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Abstract 

  
Atomistic models provide a detailed representation of molecular systems, but are sometimes 
inadequate for simulations of large systems over long timescales. Coarse-grained models enable 
accelerated simulations by reducing the number of degrees of freedom, at the cost of reduced 
accuracy. New optimisation processes to parameterise these models could improve their quality 
and range of applicability. We present an automated approach for the optimisation of coarse-
grained force fields, by reproducing free energy data derived from atomistic molecular 
simulations. To illustrate the approach, we implemented hydration free energy gradients as a new 
target for force field optimisation in ForceBalance and applied it successfully to optimise the un-
charged side-chains and the protein backbone in the SIRAH protein coarse-grain force field. The 
optimised parameters closely reproduced hydration free energies of atomistic models and gave 
improved agreement with experiment.  
 
 
Introduction 

 
Computational tools have become very important in revealing the driving forces in bio-molecular 
processes; in particular, molecular dynamics (MD) simulations provide a physically motivated 
picture based on Newton’s equations of motion coupled with empirical model potentials (force 
fields) 1. Classical atomistic (AT) models provide a detailed representation of the system with 
computational effort that scale as O(N log N) with the number of atoms, but are inadequate for 
simulations of very large systems over long timescales2. Coarse-grained (CG) models currently 
represent one of the most important approximations for the construction and simulation of larger 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.250233doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.250233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

systems3,4. By subsuming groups of atoms into single interaction sites, much faster calculations 
can be realised. However, a disadvantage of CG models is the loss of accuracy associated with 
reducing the number of interacting particles. Moreover, coarse-graining typically smooths the 
energy landscape compared to classical atomistic models, diminishing the energy barriers between 
different states and reducing trapping in energy minima5. This can greatly affect calculated 
thermodynamic properties such as equilibrium structures and dynamic properties such as the rates 
of conformational changes. Despite these drawbacks, CG models have become a widely used 
approximation, allowing us to extend spatial and temporal scales for the simulation of bigger and 
more complex systems. Given this, new approaches for the optimisation of CG models are highly 
desirable. 

 
 

The accuracy of a force field depends in part on the empirical parameters in the model, which are 
usually determined by fitting simulation results to a training data set (i.e. the targets). For example, 
these targets can come from supermolecule calculations such as QM simulations or experimental 
information, but often such data are not available for the system of interest. All these difficulties, 
in conjunction with its iterative nature and complexity, mean that force field optimisation is 
something of a black art6. Different frameworks and approximations to optimise parameters have 
been proposed: 1) ad-hoc methods where parameters are iteratively adjusted until a specific 
property can be reproduced or stable simulations achieved 7-9, 2) machine learning methods that 
have been used in tandem with QM calculations10,11, and 3) force or energy matching to reproduce 
QM calculations or other simulation data6,12,13.  

 
ForceBalance14,15 is an automated parameter optimisation method and software package that 
enables reproducible development of force field parameters. It has been used for the optimisation 
of different types of force fields, such as a series of water models (iAMOEBA16, AMOEBA1417, 
TIP3P-FB, TIP4P-FB15 and uAMOEBA18), a united-atom phospholipid bilayer model (gb-fb15)19, 
and an all-atom protein force field (AMBER-FB15)20. ForceBalance is able to incorporate multiple 
sources of experimental or simulated reference data. The objective function to be minimised in 
parameter space is a weighted sum of squared differences between the reference and calculated 
properties, with a regularisation term added that penalises large parameter deviations from their 
initial values to prevent overfitting. A harmonic penalty function, which corresponds to a Gaussian 
prior distribution, is usually used. ForceBalance uses a trust-radius Newton-Raphson optimiser 
that can efficiently optimise the objective function to within the statistical noise of the simulation 
after 5-10 iterations; other gradient-based and stochastic optimisation procedures may also be used 
in a modular fashion (e.g. L-BFGS, Simplex and Powell algorithms). The physical force field 
parameters are mapped to abstract optimisation variables of order one to improve the conditioning 
of the optimisation problem – this also enables one to adjust the regularisation strengths applied to 
different parameter types. The molecular mechanics property calculations are automated by 
interfaces to classical molecular dynamics software packages (engines) such as GROMACS21, 
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TINKER22 and OpenMM23. Properties previously used in ForceBalance range from energies, 
atomistic forces, and vibrational modes from ab initio calculations20, ab initio gas phase properties 
such as cluster interaction energies, temperature and pressure dependent bulk phase properties of 
liquids such as density, enthalpy of vaporisation, dielectric constant, thermal expansion coefficient, 
isothermal compressibility and isobaric heat capacity15,17, and lipid membrane properties such as 
area per lipid and deuterium order parameters19. 

 
Hydration free energies (HFEs) are an important property for aqueous systems such as proteins. 
They help us to understand biological processes such as ligand recognition, protein-protein 
interactions, folding and conformational changes. Moreover, hydration free energies have been 
used for the validation of molecular force fields, and they are an integral part of the calculation 
and estimation of solubilities, partition coefficients and solute-solvent interactions24-27. For these 
reasons, use of solvation free energies as a parameterisation target for coarse-grained models may 
improve their performance. Moreover, it has been recently stated that there is considerable interest 
in methods that can automatically generate a coarse-grained model and are representative in terms 
of local structure and free energy changes28. 

 
Here we present a general approach to optimise coarse-grain force fields by reproducing free 
energy gradients derived from atomistic simulations. We exemplify the method by optimising the 
SIRAH CG protein force field using atomistic hydration free energy (HFE) data in the 
ForceBalance software. The gradient of the hydration free energy is optimised to match the result 
from an AT simulation, with the goal of improving the CG solvation free energies as a 
consequence. The approach of fitting atomistic HFE gradients has the advantage of reducing the 
computational cost of the parameter optimisation because it does not require full HFE calculations 
of the CG model at every optimisation step.  The parameters of charged and uncharged amino 
acids were both optimized, but we rejected the charged amino acid parameters because they failed 
validation tests. A full HFE calculation is carried out after CG model optimisation to validate the 
approach by comparison to atomistic and experimental HFEs. The newly optimised SIRAH-
OBAFE (Optimised Based in Atomistic Free Energies) force field, is briefly evaluated in terms of 
conventional MD simulations of proteins in solution. To facilitate the development of the new 
force field we have also optimised the WT4 water model in SIRAH using experimental properties 
such as density, enthalpy of vaporisation and dielectric constant. 
 
