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Abstract 

FGF signaling is involved in mesoderm induction in deuterostomes, but not in flies and 

nematodes, where it has a role in mesoderm patterning and migration. However, 

comparable studies in other protostomic taxa are missing in order to decipher whether 

this mesoderm-inducing function of FGF extends beyond the lineage of deuterostomes. 

Here, we investigated the role of FGF signaling during mesoderm development in three 

species of lophophorates, a clade within the protostome group Spiralia. Our gene 

expression analyses show that the molecular patterning of mesoderm development is 

overall conserved between brachiopods and phoronids, but the spatial and temporal 

recruitment of transcription factors differs significantly. Moreover, inhibitor 

experiments demonstrate that FGF signaling is involved in mesoderm formation, 

morphogenetic movements of gastrulation and posterior axial elongation. Our findings 

suggest that the inductive role of FGF in mesoderm possibly predates the origin of 

deuterostomes. 
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Introduction 

Mesoderm is an embryonic germ layer of bilaterians that gives rise to tissues residing 

between the ectoderm and endoderm (Hyman, 1951; Ruppert, 1991). The way 

mesoderm is formed differs between embryos. For instance, deuterostomes generally 

form mesoderm by outpouchings of their invaginating endoderm (archenteron), a 

mechanism named enterocoely, which is not observed in protostomes, except for the 

Chaetognatha (Hertwig; Kapp, 2000; Matus et al., 2006) and Brachiopoda (Conklin, 

1902; Kowalevsky, 1874; Plenk, 1913). In the remaining protostomes mesoderm 

originates from one or more precursor cells that are internalized during gastrulation; 

spiralian species can have an endodermal (e.g. the micromere 4d) and an ectodermal 

source (e.g. micromeres from the animal pole/anterior end of the blastopore) of 

mesoderm (summarized in Henry and Martindale, 1999; Kozin and Kostyuchenko, 

2016; Lambert, 2008; Lyons and Henry, 2014), and ecdysozoan mesoderm originates 

either from internalization of vegetal endomesodermal cells (Martin-Duran and Hejnol, 

2015; Sulston et al., 1983), or cells of the blastoderm (Eriksson and Tait, 2012; 

Hartenstein et al., 1985). Despite the differences in the embryological origin and 

developmental mechanisms, the molecular patterning of mesoderm induction and 

differentiation into various organs shares similarities between bilaterians (Amin et al., 

2009; Amin et al., 2010; Andrikou et al., 2013; Chiodin et al., 2013; Fritzenwanker et 

al., 2014; Grifone et al., 2005; Harfe et al., 1998; Hinman and Degnan, 2002; Imai et 

al., 2004; Kozin et al., 2016; Kozmik et al., 2007; Mahlapuu et al., 2001; Mankoo et 

al., 1999; Materna et al., 2013; Nederbragt et al., 2002; Osborne et al., 2018; 

Passamaneck et al., 2015; Perry et al., 2015; Rudnicki et al., 1993; Sandmann et al., 

2007; Schubert et al., 2003; Shimeld et al., 2010; Zaffran et al., 2001). This molecular 

conservation has been commonly used as an argument for the homology of this germ 

layer (Burton, 2008; Lartillot et al., 2002; Martindale et al., 2004; Seipel and Schmid, 

2005; Technau and Scholz, 2003). Apart of shared sets of transcriptions factors, 

conserved signaling cascades are also involved in different steps of mesoderm 

development such as FGF, Notch and BMP (Good et al., 2004; Itoh and Ornitz, 2004; 

Sweet et al., 1999; Wijesena et al., 2017; Winnier et al., 1995). Among the 

aforementioned, FGF signaling is of particular interest due to its proposed ancestral 

role in mesoderm induction in deuterostomes (Fan et al., 2018; Green et al., 2013). 
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Functional studies have demonstrated that this signal is required for posterior 

mesoderm formation in vertebrates (Amaya et al., 1993; Draper et al., 2003; Fletcher 

et al., 2006; Fletcher and Harland, 2008; Yamaguchi et al., 1994), anterior mesoderm 

formation in cephalochordates (Bertrand et al., 2011), mesenchyme induction and 

formation of notochord, TVC and tail muscle in tunicates (Davidson et al., 2006; Imai 

et al., 2002; Kim and Nishida, 2001; Yasuo and Hudson, 2007), mesoderm induction 

in hemichordates (Fan et al., 2018; Green et al., 2013) and myoblast formation in sea 

urchins (Andrikou et al., 2015). Outside deuterostomes, however, studies addressing 

the role of FGF in mesoderm development are scarce. The only available data among 

protostome taxa concerns the two well-studied ecdysozoans Drosophila melanogaster 

and Caenorhabditis elegans, in which FGF is involved in mesoderm patterning and 

migration but not in induction (Beiman et al., 1996; Burdine et al., 1998; DeVore et al., 

1995; Kadam et al., 2009; Lo et al., 2008; McMahon et al., 2010; Photos et al., 2006; 

Stathopoulos et al., 2004; Sun and Stathopoulos, 2018; Wilson et al., 2005). A question 

therefore emerges as to whether the mesoderm-inducing role of FGF originated in 

deuterostomes, or predated deuterostomes and got lost in the lineage of ecdysozoans 

(Fig. 1a). To gain insight into the ancestral role of FGF signaling for mesoderm 

development, data from other protostomes and, in particular, members of the Spiralia, 

are therefore needed. 

