks, but not for spatial embedding as these are global 
network measures outside of the energy equation. All network measures were calculated 
using functions from the Brain Connectivity Toolbox58. 
 
Global associations of parameters with graphical and morphological measures. In Figure 4 
we perform a group level correlational analysis between h and g and observed global graph 
theory and cortical morphology measures. In each case, the observed measures were 
averaged across the whole cortex. 
 
Variability in the decomposed wiring equation. To determine where variability arises in the 
growth of the networks, we decomposed the wiring equation for each subject. This was 
achieved by first running the optimal wiring equation for each subject and taking their cost (a 
static Euclidean distance matrix), matching and wiring probability matrices at each step in the 
network growth model. For each subject, we took all edges that existed within the simulation 
and computed their mean and standard deviation (Fig. 5c-e) and then determined their 
coefficient of variation (Fig. 5f shows their distributions). To then explore within-connectome 
variability, we performed the same analysis but collapsing across subjects to determine how 
nodes (summed rows of the matrix) and edges (elements of the matrix) vary (Fig. 5g). From 
this section onward, subject 162 was removed from the analysis as they were the only subject 
to have an optimally performing g that was positive, which biased results due to being an outlier 
(as parametrized values are calculated as Kg), leaving a sample of N=269. 
 
PLS analysis. We used PLS regression to address two distinct aspects of the study. First, we 
used PLS to determine the latent components of the wiring equation and connectome features 
which best explain cognitive task performance (Fig. 6a). The pcorr significance value of each 
component was determined by permuting the cognitive data N=1000 times and comparing the 
observed covariance explained to the null distribution. Figure 6b-c show the correlation of 
predictor and response scores and response and predictor loadings of the significant PLS1 
component (pcorr = 0.009 and pcorr = 0.049; in terms of covariance explained by the PLS1 latent 
components) for each analysis respectively. Second, we used PLS to identify the linear 
combinations of genes that best predicted average nodal costs and values each subject’s 
optimal simulation (as outlined previously). For each of the N=269 subjects, two PLS analyses 
were performed, providing 538 separate PLS analyses. To assess the significance of each 
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gene in terms of its loading, we ran N=1000 permutations of the response variable for each 
PLS. This allowed us to compute a gene loading pcorr for each component of the PLS which 
was collapsed across subjects (as visualized in Supplementary Fig. 3b) for gene enrichment 
analysis (see Gene enrichment analysis and visualization). 
 
Gene enrichment analysis and visualization 
 
We next aimed to elucidate the biological processes (BPs) and cellular components (CCs) for 
which our gene lists converged on. A BP is defined as representing a specific objective that 
the organism is genetically programmed to achieve. A BP is accomplished by a particular set 
of molecular functions carried out by specific gene products (or macromolecular complexes), 
often in a highly regulated manner and in a particular temporal sequence 
(https://www.ebi.ac.uk/QuickGO/term/GO:0008150) On the other hand, a CC is defined as a 
location, relative to cellular compartments and structures, occupied by a macromolecular 
machine when it carries out a molecular function. There are two ways in which the gene 
ontology describes locations of gene products: (1) relative to cellular structures (e.g., 
cytoplasmic side of plasma membrane) or compartments (e.g., mitochondrion), and (2) the 
stable macromolecular complexes of which they are parts (e.g., the ribosome) 
(https://www.ebi.ac.uk/QuickGO/term/GO:0005575). 
 
To elucidate BPs and CCs across the sample, genes with a pcorr<0.05 following permutation 
testing on each component were deemed significant. This provided an individual-level vector 
of genes that were significant for an individual for each of the nodal costs and nodal values 
PLS1. To collapse across subjects, genes were then ordered according to their frequency in 
being significantly associated with connectome growth across subjects for that component. 
The list stopped when genes were significant for less than 10% of the sample. For each 
subject, PLS1 provided an average of 581.5 significant genes (SD 101.4) for nodal costs and 
437.6 significant genes (SD 167.4) for nodal values (Supplementary Fig. 3a). When 
collapsed across subjects as described, the nodal costs PLS1 had 1427 genes and the nodal 
values PLS1 had 1584 genes ordered in terms of importance, which were then submitted to 
a pathway enrichment analysis. 

For all information as to the enrichment and visualization pipeline, please refer to Reimand, J. 
et al.28. In short, biological process gene ontology (GO) annotations are the most commonly 
used resource for pathway enrichment analysis. g:Profiler67 (https://biit.cs.ut.ee/gprofiler/gost) 
searches a collection of gene sets representing GO terms and, in the ordered test, repeats a 
modified Fisher’s exact test on incrementally larger sub-lists of the input genes and reports 
the sub-list with the strongest enrichment. Multiple-test correction is applied to produce an 
adjusted P value (padj)33,67 (as visualized in Supplementary Fig. 3c-d, which can be accessed 
via the links presented in Supplementary Table 4). To visualize biological pathways, we used 
‘EnrichmentMap’ within Cytoscape v3.8.0 (http://www.cytoscape.org)33,68. All default 
parameters were used. Pathways are shown as nodes (representing enriched biological 
processes) that are connected by edges if the pathways share genes. Nodes are colored by 
their padj and edges are sized on the basis of the number of genes shared by the connected 
pathways. To then identify clusters of themes, AutoAnnotate v1.3.3 was used before manually 
curating the suggested theme names to accurately reflect all pathways within each theme. 

Data availability  
 
The datasets supporting the current study have not been deposited in a public repository 
because of restrictions imposed by NHS ethical approval, but are available from the 
corresponding author on request. 
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