 
Methods 
 
Optimisation based on free energy gradients: overview. To calculate the free energy difference 
between two states, X and Y, it is useful to include a coupling parameter to connect both states29-

32. This coupling parameter, α, changes from 0 to 1, and can be expressed as a linear function of 
the potential energy U(rN; a) by 
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U(𝐫$; 	α) = αU*(𝐫$) + U,(𝐫$)(1 − α) (1) 

 
where rN corresponds to the system coordinates of N particles, U0(rN) corresponds to the potential 
energy of a “reference system” and U1(rN) corresponds to the potential energy of a system of 
interest. α connects the two states through a physical or non-physical pathway. Based on 
thermodynamic integration theory29, one can express the difference in free energy between two 
states by:  

 

∆F	 = 1 〈
∂U(𝐫$; 	α)

∂α
〉5 dα =	

,

*
1 〈∆U〉5	dα	
,

*
(2) 

 
where the change in the free energy DF, between a reference state and a target state, can be 
computed from the integral between values of 0 (un-perturbed) and 1 (perturbed) of the ensemble 
average of the derivative of the potential energy with respect to the coupling parameter α.  In the 
case of the linear coupling of U(rN; a), corresponding to equation (1), this is equivalent to the 
ensemble average of DU as a function of a, where DU is the internal energy change between the α 
= 0 and α = 1 states.  
 

We have implemented a new mathematical expression for the optimisation of coarse-grained 
force field parameters based on free energy gradients from atomistic simulations. Starting with a 
set of simulations that evaluate <DU>a for AT systems at selected values of a, we fit these values 
in our CG simulations by optimising the CG parameters, which indirectly improves the hydration 
free energies. The objective function that is minimized may be written as: 

 

L(𝐤) = : 𝐿<(𝒌) + 𝑤?@A|𝒌|C
D

<E,

(3) 

 
Here 𝐿<(𝒌), called the target terms, are the contributions of each molecule to the objective 
function; in this work the parameters for each molecule are optimized separately, thus there is only 
one term in the sum. 𝐿<(𝒌)	is given by a weighted sum of squared differences between the AT 
and CG free energy gradients: 

 

L<(𝐤) =
1
𝑑C:

H〈∆𝑈〉J,LM(𝒌) −	 〈∆𝑈〉J,NOH
C

PQ

RE,

(4) 
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where 𝒌 is the vector of dimensionless “mathematical” parameters being directly manipulated by 
the optimization algorithm, 𝐿(𝒌)	is the overall objective function, 𝐿<(𝒌) is the contribution from 
molecule m, and 𝑤?@A is a regularization term, here set to 0.01 to ensure that large excursions in 
the parameters are properly penalized without being overly restrictive. The 𝒌-vector is related to 
the physical force field parameters in the simulation 𝑲 by a shifting and scaling as: 
 

KR = KR(0) + 𝑡R𝑘R (5) 
 
where 𝐾R and 𝐾R(0) are the current and initial values of the force field parameter, and 𝑡R is a scaling 
factor, also called the prior width, that carries the same dimension as 𝐾R and represents the expected 
variation of the force field parameters over the course of the optimization.  
 
In order to optimize the objective function efficiently, the first derivatives of the simulated 
quantities with respect to force field parameters are needed. The analytical derivative of <DU>a 
with respect to the force field parameters can be obtained as: 
 

 
∂〈∆U〉5
∂λ = 	 〈

∂∆U
∂λ

〉5 − 	β ]〈∆U
∂E5
∂λ

〉5 −	 〈∆U〉5 〈
∂E5
∂λ

〉5_ (6) 

 
 
where l corresponds to the force field parameter, <DU>a is the ensemble average of the energy 
difference between a = 0.0 and a = 1.0, simulated at a defined a value, DU corresponds to the 
instantaneous energy difference for each snapshot between a = 0.0 and a = 1.0, and E is the 
potential energy of the system at a. Rather than optimising the free energies directly, we optimise 
against the ensemble average of the free energy gradients at specific a values, <DU>a. The 
derivative of the free energy gradients, <DU>a, with respect to the force field parameters l is 
composed of ensemble averages of instantaneous DU values, and derivatives of DU and the 
potential energy with respect to the FF parameters, at each α point used, where both derivatives 
are obtained numerically by finite difference using snapshots from the corresponding trajectories.  

 
Optimisation of a CG protein force field: uncharged side-chains and backbone. A workflow 
showing the steps followed in this work, and separated into four main stages, is presented in figure 
1. Briefly, hydration free energies for atomistic systems are calculated by decoupling both van der 
Waals and charge parameters. Then, atomistic free energy gradients are collected as an average of 
DU values, at simulations with different a values, <DU>a. These data are used to optimise each 
specific CG side-chain (or the backbone) with its corresponding <DU>a value. Then, parameters 
corresponding to the smallest objective function are collected. These parameters are then used to 
re-calculate new hydration free energies of the CG side-chains. See supporting information for 
more details of the stages shown in figure 1. 
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Figure 1. General workflow for the CG force field optimisation. Free energy gradients are 
collected from atomistic simulations and used as optimisation targets in ForceBalance. New 
parameters are obtained and later used in the re-calculation of hydration free energies for CG beads 
(side-chains and backbone). Letters from A to D correspond to each of the main stages in the 
optimisation and validation process (see SI). 

 
 
Hydration free energies of charged side-chains. The calculation of hydration free energies for 
charged systems is a more complex process compared to the classical use for uncharged systems. 
The standard raw hydration free energy (∆Ghyd

⊖ ) for an ion is calculated as the sum of three 

processes: charging (∆Gchg), cavitation (∆Gcav) and a standard convention term (∆Gstd
⊖ , which is 

equal to 7.95 kJ·mol-1, considering a water density of 997 kg·m-3 at a pressure of 1 atm33), as: 
 

∆Ghyd
⊖

 
=∆Gchg 

+∆Gcav +∆Gstd
⊖

 (7) 
 

The cavitation term corresponds to the creation of a molecule in solution through the scaling of 
intermolecular Lennard-Jones interactions, coupled to a parameter α.  
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The calculation of raw charging free energies (∆Gchg
raw) is especially sensitive to the chosen 

simulation methodology33-35 where different corrections have been introduced to alleviate these 
effects (see SI). Following these corrections33-35, raw hydration free energies and these corrections 
(∆Gcor, see SI) were used to calculate the methodology-independent free energy values for the 
charged side-chains, as: 

 
∆Gchg 

=∆Gchg
raw

 
+ ∆Gcor (8) 

 
These corrections, and their application, have been demonstrated before for monoatomic34,35 and 
polyatomic ions33. They are usually named as type A, B, C and D corrections, which are related to 
approximations in the electrostatic interactions (A), approximations of the system size (finite) (B), 
deviations of the solvent generated electrostatic potential given the choice of an inappropriate 
summation scheme (C), and a wrong estimation of the dielectric constant for solvent model used 
(D), respectively. In the case of polyatomic ions (such as the charged side-chains used in this 
work), numerical solutions of the Poisson equation are needed to obtain an estimation of the 
charging free energy in an idealised system that obeys a macroscopic regime (non-periodic with 
Coulombic electrostatic interactions) and based on the experimental solvent permittivity 
(∆Gchg

NPBC). Simulations of a periodic systems with a specific electrostatic scheme and based on the 

model solvent permittivity are also needed (∆Gchg
PBC,LS for a periodic boundary condition system 

using a Lattice-Summation scheme). These two terms can be used for the calculation of A+B+D 
corrections from continuum electrostatic calculations. See supporting information for more details.  
 