Lophophorates belong to the lineage of Spiralia, comprised of Bryozoa, Brachiopoda 

and Phoronida (Kocot et al., 2017; Laumer et al., 2019) (Fig. 1a). These animals exhibit 

“deuterostome-like” features in their development, such as radial cleavage and 

enterocoely (Zimmer, 1997). We used two brachiopod species, the rhynchonelliform 

Terebratalia transversa and the craniiform Novocrania anomala, and one phoronid 

species, Phoronopsis harmeri (Fig. 1b), which show profound differences in mesoderm 

development such as the time and site of mesoderm emergence, the direction of 

mesoderm migration and the degree of mesoderm compartmentalization. In particular, 

in T. transversa mesoderm originates at the blastula stage, while the mesoderm of N. 

anomala and Ph. harmeri forms at the gastrula stage (twist positive cells) (Andrikou et 

al., 2019; Martín-Durán et al., 2016; Passamaneck et al., 2015). In addition, in T. 

transversa and Ph. harmeri mesoderm proliferates in an anterior-to-posterior direction, 

but in N. anomala it follows a posterior-to-anterior direction (Andrikou et al., 2019; 

Freeman, 1993; Freeman, 2000; Freeman, 2003; Martín-Durán et al., 2016; Nielsen, 

1991; Passamaneck et al., 2015; Rattenbury, 1954; Temereva and Malakhov, 2007). 
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Finally, in T. transversa larvae, mesoderm consists of an anterior domain in the apical 

lobe, an umbrella-like domain in the mantle lobe that projects to four coelomic sacs 

with chaetae bundles, and a posterior domain in the pedicle lobe (Freeman, 2003; 

Martín-Durán et al., 2016; Passamaneck et al., 2015; Vellutini and Hejnol, 2016); in N. 

anomala mesoderm compartmentalizes in four pairs of coelomic sacs, with the three 

posterior ones to project into chaetae bundles (Freeman, 2000; Martín-Durán et al., 

2016; Nielsen, 1991; Vellutini and Hejnol, 2016), and in Ph. harmeri mesoderm can be 

distinguished between an anterior domain in the pre-oral lobe with projecting ventro-

lateral muscle bands, and a posterior domain that emerges at the larva stage (Andrikou 

et al., 2019; Rattenbury, 1954; Temereva and Malakhov, 2007) (Figure 1b). We 

investigated and compared the molecular mechanisms of mesoderm development in 

these three species, with an emphasis on the role of FGF. Despite our observed 

differences in the presumptive mesodermal gene regulatory networks (GRN), our 

results indicate a conservation of the inductive role of FGF signaling pathway in 

mesoderm with deuterostomes. 

 

 
Fig. 1. The distinct roles of FGF signaling in mesoderm development among bilaterians. 
(a) FGF signaling plays pivotal roles in mesoderm formation and migration in deuterostomes; 
however, in protostomes the information is restricted in members of ecdysozoans, where it acts 
in mesoderm patterning and migration. Animal illustrations are taken from phylopic.org (CC BY 
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3.0). (b) Mesoderm morphology in larvae of three representative lophophorate species; the 
brachiopods Terebratalia transversa and Novocrania anomala, and the phoronid Phoronopsis 
harmeri. Next to the images, schematic representations are shown. Drawings are not up to 
scale. In brachiopods mesoderm is stained by immunohistochemistry against actin and in Ph. 
harmeri mesoderm is stained by tropomyosin gene expression. Every fluorescent image is a 
full projection of merged confocal stacks and nuclei are stained with DAPI. Anterior to the top. 
cs, coelomic sac; pm, posterior mesoderm. Scale bar: 20 um. 
 

Results 

The spatiotemporal mesodermal patterning differs between N. anomala, T. 

transversa and Ph. harmeri 

To understand whether the developmental and morphological variations of mesoderm 

formation between these three species are associated to differences in molecular 

patterning, we revealed the expression of the transcription factors twist, mox, six1/2, 

eya, mef2, dachs, paraxis, foxc, mprx, myod, limpet, foxf and nk1 in N. anomala and 

Ph. harmeri (Figs 2, 3 S1 and S2). The mesodermal expression of these genes has been 

previously described in T. transversa (Passamaneck et al., 2015). All genes, with the 

exception of nk1 (in N. anomala) (Fig. S2a), showed mesodermal expression. The 

earliest mesodermal marker is twist (Andrikou et al., 2019; Martín-Durán et al., 2016), 

whose expression initiates at the early gastrula stage and demarcates the entire 

mesoderm in both species (Figs 2A2-3 and 3A2-3), indicating that mesoderm originates 

before its morphological separation from endoderm. Mox, six1/2 and eya, genes 

commonly involved in mesoderm patterning, are expressed shortly after (Figs 2B2-3, 

2C2-3, 2D2-3 and 3B2-3, 3C2-3, 3D2-3). Transcripts of transcription factors often 

associated with muscle development, such as myod, limpet (only in N. anomala), foxf 

(Martín-Durán et al., 2016) and the terminal differentiation gene tropomyosin, are only 

detected at the late gastrula stage (Figs 2H4-5, 2I4-5, 2J4-5, 2K4-5 and 3J4-5, 3K4-5) 

in both organisms, correlating with the formation of musculature (Altenburger and 

Wanninger, 2010; Temereva and Tsitrin, 2013).  

However, when comparing these results with data from T. transversa (Martín-Durán et 

al., 2016; Passamaneck et al., 2015), the onset of expression of a number of orthologs 

varies (Fig. S3). For instance, in T. transversa the expression of mox and eya only starts 

at the late gastrula stage (Passamaneck et al., 2015), although mesoderm (twist positive 

cells) is already present since the blastula stage (Martín-Durán et al., 2016). Also, mef2 

shows an early mesodermal expression in N. anomala (Fig. 2E2-3), but in T. transversa 
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(Passamaneck et al., 2015) and Ph. harmeri (Fig. 3E4-5) this gene is not activated 

before the late gastrula stage. A second important difference concerns the spatial 

patterning of the different subpopulations of mesoderm (Fig. S3). Twist is expressed in 

both anterior and posterior mesodermal subsets in Ph. harmeri (Fig. 3A2-9), in N. 

anomala it is expressed in most of the mesoderm but acquires a stronger expression at 

the posterior one (cs4) (Fig. 2A6-7), and in T. transversa twist expression confines in 

the anterior mesoderm (Passamaneck et al., 2015). The expression of six1/2 and myod 

is excluded from the posterior (cs4) mesoderm in N. anomala (Fig. 2C6-7, H6-7), while 

in T. transversa these genes are expressed in both the anterior (apical) and posterior 

(pedicle) mesoderm (Passamaneck et al., 2015). In Ph. harmeri six1/2 and myod are 

restricted in the anterior (Fig. 3C2-5) and posterior mesoderm, respectively (Figs 3I8-

9 and S2b). Moreover, mprx is solely expressed in the mantle mesoderm of T. 

transversa (Passamaneck et al., 2015), while in N. anomala the orthologous gene is 

expressed in the whole mesoderm (Fig. 2G6-7). Foxf and foxc expression confines in 

the anterior mesoderm in both brachiopod species (Passamaneck et al., 2015) (Fig. 2J4-

7 and S3) (Martín-Durán et al., 2016), while in Ph. harmeri foxf is expressed in both 

the anterior and posterior mesoderm (Fig. 3J4-9) and transcripts of foxc are only 

detected in the posterior mesoderm (Fig. 3H8-9). Dachs seems to be absent from the 

anterior mesodermal pattering in Ph. harmeri (Fig. 3F2-9), while in T. transversa it 

demarcates the entire mesoderm (Passamaneck et al., 2015), and in N. anomala it 

mainly occupies anterior (apical) mesodermal fates (Fig. 2F6-7). Finally, hox3, was 

previously described to be expressed in mid/posterior mesodermal domains in 

brachiopods (Schiemann et al., 2017), but not in Ph. harmeri, where the orthologous 

gene is solely expressed in the metasomal sac (Gąsiorowski and Hejnol, 2020). These 

data show that in all three organisms the different subsets of mesoderm development 

exhibit differences not only in the recruitment of regulatory genes but also in their 

temporal and spatial expression profiles, suggesting diverse mesodermal patterning 

mechanisms. 
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Fig. 2. Mesodermal gene expression during N. anomala development. WMISH of twist, 
mox, six1/2, eya, mef2, dachs, mprx, myod, limpet, foxf and tropomyosin in blastulae, early 
gastrulae, late gastrulae, early larvae and late larvae of N. anomala. The inset in panel E3 
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shows a different focal plane of the embryo. The position of the blastopore is indicated with a 
dashed circle in the late gastrula stages. Black arrowheads indicate the coelomic sacs, in which 
gene expression is detected. The red line marks the onset of mesodermal gene expression. 
Anterior to the top. lv, lateral view; vv, vegetal view. 
 

 
Fig. 3. Mesodermal gene expression during Ph. harmeri development. WMISH of twist, 
mox, six1/2, eya, mef2, dachs, paraxis, foxc, myod, foxf and tropomyosin in blastulae, early 
gastrulae, late gastrulae, pre-tentacle larvae and 6-tentacle larvae of Ph. harmeri. Insets in 
panels H4 and H6 show different focal planes of the embryos and insets in panels C9, H8, J9 
and K9 show higher magnifications of the indicated domains. Black arrowheads indicate 
expression in the posterior mesoderm. Blue arrowheads show expression in the metasomal 
sac. The red line marks the onset of mesodermal gene expression. Anterior to the left. lv, lateral 
view; vv, vegetal view. 
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Gene expression of FGF signaling components suggest their possible association 

with mesoderm and neuronal development 

Three FGF receptors were found in N. anomala and T. transversa but only one in Ph. 

harmeri (Fig. S1). Moreover, all three animals possess one copy of FGF9/16/20 and 

FGF8/17/18 ligands (Fig. S1). In T. transversa fgfr1 is expressed in few cells at the 

vegetal pole at the blastula stage (Fig. 4A1). In gastrulae, transcripts of the gene are 

demarcating the invaginating endomesoderm (Fig. 4A2) and this expression is retained 

at the larva stages, in the archenteron, the posterior mesoderm and the developing 

chaetae sacs (Fig. 4A3). In larvae, fgfr1 is additionally activated in anterior scattered 

cells, resembling neurons (Fig. 4A4). Fgfr2 is strongly expressed in the animal pole of 

the blastula in a salt and pepper pattern, suggesting neuronal expression (Fig. 4B1). 

This expression persists in the gastrula and early larva stages (Fig. 4B2-3) but in late 

larvae it disappears (Fig. 4B4). The third FGF receptor, fgfr3, is expressed transiently 

in blastulae, in few cells of the animal pole (Fig. 4C1), while at the gastrula stage it is 

also expressed faintly is a small cell cluster of the anterior portion of the invaginating 

endomesoderm (Fig. 4C2). Larvae are cleared from fgfr3 transcripts (Fig. 4C3-4). The 

two ligands also exhibit a very distinct expression from each another. Fgf9/16/20 is 

expressed in few cells of the animal pole from the blastula stage up to the larva stage 

(Fig. 4D1-4). In contrast, fgf8/17/18 (Vellutini and Hejnol, 2016) starts to be expressed 

at the blastula stage in an anterior-ventral ectodermal half ring (Fig. 4E1), while in 

gastrulae, transcripts of the gene are detected in transverse ventral bands reaching the 

anterior domain of the blastopore, and the future apical organ (Fig. 4E2). In early larvae, 

fgf8/17/18 is expressed in two lateral spots, which correspond to the developing chaetae 

sacs, in anterior cellular patches, as well as in one ventral pair of spots proximal to the 

mouth and another dorsal pair. Moreover, a new domain of expression at the posterior 

tip gets activated (Fig. 4E3). Finally, in late larvae, the ventral expression disappears 

and fgf8/17/18 is only expressed in the anterior patches, the chaetae sacs and the 

posterior tip (Fig. 4E4). The analysis of the spatial expression of the three receptors and 

the two ligands suggests a putative involvement of FGFR1 and FGF8/17/18 in 

mesoderm development (see co-expression of fgfr1 and fgf8/17/18 in Fig. S4). 