A type C1 correction is required for lattice-summation (LS) and Barker-Watts reaction field (BM) 
schemes, and corrects the P-summation (atom-based cut-off) implied by these schemes to a proper 
M-summation (molecule-based cut-off). This correction is calculated analytically. See supporting 
information for more details. 
 
Finally, and summarising all the necessary methodology-dependent corrections, standard 
hydration free energies were calculated as: 

 
∆Ghyd

⊖
 
=(∆Gchg

raw + 	∆Gcav)  
+ ∆GA+B+D + ∆Gde  

+ ∆Gstd
⊖

 (9) 
 
Optimisation of charged side-chains. Optimisations for the charged side-chains were performed 
in a similar fashion as the case for uncharged side-chain and the protein backbone, where free 
energy gradients from atomistic simulation were used as optimisation target for the CG parameters 
(see equation 3). As this type of free energy calculation is methodology dependent, the inclusion 
of corrections is required. Assuming that the final free energies between the atomistic and coarse-
grained models must be equal, the sum of their free energy gradients and the necessary correction 
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gradients must be equal as well. Since the corrections are added ex post, the fitting data used is 
given as, 

 
∂〈∆Gchg

raw〉5,gh
∂λ +	

∂〈ΔGcor〉5,gh
∂λ =	

∂〈∆Gchg
raw〉5,di
∂λ +	

∂〈ΔGcor〉5,di
∂λ (10) 

 
and moving the property that we want to optimise to one side, 
 

 
∂〈∆Gchg

raw〉5,di
∂λ = 	

∂〈∆Gchg
raw〉5,gh
∂λ +	

∂〈ΔGcor〉5,gh
∂λ - 

∂〈ΔGcor〉5,di
∂λ (11) 

 
 
where  ∂〈∆Gchg

raw〉5,di ∂λ⁄  and ∂〈∆Gchg
raw〉5,gh ∂λ⁄  correspond to the derivative of the raw charging 

hydration free energy gradients with respect to the force field parameters (at a specific a value), 
for a coarse-grained and atomistic system, respectively. ∂〈ΔGcor〉5,di ∂λ⁄  and ∂〈ΔGcor〉5,gh ∂λ⁄  are 
the derivatives of the free energy corrections with respect to the force field parameters (at a specific 
a value), for a coarse-grained and atomistic system, respectively. The derivatives of the corrections 
were calculated using finite differences, based on a set of a values between 0.4 and 1.0, where the 
parameters were scaled accordingly (i.e. for a=0.9, parameters were scaled to a 90% of their 
original value). See SI for more details on the calculation of these corrections and the protocol 
used in optimisation runs.  
 
The SIRAH model. Our new parameterisation approach has been applied to the optimisation of 
the SIRAH force field36, a CG force field and a promising alternative to conventional atomistic 
protein force fields. Unlike MARTINI37, SIRAH does not use elastic networks to overcome the 
problem of secondary structure stability. The use of a higher resolution backbone representation 
produces hydrogen bond-like interactions, which stabilise the secondary structure. Moreover, 
SIRAH models long-range electrostatic interactions using the particle mesh Ewald method (PME) 
and a dielectric constant of unity. At the moment, the SIRAH force field contains parameters for 
DNA38, water39, proteins36 and DMPC lipid40, and it has been used in the simulation of protein-
DNA interactions41, hybrid AT/CG simulations42 and in the implementation of a supra-CG water 
model for the simulation of virus-like particles43.   
 
The SIRAH CG protein model uses a higher resolution backbone compared to previous CG 
models, where positions for nitrogen, α-carbon and oxygen are maintained. Each bead possesses 
its own partial charge, which helps to stabilise secondary structures through the formation of 
hydrogen bond-like interactions. Dihedral angles define the secondary structure for the system, 
forcing the existence of the two main conformations, a-helices and b-strands. Side-chains are 
modelled using one to five pseudo-atoms and partial charges are placed based on the number of 
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hydrogen-bond acceptors and/or donors. Van der Waals parameters were set using an ad-hoc 
procedure, and van der Waals interactions are calculated based on the Lorentz-Berthelot 
combining rules, with the addition of some corrections36. The SIRAH water model (WT4) is 
represented by four linked beads in a tetrahedral geometry, each with a specific partial charge. 
Each CG water molecule represents approximately 11 atomistic water molecules based on the 
mass of CG beads (50 au)39. A new, updated version of the SIRAH protein model was recently 
released, named as SIRAH 2.0, where corrections were made to bonded and non-bonded 
interactions of amino-acids, showing decreased RMSD values up-to 0.1 nm, for different protein 
systems, compared to the previous SIRAH 1.0 version44. 
 
Optimisation of the WT4 model. For the WT4 model optimisation, three condensed-phase 
properties were optimised: density, enthalpy of vaporisation and dielectric constant. Experimental 
values (taken from ref. 15) for these properties were used as targets, at 298.15 K and 1 atm. The 
trust-radius Newton-Raphson algorithm was used to minimise the objective function (see SI for 
more details). For this work, the optimisation was regularised using a Gaussian prior that is centred 
on the original SIRAH parameter. This is done to prevent the optimisation from changing the 
parameters too much and to avoid over-fitting, adding a penalty that is applied to the objective 
function. Conceptually speaking, addition of a penalty function is equivalent to imposing a prior 
probability distribution on the parameters. Only non-bonded parameters were optimised, including 
van der Waals sigma (s) and epsilon (e) values, and partial charges. 
 
100 optimisation cycles were run, with the following simulation protocol: the system was 
minimised for 5000 steps using a steepest descent algorithm followed by an NPT equilibration 
time of 5 ns. Production runs were performed for 15 ns. A leap-frog algorithm was used to integrate 
Newton’s equations of motion with a time-step of 20 fs. Electrostatic interactions are calculated 
using the Particle mesh Ewald method45 with a direct cut-off of 1.2 nm and a grid spacing of 0.2 
nm. A 1.2 nm cut-off was used for van der Waals interactions. The V-rescale thermostat46 and the 
Parrinello-Rahman barostat47 were used to maintain the temperature at 298.15 K and the pressure 
at 1 atm, respectively. The simulation protocol was based on the original publication of the SIRAH 
1.0 protein force field36. All simulations were run with GROMACS v. 2018.2 48. Statistical 
fluctuations in the thermodynamic properties dominated the objective function after 30 iterations, 
and the set of parameters with the lowest objective function was chosen as the best solution. Single 
point calculations were run three times, with the best parameter set, in order to estimate standard 
errors. 
 
Protein simulations. To briefly evaluate the optimised force field, a series of proteins with sizes 
ranging from 585 to 69 residues were simulated (most were proteins tested in the original SIRAH 
1.0 publication36). Coarse-grained molecular dynamics simulations were performed using the 
SIRAH 1.0/WT4, SIRAH 2.0/WT4 and the ForceBalance reparameterised SIRAH-OBAFE/WT4-
FB force fields, for all the previously mentioned protein systems. Energy minimisation was carried 
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out for 10000 iterations of the steepest descent algorithm. This was followed by an NPT 
equilibration dynamics procedure of 20 ns with positional restraints of 1000 kJ·mol-1·nm-2 applied 
to all the protein beads. Production runs were performed for 3 µs for each system with an 
integration time-step of 20 fs. Electrostatic interactions were calculated using the Particle Mesh 
Ewald procedure45 with a direct cut-off of 1.2 nm and a grid spacing of 0.2 nm. Non-bonded 
interactions were modelled using the Lennard-Jones potential with a cut-off of 1.2 nm. All 
simulations were run at 1 bar with the Parrinello-Rahman barostat47 and at 298.15 K with the v-
rescale thermostat46. Systems were neutralised by adding Na+ and Cl- ions up to a concentration of 
150 mM. Root mean square fluctuations (RMSF) and root mean square deviations (RMSD) time 
series were calculated with GROMACS v.2018.248. 
 
 
Results and Discussion 
 
One of the main points that encouraged the development and improvement of these CG models, 
and also an important limitation of the SIRAH force field, is the inaccuracy of the hydration free 
energies of amino acid side-chains, which could limit its predictive power in protein simulations. 
Calculations of SIRAH 1.0 decoupling hydration free energies yield completely different results 
compared to all-atom OPLS-AA results, with mean unsigned errors against experiment (MUE) of 
5.03 kcal·mol-1 vs. 1.04 kcal·mol-1, for SIRAH 1.0 and all-atom systems, respectively, calculated 
against experimental values (see below). 
 
Optimisation of the WT4 water model. We start our ForceBalance calculation with the 
optimisation of the WT4 water model, where only non-bonded parameters were optimised 
(charges, sigma and epsilon values). Three condensed-phase properties for liquid water were used 
as reference data: density, enthalpy of vaporisation and dielectric constant at 298 K and 1 atm. The 
original WT4 model is able to reproduce experimental thermodynamic properties such as the water 
density at 298 K, but it is less satisfactory in the prediction of other properties (i.e. dielectric 
constant, expansion coefficient, surface tension, etc.)39. In contrast, the new WT4 model (now 
called WT4-FB) overcomes the previous issue with the dielectric constant in the original model 
by accurately reproducing experimental values for the three properties together (table 1). 
Calculations of the thermal expansion coefficient yield similar results to those of the original 
model (11.8x10-4 K-1 vs. 11.6x10-4 K-1)39. Thus, optimising WT4 with ForceBalance does not 
necessarily improve all properties; the level of accuracy obtainable is dependent on the granularity 
of the CG representation and the choice of force field functional form. 
 
Optimisation of the SIRAH protein force field: uncharged side-chains and backbone. Our 
new approach for CG FF optimisation is based on using derivatives of the free energy gradients 
i.e. <DU>a, at different values of the coupling parameter a, with respect to the force field 
parameters. We choose to work with free energy gradients due to their linear relationship with the 
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easily computed “vertical energy gap”, <∆U>a. In practice, the thermally averaged CG <DU>a, is 
fitted to atomistic <DU>a, where one or more selected values of the coupling parameter a are used 
to carry out the simulations.  

 
Table 1. Comparison of WT4 and WT4-FB models against experimental water properties at 298 
K and 1 atma 

Propertya Expt. WT4 WT4-FB (this work)b 

r (kg·m-3) 997.045 996.6 ± 0.3 995.4 ± 1.5 

DHvap (kJ·mol-1) 43.989 39.8 ± 0.2 43.7 ± 0.2 

er 78.409 123.7 ± 14.2 74.2 ± 12.3 

a (10-4 K-1) 2.572 11.6 ± 2.4 11.8 ± 2.7 

a The calculated properties correspond to density (r), enthalpy of vaporisation (DHvap), dielectric constant (er) and expansion 
coefficient (a), and the experimental data were obtained from reference 14. 
b Full set of parameters for the WT4-FB model provided in table S2. Error are reported as standard errors based on 3 simulations. 

 

HFEs were computed separately from the optimisation process. 10 sets of CG parameters were 
optimised representing 13 uncharged side-chains because of the shared mapping scheme and bead 
types for some groups of side chains; e.g. Asn/Gln share the same mapping, as do Ser/Thr and 
Val/Leu/Ile, and the backbone. Figure 2 and table S3 summarises the performance of our new set 
of parameters for uncharged side-chains and the backbone, now called SIRAH-OBAFE, together 
with the new WT4-FB force field, against HFEs from atomistic force fields (OPLS-AA49 for side-
chains and AMBER-14SB50 for the backbone), the original SIRAH 1.0 force field36, the updated 
SIRAH 2.0 force field44, and experimental data15. Those atomistic force fields with optimum 
published reference data were chosen to be part of the parametrisation process; the CG force field 
should be agnostic to the all atom data from which it is parameterised. 
 
As can be seen, the original set of parameters in SIRAH 1.0 do not perform well for the prediction 
of decoupling HFEs, with an R2 of 0.104 against experimental values (Fig. 2A). A similar case is 
observed for the latest version SIRAH 2.0, with an R2 of 0.404 (Fig. 2A). SIRAH-OBAFE is able 
to greatly improve the agreement with experimental HFEs to be as good as atomistic force fields, 
with an R2 of 0.982 and 0.975, respectively. SIRAH-OBAFE reproduces the correct sign of several 
neutral side-chains where the previous SIRAH 1.0 model predicted the wrong sign, such as Ser, 
Thr, Cys and Trp (Fig. 2B). Significant improvements have been made to the HFEs of hydrophobic 
residues such as Val, Leu, and Ile; these share the same representation in SIRAH, using just one 
bead. The original SIRAH 1.0 and the updated SIRAH 2.0 models predict -0.02 ± 0.01 and -0.18 
± 0.01 kcal·mol-1 for the HFE, respectively (table S3), whereas SIRAH-OBAFE achieves a value 
of -2.26 ± 0.03 kcal·mol-1 (table S3); the latter value is much closer to OPLS-AA simulations and 
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experiment which provide HFEs of (-2.45, -2.69, -2.59) and (-1.99, -2.28, -2.15) kcal·mol-1, for 
Val, Leu, and Ile, respectively (table S3). In the case of methionine, SIRAH-OBAFE produced 
even more accurate HFE values than the OPLS-AA model that provided the HFE gradients to 
which the CG model was fitted; we think this result is fortuitous and the differences are within the 
residual errors of the CG model vs. the AT reference (see SI related to the methionine case and 
figures S2 and S3).  