In N. anomala none of the FGF signaling components is expressed at the blastula stage, 

which differs from what is observed in T. transversa (Fig. 4A5, B5, C5). The expression 

of all fgf receptors is detected at the gastrula stage, in the invaginating archenteron and 

the developing coelomic sacs (Fig. 4A6, B6, C6). Additionally, transcripts of fgfr1 are 
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found in the anterior ectoderm (Fig. 4A6). In early larvae, fgfr1 is expressed in anterior 

ectodermal cells, the invaginating mesoderm and the tip of the archenteron (Fig. 4A7). 

At the late larva stage, fgfr1 expression confines in the two anterior pairs (cs2-cs3) of 

chaetae sacs (Fig. 4A8). Fgfr2 and fgfr3 are mainly expressed in the forming 

archenteron and the invaginating mesoderm at the early larva stage (Fig. 4B7, C7) but 

fgfr2 is further detected in two anterior-lateral ectodermal patches (Fig. 4B7). Finally, 

in larvae, fgfr2 is expressed in all four pairs (cs1-cs2-cs3-cs4) of coelomic sacs (Fig. 

4B8), while fgfr3 is only expressed in the mouth region (Fig. 4C8). The two ligands 

also start to be expressed during gastrulation. Fgf9/16/20 expression is initially detected 

in the anterior ectoderm (Fig. 4D6) but in larvae the ectodermal expression fades and a 

new mesodermal domain appears in the three coelomic pairs (cs2-cs3-cs4) of chaetae 

sacs (Fig. 4D7-8). Fgf8/17/18 (Vellutini and Hejnol, 2016) is expressed in two 

ectodermal bands that encircle the gastrula, one more posterior near the blastopore and 

another at the mid part of the embryo (Fig. 4E6). In early larvae, transcripts of the gene 

are detected in the three developing pairs of chaetae sacs (cs2-cs3-cs4) and the 

ectodermal patches adjacent to the first pair (cs2) (Fig. 4E7) and at the late larva stage 

the expression of fgf8/17/18 is restricted to the most posterior pair (cs4) of chaetae sacs 

(Fig. 4E8). Based on their expression, these data suggest that all three receptors and 

both ligands are possibly related to mesoderm development in N. anomala. 

In Ph. harmeri, the only FGF receptor is already expressed at the blastula stage, in the 

vegetal pole (Fig. 4F1). At the early gastrula stage, the gene is expressed in an anterior 

ventro-lateral cell population of the vegetal plate, the presumptive mesoderm, the 

anterior blastoporal lip, as well as the anterior ectoderm that will give rise to the apical 

organ (Fig. 4F2-3). In late gastrulae, the gene is expressed in anterior migrating 

mesodermal cells and a posterior cell cluster located adjacent to the developing intestine 

(Fig. 4F4-5). At the early larva and pre-tentacle larva stages, the expression of fgfr 

remains in clusters of cells of the pre-oral mesoderm, two ventro-lateral mesodermal 

tiers, the posterior cell cluster, the ventral ectoderm and the apical organ (Fig. 4F6-9). 

Fgf9/16/20 and fgf8/17/18 exhibit very different expression profiles. Fgf9/16/20 is 

transiently expressed in the anterior mesoderm and the forming apical organ until the 

late gastrula stage (Fig. 4G2-5). Fgf8/17/18 exhibits a more dynamic expression, 

detected in the anterior lip of the blastopore, the anterior-ventral ectoderm and the 

anterior endoderm in early gastrulae (Fig. 4H2-3), while in later gastrulae and larvae 

fgf8/17/18 is expressed in the anterior-ventral ectoderm of the oral hood, a postero-
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ventral group of ectodermal cells and the mouth (Fig. 4H4-9). These data show that 

also in Ph. harmeri, the expression of FGFR and FGF8/17/18 is possibly associated to 

mesoderm formation (see coexpression of fgfr and fgf8/17/18 in Fig. S4). Overall, FGF 

signaling is likely involved in mesoderm development, as well as neuroectodermal 

patterning and apical organ formation in all three organisms. A summary of the 

expression of the FGF signaling components in N. anomala, T. transversa and Ph. 

harmeri is provided in Fig. S5. 

 

 
Fig. 4. Gene expression of FGF signaling components in lophophorates. WMISH of fgfr1, 
fgfr2, fgfr3, fgf8/11/18 and fgf9/16/20 during the blastula, gastrula, early larva and larva stages 
of development of T. transversa, N. anomala and Ph. harmeri. Insets in panels A3, A4, B3 and 
E3 show different focal planes of the embryos, insets in panels A2, E2, D6 and E6 show vegetal 
views, panel B2 shows an animal view and panels A8, B8, C8, D8, E8 shows lateral views. 
Insets in A6 and B6 show fluorescent WMISH. The inset in panel A9 shows a higher 
magnification of the indicated domain. Black arrowheads indicate the coelomic sacs, in which 
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gene expression is detected. For T. transversa, N. anomala anterior to the top and for Ph. 
harmeri anterior to the left. av, animal view; lv, lateral view; vv, vegetal view. 
 

Perturbation of FGF signaling results in failure in mesoderm formation in N. 

anomala but not in T. transversa. 

Based on the mesoderm-related expression of some FGF signaling components we 

hypothesized that FGF might be involved in mesoderm development in brachiopods. 

To test this, we treated embryos at different developmental stages with SU5402, a 

selective inhibitor of FGFR (Mohammadi et al., 1997) (for a summary of treatments 

see Fig. S6). SU5402 treatment abolished the formation of chaetae sacs and neuropile 

in larvae of both brachiopod species (Fig. 5). However, a difference was observed in 

mesoderm formation. 