 

 

Figure 2. Comparison of decoupling HFEs from the new set of optimised parameters (SIRAH-
OBAFE) against atomistic simulations (AA), the original SIRAH 1.0 force field, the latest version 
SIRAH 2.0 and experimental data. (A) Linear regression of predicted DG values for AA (blue), 
SIRAH 1.0 (red), SIRAH 2.0 (orange) and SIRAH-OBAFE (green) force fields, against 
experimental data. Each point represents a specific side-chain. The grey line represents a perfect 
fit (y=x), and R2 values are given in the inset legends. (B) Bar plot comparison of predicted DG 
values for AA (OPLS and AMBER-14SB) (blue), SIRAH 1.0 (red), SIRAH 2.0 (orange) and 
SIRAH-OBAFE (green) against experimental data (yellow; y axis) for all the neutral side-chains. 
Error estimates were calculated as standard errors based on three repeat simulations. For some 
cases, red bars appear to be missing as they are too small to be seen on the scale of the plot. 

 

Optimisation of the SIRAH protein force field: charged side-chains. A different approach, 
compared to the optimisation of uncharged side-chains and backbone, was followed for the 
charged side-chains. We started with ForceBalance optimisation procedures, where the gradients 
of the raw charging free energies plus the gradient of the methodology-dependent corrections were 
used (see methods). Most of the ForceBalance optimisation results yield good agreement with 
experimental and AT hydration free energies (table 2, denoted as HFE-fitted), but the parameters 
were driven to unphysical values (see Fig. S4 and S5, for charge and Lennard Jones parameters, 
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respectively). Given this, we conclude that our optimisation procedure works, but given the 
existence of few parameters to represent charged side-chains in SIRAH, and despite the use of 
regularization, over-fitting might be an unavoidable consequence in this case. Moreover, coarse-
graining is an important simplification of the physics, where the option to fully reproduce complex 
properties, such as the free energy of charged entities, might not be possible. We have therefore 
decided to use the original SIRAH 1.0 parameters for charged side-chains, in combination with 
the hydration free-energy optimised parameters for backbone and uncharged side-chains, for the 
test of the SIRAH-OBAFE force field on protein systems.   
 
 
Table 2. Hydration free energies of charged side-chains using the GROMOS 54A8, SIRAH 1.0, 
and SIRAH 2.0 force fields. HFE-fitted values are also included with the sole intention of 
comparison and discussion. 

Force field Expt.a ∆Gchg
raw

+ 	∆Gcav  
 

∆G𝐀l𝐁l𝐃  ∆G𝐂𝟏  
 ∆Gstd

⊖
  ∆Ghyd

⊖
 
 

ARG 
54A8 -276.5 -137.9 ± 0.4 -58.6 -67.8 7.9 -256.5 

SIRAH 1.0   -149.0 ± 0.6 -57.5 -7.2 7.9 -205.8 
SIRAH 2.0  -149.9 ± 0.6 -57.5 -7.2 7.9 -206.6 
HFE-fitted  -223.7 ± 0.5 -54.8 -7.2 7.9 -277.8 

LYS 
54A8 -289.5 -180.1 ± 0.6 -58.8 -67.8 7.9 -298.8 

SIRAH 1.0   -134.5 ± 0.6 -54.7 -7.4 7.9 -188.7 
SIRAH 2.0  -130.9 ± 0.5 -54.7 -7.4 7.9 -185.2 
HFE-fitted  -178.6 ± 0.6 -57.5 -7.4 7.9 -235.8 

GLU 
54A8 -315.4 -349.9 ± 0.5 -58.9 67.8 7.9 -332.9 

SIRAH 1.0   -156.4 ± 0.4 -58.8 7.5 7.9 -199.3 
SIRAH 2.0  -153.6 ± 0.5 -58.8 7.5 7.9 -196.5 
HFE-fitted  -252.8 ± 0.6 -58.3 7.5 7.9 -295.6 

ASP 
54A8 -321.2 -349.4 ± 0.5 -58.9 67.8 7.9 -332.5 

SIRAH 1.0   -156.4 ± 0.4 -58.8 7.5 7.9 -199.2 
SIRAH 2.0  -153.6 ± 0.5 -58.8 7.5 7.9 -196.4 
HFE-fitted  -252.8 ± 0.6 -58.3 7.5 7.9 -295.6 

a Values are in the units of kJ·mol-1. Experimental values were obtained from reference 33 
b Error bars modelled as standard errors across three repeat simulations. 
 

Protein simulations. To test the performance of SIRAH-OBAFE in protein simulations, Ca 
RMSD analyses (with respect to the crystal structure) were performed on 6 protein system of 
different sizes. Simulations using the optimised SIRAH-OBAFE with the optimised WT4-FB were 
run for 3 µs. While the computed RMSDs are generally larger compared to atomistic simulations, 
all the simulations that used the optimised SIRAH-OBAFE model show improvements in protein 
stability with lower RMSD values throughout the whole trajectory with respect to the original 
SIRAH 1.0 and the updated SIRAH 2.0 force fields (Fig. 3). Even though the overall behaviour of 
the optimised SIRAH-OBAFE FF does not yield identical results compared to atomistic RMSDs, 
it shows an important improvement compared to the original SIRAH FF. As a simple comparison, 
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atomistic simulation of systems with PDB codes 1QYO, 1RA4 and 1R69 (chosen from the original 
SIRAH 1.0 publication36) were run for 200 ns, showing average RMSD values of 0.270 nm, 0.06 
nm and 0.148 nm, respectively. The original SIRAH 1.0 force field shows averaged RMSD values 
of 0.723 nm, 0.755 nm and 0.804 nm, while our optimised SIRAH-OBAFE force field shows 
averaged values (over the entire simulation) of 0.453 nm, 0.491 nm and 0.635 nm, for the same 
three cases, 1QYO, 1RA4 and 1R69, respectively. In the case of the updated SIRAH 2.0 force 
field, the overall behaviour of the RMSD timeseries is similar to the optimised SIRAH-OBAFE 
(Fig. 3), except for two larger systems, with average values (over the entire simulation) of 0.543 
nm vs. 0.429 nm for 1E7I, and 0.601 nm vs. 0.453 nm for 1QYO (Fig. 3A and 3B). Even though 
the new RMSD values are not close to the atomistic RMSD and we would not necessarily expect 
them to be, there is as an improvement in the stability of protein systems based on our new 
optimisation approach. In more detail, calculating RMSD values against the last frame of the 
trajectories can give an insight whether the large RMSDs are due to large fluctuations or a change 
in conformation to a rigid conformer. This was performed using the updated SIRAH 2.0 and the 
optimised SIRAH-OBAFE force fields. Figure S6 summarise the results. As can be seen in the 
case of the 1E7I system, a big change of conformation is seen at around 1µs, which stabilise 
afterwards. In the other systems, it seems that the higher RMSD values observed in figure 4 are 
due to conformational drift across the simulation, with similar behaviours for both the updated 
SIRAH 2.0 and the optimised SIRAH-OBAFE force fields. RMSD fluctuations within a particular 
protein conformation are of the order of 0.2 nm. 
 