T. transversa treated larvae were not compartmentalized in apical, mantle and pedicle 

lobes, but instead were remaining spherical with an open blastopore, when we treated 

them from the blastula stage (Fig. 5a). The chaetae bundles were not formed, and the 

musculature was impaired (Fig. 5a). To ensure that we inhibit FGFR before mesoderm 

originates, we also treated larvae from the morula stage, which resulted in spherical 

embryos without a blastopore (Fig. 5a). To understand whether this truncated 

phenotype was due to a failure of axial elongation or a disruption of the anterior-

posterior patterning, we tested the expression of anterior (otx, nk2.1) (Fig. 5aA-A’’, B-

B’’) and posterior markers (evx) (Martín-Durán et al., 2016) (Fig. 5aC-C’’) and found 

them unaffected. The expression of the endoderm markers cdx and foxa (Martín-Durán 

et al., 2016) was also unaltered (Fig. 5aD-D’’, E-E’’). We then examined the treated 

animals for the muscle differentiation marker tropomyosin (Passamaneck et al., 2015) 

and a loss of posterior expression was observed (Fig. 5aF-F’’). We then tested the 

expression of the transcription factors twist and foxf, markers of anterior/apical 

mesoderm (Passamaneck et al., 2015) (Fig. 5aG-G’’, H-H’’), hox3, a marker of 

mid/mantle mesoderm (Schiemann et al., 2017) (Fig. 5aI-I’’), and nk1, a marker of 

posterior/pedicle mesoderm (Passamaneck et al., 2015) (Fig. 5aJ-J’’) and found them 

unchanged. Interestingly, the expression of foxc, a marker of the most posterior 

mesoderm (Passamaneck et al., 2015) was lost (Fig. 5aK-K’’), suggesting a role of this 

gene in a later, differentiation step of mesoderm (see also Fig. S7). Moreover, when we 

treated animals from a later developmental stage (mid gastrula), the phenotype was 

milder, the posterior mesodermal expression of foxc was recovered and tropomyosin 
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expression was extended more posteriorly compared to the larvae treated from the 

blastula stage (Fig. S8a). These results suggest that in T. transversa, FGF signaling is 

involved in neuropile formation, coordination of morphogenetic movements of 

gastrulation and axial elongation. It does not have a role in mesoderm induction (see 

also Fig. S9), but instead in mesoderm migration and differentiation (as seen from the 

loss of chaetae sacs). Since in T. transversa the direction of axial elongation is taking 

place from anterior-dorsal to posterior (Freeman, 1993; Martín-Durán et al., 2016), the 

inhibition in posterior axial elongation is probably coupled with the failure in mesoderm 

migration and differentiation. 

N. anomala treated animals did not exhibit the same phenotype that we observed in T. 

transversa (Fig. 5b). Larvae treated from the blastula stage were smaller than the 

controls, but they were not spherical, and they possessed an elongated archenteron 

without a mouth opening (Fig. 5b). Also, mesoderm was impaired; only one out of the 

four pairs of coelomic sacs was present and none of the chaetae bundles were formed 

(Fig. 5b). When we looked at the anterior-posterior patterning genes (Martín-Durán et 

al., 2016) we observed an apical reduction and a complete loss of expression in the 

mouth region of the genes otx and nk2.1 (Fig. 5bL-L’, M-M’). The most posterior fate 

was also impaired, as shown from the reduced expression of evx (Fig. 5bN-N’). The 

expression of the endodermal markers cdx and foxa (Martín-Durán et al., 2016), 

however, remained unaffected (Fig. 5bO-O’, P-P’). We then tested the expression of 

limpet, a pan-mesodermal differentiation marker in this species. We saw a severe 

reduction of expression and detection in only one anterior coelomic sac (Fig. 5bQ-Q’). 

The expression of the anterior mesodermal marker foxf (Martín-Durán et al., 2016) was 

not affected (Fig. 5bR-R’), but instead transcripts of foxc (Martín-Durán et al., 2016), 

which in control larvae confine in the most anterior coelomic sac (cs1), were lost (Fig. 

5bS-S’), suggesting that the formation of cs1 was abolished. Finally, the expression of 

the posterior mesodermal markers twist (Martín-Durán et al., 2016) and hox3 

(Schiemann et al., 2017) were inhibited (Fig. 5bT-T’, U-U’). Similar results were 

obtained when the embryos were treated from the gastrula stage, with the exception of 

hox3, the expression of which was partly recovered (Fig. S8b), indicating that the input 

of FGF on hox3 occurs sometime between the blastula and gastrula stage. In order to 

understand which step of mesoderm development had been compromised, we also 

tested the expression of the mesodermal marker twist in gastrulae treated from the 

blastula stage on, and found it downregulated, suggesting that mesoderm induction was 
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compromised (Fig. S9). These data suggest that in N. anomala, FGF is involved in 

anteroposterior patterning, neuropile formation, mouth formation, as well as the most 

anterior and posterior mesoderm formation and mesoderm differentiation (as seen from 

the loss of chaetae sacs). However, an impact in axial elongation is not evident, as 

shown in T. transversa, further supported by the fact that in N. anomala the direction 

of axial elongation is occurring from posterior-ventral to anterior (Freeman, 2000; 

Martín-Durán et al., 2016; Nielsen, 1991). 
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Fig. 5. SU5402 treatments in brachiopods. (a) Immunohistochemistry of markers of the 
nervous system (serotonin, FMFRamide) and musculature (actin) in T. transversa morula and 
blastula embryos treated with 20 uM SU5402 and fixed at larva stage. WMISH of anterior (otx, 
nk2.1), posterior (evx) and endodermal (foxa, cdx) genes, musculature (tropomyosin), anterior 
mesoderm (twist, foxf), mid mesoderm (hox3) and posterior mesoderm (nk1, foxc) in T. 
transversa morula and blastula embryos treated with 20 uM SU5402 and fixed at larva stage. 
Insets in panels J, K, C’’ and K’’ show different focal planes of the embryos. (b) 
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Immunohistochemistry of markers of the nervous system (serotonin, FMFRamide) and 
musculature (actin) in N. anomala blastula embryos treated with 20 uM SU5402 and fixed at 
larva stage. WMISH of anterior (otx, nk2.1), posterior genes (evx) and endodermal (foxa, cdx) 
genes, the whole mesoderm (limpet), anterior mesoderm (foxf, foxc) and posterior mesoderm 
(twist, hox3), in N. anomala blastula embryos treated with 20 uM SU5402 and fixed at larva 
stage. Black arrowheads indicate the domains of expression that are absent in the treated 
embryos. Yellow arrowheads indicate the neuropile and magenta arrowheads the musculature 
associated to coelomic and chaetae sacs. All panels depict embryos in vegetal view. Every 
fluorescent image is a full projection of merged confocal stacks and nuclei are stained with 
DAPI. Anterior to the top. Drawings are not up to scale. Scale bar: 20 um. 
 

FGF signaling is upstream of mesoderm induction in Ph. harmeri. 

To test whether the role of FGF signaling in mesoderm induction extends beyond the 

brachiopod lineage, we also treated embryos of Ph. harmeri with SU5402 at different 

developmental stages (for a summary of treatments see Fig. S6). SU5402 treatment 

from the blastula stage inhibited the formation of musculature and the apical organ of 

pre-tentacle larvae (Fig. 6a). The treated larvae exhibited a truncated phenotype with a 

shorter archenteron that didn’t have a visible opening (Fig. 6a). The expression of the 

mesodermal markers twist, six3/6 (Andrikou et al., 2019) and foxf was abolished (Fig. 

6aA-F’), and the same was observed for the markers of the apical organ six3/6 and otx 

(Andrikou et al., 2019) (Fig. 6aC-D’, I-J’). The ectodermal expression of foxc, was only 

dorsally affected (Fig. 6aK-L’). Finally, the posterior endodermal expression of nk2.1 

(Fig. 6aG-H’) and the expression of foxa (Andrikou et al., 2019) in the mouth (Fig. 

6aM-N’) were downregulated. A treatment from the gastrula stage on, resulted in a 

milder phenotype (Fig. S10). Some mesodermal cells were present, the apical organ 

was recovered, and the mouth was formed (Fig. S10). Moreover, the posterior 

endodermal expression of nk2.1 -as well as foxa expression in the mouth- was 

unaffected (Fig. S10). To test whether this was due to a failure in mesoderm induction, 

we also tested the expression of the mesodermal markers twist and six3/6 in gastrulae 

treated from the blastula stage on, and found it abolished (Fig. S9). These results show 

that FGF signaling is upstream of anteroposterior patterning, apical organ formation, 

gastrulation movements and mesoderm formation in Ph. harmeri. Moreover, an 

additional participation of FGF in mesoderm migration is also possible due to the 

coexpression of the mesodermal marker twist and fgfr throughout the development (Fig. 

6b). 

Overall, our data suggest an evident role of FGF signaling in mesoderm development 

in the lineage of lophophorates. Moreover, a conserved involvement of FGF in 
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anteroposterior patterning, neuron formation, morphogenetic movements of 

gastrulation and axial elongation is witnessed. 

 

 
Fig. 6. SU5402 treatments in Ph. harmeri. (A) Immunohistochemistry of markers of the 
nervous system (acetylated tubulin, serotonin, FMFRamide) and musculature (actin) in Ph. 
harmeri blastula embryos treated with 20 uM SU5402 and fixed at larva stage. Yellow 
arrowheads indicate the apical organ and magenta arrowheads the esophageal musculature. 
WMISH of mesodermal (twist, six3/6, foxf), anterior (six3/6, otx, nk2.1), postero-ventral (foxc) 
and endodermal (foxa, nk2.1) genes in Ph. harmeri blastula embryos treated with 20 uM 
SU5402 and fixed at larva stage. Black arrowheads indicate the domains of expression that are 
absent in the treated embryos. (B) Co-expression analysis of fgfr (magenta) and twist (cyan) 
by double fluorescent WMISH in gastrula and larva stages of development of Ph. harmeri. Right 
insets show embryos in vegetal view. White arrowheads indicate co-expression. Every 
fluorescent image is a full projection of merged confocal stacks and nuclei are stained with 
DAPI. Anterior to the left. lv, lateral view; vv, vegetal view. Scale bar: 20 um. 

Discussion 

Expression dynamics of the mesodermal gene battery 
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Nearly all the genes we studied are expressed during mesodermal development in the 

investigated lophophorate species however, the temporal expression dynamics and 

spatial recruitment of some genes differ (Fig. S3). While twist, six1/2 and foxf are 

expressed in a similar sequential manner in all three organisms, the remaining genes 

occupy different temporal regulatory positions. The spatial utilization of the genetic 

repertoire in the differentiated subsets of mesoderm exhibits only few cases of shared 

spatial similarity in all three species (e.g. mef2, which demarcates the entire mesoderm, 

and eya, which is mostly expressed in the anterior mesoderm), but the other genes show 

differences in their spatial transcript distribution. Overall, these results suggest that 

mesoderm development in lophophorates utilizes a similar set of transcription factors, 

but their hierarchical deployment differs, suggesting profound differences in their 

mesodermal patterning and mesoderm regionalization. Data from bryozoans, the 

potential sister group of phoronids, suggest similar spatial differences in the 

mesodermal patterning, such as the posterior expression of foxc (Vellutini et al., 2017). 

Moreover, comparative studies of the expression profiles of endomesoderm and 

ectomesoderm in lophotrochozoans have revealed some intriguing differences, such as 

the confinement of twist expression in the ectomesoderm of the mollusks Crepidula 

fornicata (Perry et al., 2015), Patella vulgata (Nederbragt et al., 2002) and the annelid 

Capitella teleta (Dill et al., 2007) but not in the annelids A. virens and P. dumerilii, 

where twist is expressed in both sources of mesoderm (Kozin et al., 2016; Pfeifer et al., 

2014; Steinmetz, 2006). 