 
Conclusions 
 
In this work we propose a new and promising approach for parametrising coarse-grain force fields 
by optimising the CG force field parameters against free energy gradients derived from atomistic 
simulations. Our implementation of this method into ForceBalance enables full automation of the 
complex optimisation procedure and the incorporation of flexible choices of target data. It has been 
stated that there is considerable interest in methods that can automatically generate a coarse-
grained model, and that are representative in terms of local structure and free energy changes. Our 
method paves the way to new optimisation procedures that rely on the use of free energy data as a 
target. 
 
Non-bonded interaction parameters of un-charged side-chains and the backbone of the SIRAH 
coarse grain protein force field were optimised against hydration free energy gradients of atomistic 
simulation models, and compared against experimental hydration free energies, yielding a new 
parameter set called SIRAH-OBAFE (table S2 for parameter values).  
 
The predicted hydration free energies show a much improved agreement with experiment, 
compared to the previous version of the SIRAH force field, with increased R2 values of 0.97 for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.250233doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.250233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

the new SIRAH-OBAFE parameter set, against values of 0.1 and 0.4 for the SIRAH 1.0 and 
SIRAH 2.0 sets. Attempts were made to optimise charged side-chains, using free energy gradients, 
with the necessary correction gradients. While force field parameters able to give improved 
estimates of the hydration free energies were derived, given the difficulty in this process to avoid 
an over-fitted model, even with regularization, and the lack of sufficient parameters to improve 
the hydration free energies in a physically meaningful way, the original charged parameters of the 
SIRAH force field were retained. The structural stability of proteins has been improved with the 
use of the new SIRAH-OBAFE force field. RMSD values were reduced by an average of ~0.25 
nm across the protein system tested (Fig. 3), compared to the original SIRAH 1.0 force field, which 
was used as the starting point in the optimisation procedures. 
 

 

Figure 3. RMSD time series comparison between the original SIRAH 1.0 FF (purple), the updated 
SIRAH 2.0 FF (black) and the optimised SIRAH-OBAFE FF (green). RMSD trajectory analysis 
is shown as a time series comparison with respect to the Ca carbons of the CG representation to 
the crystal structure for (A) Serum albumin, (B) GFP protein, (C) Gamma-adaptin domain, (D) 
L7Ae protein, (E) CRO repressor and (F) the N-terminal domain of phage 434 repressor. PDB 
codes are shown in the figure titles and legend colours are shown at the bottom of the figure. 
Protein structures, corresponding to each of the simulated cases, are shown inside each plot. All 
simulations and analysis were run in GROMACS v.2018.2.    
 

We believe that the simplification of the physics observed in coarse-grained force fields, such as 
the SIRAH model, presents a challenge for the reproduction of multiple experimental properties. 
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Limitations in the optimisation methodology are arguably the main cause for this, mainly given by 
the size of the parameter set that is available to optimise the property of interest; there is 
insufficient granularity to capture the physics involved in the calculation of hydration free energies 
for charged and neutral species in a balanced way. The few parameters available in CG models 
will likely limit the applicability of our proposed optimisation method. To better understand the 
implications, future studies could be related to the use of a more complex CG protein force field 
(near atomistic resolution) in the optimisation process, and different scenarios in terms of protein 
simulations, such as calculating protein potentials of mean force (PMF) for conformational 
changes and the folding of small peptides. Moreover, a procedure to simultaneously and 
automatically include PMF data in the ForceBalance parameterisation might bring improvements. 
Significant and further validation is needed.  
 
The development of new strategies and approaches for force field optimisation is of great interest. 
In this matter, our new method opens a door for the improvement of contemporary, or new, CG 
force fields, and it greatly increase the applicability of the CG models in different research areas, 
such as the study of protein conformational changes, which needs of a correct description of 
protein-protein, and protein-solute interactions. Furthermore, the parameterisation approach opens 
a new route to developing CG force fields for other classes of biomolecules such as carbohydrates, 
nucleic acids, lipids and metabolites, where experimental data may not be as readily available. 
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Supplementary Information 
 
ForceBalance optimisation procedure. A trust region method approach has been used in the 
ForceBalance optimisations in this work. In trust region methods, there is a region of search space 
in which it is assumed the local derivative information is a good approximation of the objective 
function being minimised. After each optimisation step, the trust radius may be increased or 
decreased based on the quality Q of the steps taken, i.e. the ratio of the objective function change 
between steps i and i+1 and the expected change from the local derivative information at step i. 
The following formula is used to adjust the adaptive trust radius after the step is taken: 
 

𝑅Rl, = max ]𝑅min,
𝑅R

1 + 𝑎_ 							Q < 0.25 (𝑆1) 

 
 

𝑅Rl, = 𝑅R y1 + 𝑎 exp y−𝑏 ]
𝑅R
𝑅*
− 1_}} 							𝑄 > 0.75 (𝑆2) 

 
Here 𝑅R is the current trust radius; 𝑅Rl, the trust radius at the next iteration; 𝑅*	the default trust 

radius, was set to 0.1; and 𝑅min the minimum trust radius, was set to 0.05. The parameter 𝑎, called 
“adapt_fac” in ForceBalance, which is related to how much the step size is increased, was set to 
1.0; 𝑏, called “adapt_damp”, that ties down the trust radius, was set to 0.2. The exponential term 
biases the current trust radius toward the default value, i.e. the trust radius increases by larger 
factors if the current value is smaller than the default, and vice versa if larger. 
 
ForceBalance optimisation based on hydration free energy gradients. The optimisation of 
side-chain analogues and the protein backbone has been made based on atomistic hydration free 
energies, following 4 stages. 
 