It thus becomes evident that the spatial and temporal differences in lophophorate 

mesoderm development are observed in more spiralian taxa, which indicates a 

diversification of mesodermal developmental programs and their underlying GRNs. 

Different circuitries of GRNs orchestrating the formation of homologous mesodermal 

derivatives have been described in some animals and support the idea that the evolution 

of GRNs is mainly based on the developmental regulatory demands of each network 

(Andrikou and Arnone, 2015; Erkenbrack, 2016; Erkenbrack et al., 2018; Hinman and 

Davidson, 2007). Therefore, alterations in GRN circuitries do not necessarily reflect 

convergent evolution of the resulting tissues (Davidson and Erwin, 2006; Peter, 2020), 

but can also be a product of developmental system drift (True and Haag, 2001). 

 

FGF signaling upstream of different mesodermal populations 
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FGF signaling is required for the formation of all or most mesoderm e.g. in 

hemichordates (Fan et al., 2018; Green et al., 2013) and tunicates (Davidson et al., 

2006; Imai et al., 2002; Kim and Nishida, 2001; Yasuo and Hudson, 2007), or a subset 

of mesoderm e.g. in vertebrates (Amaya et al., 1993; Draper et al., 2003; Fletcher et al., 

2006; Fletcher and Harland, 2008; Yamaguchi et al., 1994), cephalochordates (Bertrand 

et al., 2011), sea urchins (Andrikou et al., 2015) and nematodes (Photos et al., 2006) 

(S11). According to our results, this is similar to lophophorates, where FGF acts on 

different levels of mesoderm development. While N. anomala utilizes FGF to form two 

subsets of mesoderm, in Ph. harmeri FGF is upstream of the formation of all mesoderm. 

It remains unclear why mesodermal subpopulations differ in their promoting 

requirements and deploy different signals. The acquisition of different signaling 

pathways, with distinct spatiotemporal expression dynamics and inductive properties, 

can act as a relay mechanism of the initial signal but can also exhibit diverse functions. 

An example is the recruitment of Nodal in vertebrate development, which although it 

interacts synergistically with FGF in promoting mesoderm, it also acts differentially in 

the induction of mesodermal populations (Kimelman, 2006; Mathieu et al., 2004). 

 

Implications of mesoderm development in gastrulation and axial elongation 

Besides having a role in mesoderm development, FGF signaling has conserved 

functions in neural development and morphogenetic movements of gastrulation in an 

array of investigated organisms (Fig. S11). In deuterostomes, FGF is involved both in 

gastrulation (Amaya et al., 1991; Bertrand et al., 2011; Röttinger et al., 2008) and neural 

induction (Bertrand et al., 2003; De Robertis and Kuroda, 2004; Garner et al., 2016). 

Also, in the two well-studied ecdysozoans D. melanogaster and C. elegans, FGF 

signaling is upstream of axon guidance (Bülow et al., 2004; García-Alonso et al., 2000), 

and cell migration during gastrulation (in D. melanogaster) (Leptin and Affolter, 2004). 

In the remaining protostomes data are limited to gastropods and Platyhelminthes, where 

FGF signaling is involved in neural development (Cebrià et al., 2002; Pollak et al., 

2014). Most likely, the involvement of FGF in these developmental processes was 

already present before the cnidarian-bilaterian split, as witnessed in sea anemones, 

where FGF seem to act upon gastrulation (Matus et al., 2007), neural development 

(Matus et al., 2007) and is upstream of apical organ formation (Rentzsch et al., 2008). 

Our study revealed similar roles of FGF signaling in the investigated lophophorate 

species. In particular, all three species exhibited defects in their apical organ/neuropile 
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formation, as well as loss of a number of differentiated neurons (e.g. serotonergic 

neurons in Fig. 5b). Moreover, they all showed impaired gastrulation to some degree. 

Impaired gastrulation can occur either as a direct or indirect effect mediated by a failure 

in mesoderm formation. For example, in T. transversa, where mesoderm is formed 

independently of FGF signaling, most likely the role of FGF is only morphogenetic, in 

orchestrating cell movements during gastrulation. However, in the other two species, 

where FGF is involved in mesoderm formation, it is still unclear whether the observed 

failure in gastrulation movements after FGF inhibition is direct, or indirect caused by 

the lack of mesoderm formation. 

Another outcome of this study concerns the evident relationship witnessed between 

mesoderm development and posterior axis elongation in T. transversa. The expression 

of fgf8/11/18 mRNA in the growing posterior tip of the embryo in relation to fgfr1 (Fig. 

S4), suggests that FGF8/11/18 might act as a gradient that progressively coordinates 

the posterior elongation of the embryo and mesoderm differentiation, similar to what 

has been described in vertebrates (Dubrulle and Pourquie, 2004). The role of FGF 

signaling in the posterior axial elongation of T. transversa resembles mechanisms 

typically deployed by a number of deuterostomes in order to coordinate embryonic 

patterning and elongation of posterior tissues: in the tunicate species Ciona intestinalis, 

FGF, together with the canonical WNT and Retinoic Acid (RA) signaling, are 

establishing the posterior patterning of the tail (Pasini et al., 2012), in amphioxus FGF 

and RA are coordinating the posterior elongation (Bertrand et al., 2015), and in 

vertebrates the AP axial elongation of the trunk is mediated by an antagonistic interplay 

of FGF and RA, where high RA or low FGF results in cessation of posterior embryonic 

regions (Deng et al., 1994; Partanen et al., 1998; Yamaguchi et al., 1994). Data from 

RA signaling are currently unavailable in lophophorates; however, WNT signaling also 

appears to be involved in axis patterning and the establishment of posterior identities 

(Martín-Durán et al., 2016; Vellutini and Hejnol, 2016), which suggest a conserved 

coordinated function of WNT and FGF signaling in regulating posterior axial 

elongation. 