Stage A: Hydration free energy calculations on AT side-chain analogues, CG side-chains and 
backbone beads. The interaction energy terms between the solute and solvent are linearly related 
to the coupling parameter α. With this, the solvation free energies for the side-chain analogues, for 
the atomistic and coarse-grained systems, were calculated based on a decoupling approximation. 
That is, interactions between the solute and the solvent were gradually turned off. Our reference 
state will be our system in solution, and the final state will be the solute in vacuum. The OPLS-
AA1 and the AMBER-14SB2 force fields were used for the atomistic side-chain analogues and the 
backbone, respectively. In all cases, systems were solvated in a TIP3P3 water box. Since we are 
comparing our calculations with previous studies, especially the ones that give closer results to 
experiments, we have tried to be consistent with those, hence the choice of different force fields 
on the optimisation process. As we are taking the best of different worlds to optimise a CG force 
field, we believe this choice is the most sensible throughout this protocol. The SIRAH protein 
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force field4 was used for the CG side-chains and backbone beads, solvated in a WT45 water box. 
Electrostatic and van der Waals interactions were turned off together. Eleven discrete values of the 
coupling parameter α were used for the scaling of both CG and AT side-chain analogues potentials 
(see table 2 and table S1 for details on the analogues used): 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9 and 1.0, where 0.0 and 1.0 represent the fully on and fully off systems. In the case of N-
methylacetamide (NMA), which was used as a representation of the backbone beads, twenty-five 
values were used: 0.0, 0.5, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 
0.8, 0.85, 0.87, 0.89, 0.91, 0.93, 0.95, 0.97 and 1.0. The soft-core scaling methods for Lennard-
Jones (with αLJ = 0.5) and Coulombic interactions were used to smoothly vary the potentials6,7. 
Simulations were run for 5 ns per window, with a previous equilibration of 1 ns and 5000 iterations 
of the steepest descent algorithm. All the simulations were run using the NPT ensemble. The 
Multistate Bennett Acceptance Ratio (MBAR)8 was used to compute the free energy difference, 
which combines data from multiple states. This method is an extension of the well-known Bennett 
Acceptance Ratio (BAR)9, which needs information from two states (in contrast to FEP10 or TI11, 
which need information from only one state) in order to compute the free energy difference.  

 
For the AT simulations, a leap-frog stochastic dynamics integrator was used for integration of 

Newton’s equations of motion with a time-step of 2 fs.  Electrostatics interactions were calculated 
using the PME procedure12 with a real-space cut-off of 1.2 nm and a Fourier grid spacing of 0.12 
nm. Van der Waals interactions were modelled using the classical Lennard-Jones potential with a 
cut-off of 1.2 nm. The LINCS algorithm13 was applied to constrain all H-bond lengths. AT 
simulations were run at 1 atm with the Parrinello-Rahman barostat14 and at 298.15 K with the 
Berendsen thermostat15.  

 
For the CG simulations, a leap-frog stochastic dynamics integrator was used for integration of 

Newton’s equations of motion with a time-step of 20 fs.  Electrostatic interactions were calculated 
using the PME procedure with a grid spacing of 0.2 nm. Non-bonded interactions were modelled 
using the classical Lennard-Jones potential and a Coulombic energy function, with a cut-off of 1.2 
nm each. All simulations were run at 1 atm with the Parrinello-Rahman barostat and at 298.15 K 
with the v-rescale thermostat16. All simulations were run with GROMACS v. 2018.217. 
 
Stage B: Collection of AT <DU>a values. <DU>a were collected from the AT simulations in 
stage A, at different a values. For most of the side-chains, a simulations at 0.0 were not used due 
to the large magnitudes of <DU>a values and differences between AA and CG that could not be 
closely fitted. Val, Cys and Trp were the only exceptions for this case. <DU>a values were 
collected with an in-house Python code created for this purpose, averaging DU values for each 
frame in the trajectories. Table S1 summarise the a values used for each of the simulated side-
chains in the ForceBalance optimisation.  
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Stage C: Optimisation of SIRAH CG side-chains and backbone. Derivatives of the free energy 
gradients with respect to the parameters are calculated. These are used to build an objective 
function, which is a squared sum of the differences between the AA and CG <DU>a values. The 
optimisation was carried out using ForceBalance using the same settings described in the WT4 
model development, except for the adapt_fac and adapt_damp parameters, that were set to 0.2 and 
0.5 respectively. Only 10 sets of parameters were optimised, 9 of them corresponding to 13 un-
charged amino acid side-chains, as some of the side-chains are described by identical parameters, 
and 1 set corresponding to the backbone beads. In this case, the targets were atomistic free energy 
gradients at 2 or 3 different a simulation values (table S1). Proline is the only side-chain that has 
not been optimised given the lack of side-chain analogues, keeping its original parameter values. 
Only non-bonded parameters were optimised, including van der Waals epsilon (e) values, and 
charges, mainly given the parameter sensitivity observed (see below for a discussion on parameter 
dependence and figure S1). All new optimised parameters are shown in table S2. All the 
optimisation simulations for the SIRAH beads were run with the optimised WT4-FB model (this 
work). 100 optimisation cycles were carried out, and the optimal parameters were taken from the 
lowest value of the objective function. Systems were minimised for 5000 steps using a steepest 
descent algorithm followed by an NPT equilibration time of 5 ns. Production runs were performed 
for 10 ns. A leap-frog algorithm was used for integration of Newton’s equations of motion with a 
time-step of 20 fs. Electrostatic interactions are calculated using the Particle Mesh Ewald method12 
with a direct cut-off of 1.2 nm and a grid spacing of 0.2 nm. A 1.2 nm cut-off was used for van der 
Waals interactions. The v-rescale thermostat16 and the Parrinello-Rahman barostat14 were used to 
maintain the temperature at 298.15 K and the pressure at 1 atm, respectively. The simulation 
conditions were consistent with the original SIRAH publication4. All simulations were run with 
GROMACS v. 2018.217. All specific non-bonded pairs, previously set to the original SIRAH force 
field, between the backbone beads (GC, GN and GO) and water beads (WT) have been removed, 
and we have set those interactions using Lorentz-Berthelot combing rules. 
 
Stage D: Re-calculation of CG hydration free energies. The optimised SIRAH-OBAFE force 
field was used for the re-calculation of the coarse-grained hydration free energies. The same 
protocol in stage A was used, with some minor differences based on the original publication of the 
SIRAH protein force field4. For all simulation, a leap-frog stochastic dynamics integrator was used 
for integration of Newton’s equations of motion with a time-step of 20 fs.  Electrostatic interactions 
were calculated using the PME procedure with a grid spacing of 0.2 nm. Non-bonded interactions 
were modelled using the classical Lennard-Jones potential and a Coulombic energy function, with 
a cut-off of 1.2 nm each. The LINCS algorithm was applied to constraint all H-bond lengths. All 
simulations were run at 1 atm with the Parrinello-Rahman barostat14 and at 298.15 K with the v-
rescale thermostat16. All simulations were run with GROMACS v. 2018.217. The new hydration 
free energies are shown in table 2, and they are compared with hydration free energies calculated 
from atomistic systems, with the SIRAH 1.0 and the updated SIRAH 2.0 protein force fields. 
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Hydration free energies of charged side-chains. Raw hydration free energies (equation 5) have 
been calculated using a lattice-summation scheme (PME) by decoupling the interactions, 
electrostatic and van der Waals together, of the ion (side-chain) with the solvent (excluding 
intramolecular interactions). Eleven lambda values have been used (0.0, 0.1, …, 0.9, 1.0) for all 
the charged side-chains, using the GROMOS 54A818,19 for atomistic systems, the original SIRAH 
1.0, the updated SIRAH 2.0, and SIRAH-OBAFE force fields in GROMACS v.2018.2. The 
simulation conditions and soft-core potential settings were similar to the ones used in the 
calculation of hydration free energies for uncharged side-chains (Stage A from the workflow in 
figure 1). A standard state correction was used with a value equal to 1.9 kcal•mol-1 for water, using 
a density value of 997 kg•m-3 (see refs 18, 20, 21). All the reported raw free energies exclude the 
self-interaction energy.  