To summarize, the data provide support for a conserved involvement of FGF signaling 

in gastrulation movements and axial elongation, with the phenotypic severity to vary, 

depending on the developmental mode of mesoderm formation of the investigated 

species. A coordinated interplay of WNT and FGF signaling in regulating posterior 
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axial elongation seems also likely, suggesting a putative conserved developmental 

signaling mechanism in orchestrating posterior regionalization. 

 

The recurrent use of FGF signaling in mesoderm formation 

The role of FGF signaling in mesoderm induction was thought to be restricted to 

deuterostomes. After investigating three species of lophophorates, we are able to show 

that the mesoderm-inducing ability of this pathway extends beyond the lineage of 

deuterostomes. However, signaling pathways are often deployed as upstream “plug-in” 

devices and can be co-opted and exchanged to serve different developmental processes 

within and among species (Davidson and Erwin, 2006). To determine whether the 

involvement of FGF signaling in mesoderm formation was already present in the last 

common ancestor of Bilateria, or whether it was independently co-opted in the lineage 

of lophophorates, functional studies from more spiralian taxa are required. So far, the 

only available data in favour of a putative conserved role of FGF in mesoderm induction 

come from studies in mollusks, where MAPK, one of the major downstream targets of 

FGF signaling (Ornitz and Itoh, 2015), is upstream of endomesoderm specification 

(Koop et al., 2007; Kozin et al., 2013; Lambert, 2008; Lambert and Nagy, 2001; 

Lambert and Nagy, 2003). Moreover, a putative conserved FGF signaling event on 

mesoderm induction is possibly also present in bryozoans, as suggested from the 

activation of the MAPK pathway in the mesodermal precursor 3D (Vellutini et al., 

2017), which would imply that the inductive role of FGF signaling in mesoderm was 

present at least in the last common ancestor of lophophorates. 

 

Materials and methods 

Animal systems  

Gravid adult specimens were collected in Bodega bay, California, USA (Phoronopsis 

harmeri Pixell, 1912), in Friday Harbor Laboratories, U.S.A. (Terebratalia transversa 

Sowerby, 1846), in Espeland Marine Biological Station, Norway (Novocrania anomala 

Müller, 1776) and spawned as previously described (Freeman, 1993; Freeman, 2000; 

Rattenbury, 1954). The embryos were kept in clean seawater and collected at various 

stages of development. 
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Gene cloning and orthology assignment 

Putative orthologous sequences of genes of interest were identified by tBLASTx search 

against the transcriptomes of Terebratalia transversa, Novocrania anomala and 

Phoronopsis harmeri. Gene orthology of genes of interest identified by tBLASTx was 

tested by reciprocal BLAST against NCBI Genbank and followed by phylogenetic 

analyses. Amino acid alignments were made with MUSCLE. IQ-tree (version 2.0.5) 

was used to conduct a maximum likelihood phylogenetic analysis. Fragments of the 

genes of interest were amplified from cDNA of T. transversa, N. anomala and Ph. 

harmeri by PCR using gene specific primers. PCR products were purified and cloned 

into a pGEM-T Easy vector (Promega, USA) according to the manufacturer’ s 

instruction and the identity of inserts confirmed by sequencing. 

 

SU5402 treatments  

SU5402 was dissolved in DMSO to a final concentration of 5 um, 10 uM and 20 μM. 

Higher concentrations than these were lethal to the embryos. SU5402 was added at 

morula, blastula and gastrula stages up to the fixation stage. A corresponding volume 

of DMSO was added in the control embryos. Solutions were changed every 24 h. A 

table summarizing the drug treatments and observed phenotypes is seen in Fig. S6. 

 

Whole Mount In Situ Hybridization 

Embryos were manually collected, fixed in 4% paraformaldehyde in SW for 60 

minutes, permeabilised in 100% Methanol overnight and processed for in situ 

hybridization as described in (Andrikou et al., 2019; Martín-Durán et al., 2016; 

Santagata et al., 2012). Labeled antisense RNA probes were transcribed from 

linearized DNA using digoxigenin-11-UTP (Roche, USA) according to the 

manufacturer’s instructions. 

 

Whole Mount Immunohistochemistry 

Embryos were permeabilised in 100% Methanol for 1 hour, digested with Proteinase 

K (10 µg ml−1) for 5 minutes, fixed in 4% paraformaldehyde in SW for 30 minutes, 

washed for 3 hours in 1% PTX, washed in PBT and incubated in 4% sheep serum in 

PBT for 30 min. The animals were then incubated with commercially available primary 

antibodies (anti-acetylated tubulin mouse monoclonal antibody (Sigma-Aldrich); anti-

actin mouse monoclonal antibody (Seven Hills Bioreagents); anti-serotonin, rabbit 
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monoclonal antibody (Sigma-Aldrich); anti-FMFRamide rabbit monoclonal antibody 

(Immnunostar); anti-HB9 rabbit monoclonal antibody (Invitrogen) overnight at 4°C, 

washed 3 times in PBT, and followed by incubation in 4% sheep serum in PBT for 30 

min. Specimens were then incubated with secondary anti-rabbit and anti-mouse 

antibodies Alexa Fluor overnight at 4°C followed by 3 washes in PTW. Nuclei were 

stained with DAPI (Molecular probes) and F-actin was visualized with BODIPY FL 

Phallacidin (Molecular probes). 
 

Documentation 

Colorimetric WMISH specimens were imaged with a Zeiss AxioCam HRc mounted 

on a Zeiss Axioscope A1 equipped with Nomarski optics and processed through 

Photoshop CS6 (Adobe). Fluorescent-labeled specimens were analyzed with a SP5 

confocal laser microscope (Leica, Germany) and processed by the ImageJ software 

version 2.0.0-rc-42/1.50d (Wayne Rasband, NIH). Fig. plates were arranged with 

Illustrator CS6 (Adobe). 
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