 
The main idea behind the necessary correction for the calculation of hydration free energies for 

charged systems is to approximate the perturbation introduced by these specific errors by the 
corresponding perturbation within an idealised system (Born model: non-periodic and Coulombic 
interactions), and see how much the calculated electrostatic potentials deviate from this “real” 
value. Some of the introduced corrections are summarised (see refs 18, 20, 21 for more details):  

 
(A) Approximate representation of the electrostatic interactions (non-Coulombic) which lead 

to a deviation of the solvent polarization around the ion relative to an idealised 
Coulombic system, with also incomplete interactions of the ion with the solvent beyond 
the cut-off. This type A correction is specific for the electrostatic scheme used; it does 
not apply for lattice-summation schemes (PME), which are Coulombic in the limit of 
infinite system sizes, but it does apply for cut-off truncation (CT) or reaction field 
schemes (BM). The type A correction is specific for the electrostatic potential used, and 
is evaluated using the same potential, but in the idealized context of a macroscopic and 
non-periodic system. Moreover, it can be sub-divided into corrections A1 and A2 for CT 
schemes, which apply beyond the cut-off sphere of the ion and within it, respectively. 

(B) Approximation of the size of the systems (finite), which do not follow a macroscopic 
regime. This leads to deviations on the solvent polarization, relative to the polarisation 
of an ideal system (macroscopic). A clear example is the use of a computational box 
simulated under periodic boundary conditions. This type B correction is applied for the 
specific electrostatic scheme in the simulation (e.g., LS, CT or BM scheme).  

(C) Deviation of the solvent generated electric potential at the atomic site of the ion relative 
to a “correct” electric potential, which is a consequence of the use of an inappropriate 
summation scheme for the calculation of electrostatic interactions (i.e. P scheme, which 
stands for summing over individual charges, and a M scheme, which stands for summing 
over whole solvent molecules), as well as the presence of a constant potential offset. This 
type C correction is applied for a specific electrostatic scheme and choice of boundary 
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conditions, and can be subdivided in type C1 and C2 corrections, for improper potential 
summation and for the potential offset, respectively. 

(D) Approximate force-field representations, especially related to the wrong dielectric 
constant for the solvent model used. 

 
Numerical solutions of the Poisson equation are needed to obtain an estimation of the charging 

free energy in an idealised system that obeys a macroscopic regime (non-periodic with Coulombic 
electrostatic interactions) and based on the experimental solvent permittivity (∆Gchg

NPBC). 
Simulations of a periodic systems with a specific electrostatic scheme and based on the model 
solvent permittivity are also needed (∆Gchg

PBC,LS for a periodic boundary condition system using a 
LS scheme). The sum of corrections A, B and D can be obtained based on these two continuum-
electrostatic simulations, as 

 
∆GA+B+D

LS
 = ∆Gchg

NPBC
 
- ∆Gchg

PBC,LS
 

(S3) 
 
for a LS scheme. The two terms on the right side of equation S1 are charging free energies obtained 
with the Poisson equation solver from references22-24, for non-periodic and periodic systems with 
Coulombic electrostatic interactions, respectively. 

In this work, a relative permittivity of 78.4 for water has been used in the calculation of ∆Gchg
NPBC 

A relative permittivity of 63.84 for the optimised WT4 water model was used, as calculated based 
in reference 26, in the calculations of ∆Gchg

PBC,LS. Continuum-electrostatic calculation were done 
with the GROMOS++ pre-MD and analysis software v.1.4.125 and were based on single structure 
taken from as the final configuration of the hydration free energy simulations of the charged side-
chains. The appropriate boundary conditions and electrostatic scheme were used for each case, 
with a grid spacing of 0.02 nm and a threshold of 10-6 kJ•mol-1 for the convergence of the 
electrostatic free energy.  

 
Type C1 correction is required for LS and BM (reaction field) schemes, and corrects the P-

summation (atom-based cut-off) implied by these schemes to a proper M-summation (molecule-
based cut-off). For a LS scheme, this is given by: 

 

∆GC1
LS

 
=  -NAqi ]1-

Vi

〈L〉3_ ξ'S
(S4) 

 
where NA is the Avogadro’s constant, Vi is the ionic volume (assumed constant and defined as the 
change in the volume of the computational box upon insertion of the neutral ion-sized cavity)18, L 
is the length of the edge of the box, qi is the total ionic charge, and ξ’S corresponds to the exclusion 
potential of the solvent model. For fully rigid models with a single van der Waals interaction site, 
this last term has been usually calculated based on the quadrupole moment trace of the solvent 
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model. For more complex solvent models, different methods have been derived for the calculations 
of their exclusion potentials26. In this work, we have employed method IV from reference 26, 
which relies on the comparison of the raw potentials within a cavity using two different 
electrostatic schemes, assuming that the corrected potentials are equal. For this, we have used a 
cut-off truncation (CM) and reaction field schemes (BM). The difference in the raw potentials are 
related to ξ’S as: 

 

ξ'S= -	 �
2(ϵ'S-1)
2ϵ'S+1

 �1-
RI

3

RC
3��

-1

�ϕ*,raw,CM-	ϕ*,raw,BM� (S5) 

 
where RI is the effective ionic radius, RC is the cut-off, f*,raw,CM and f*,raw,BM are the raw 
electrostatic potentials within an uncharged cavity of the size of a CG sodium ion, and ϵ’S 
corresponds to the dielectric permittivity of the solvent model, which has been calculated based 
on the methodology used in reference 26. Simulations of an un-charged sodium ion solvated in the 
optimised WT4-FB model were run for 1 ns using a BM scheme, with a reaction field permittivity 
ϵRF equal to 80. Electrostatic potentials at the cavity were obtained for both CM and BM schemes 
based on the electrostatic interaction of the cavity with the solvent within the cut-off RC, using an 
in-house Python script created for this purpose. Simulation settings were similar to the previous 
one used in this work. The dielectric permittivity calculated here differs with the value previously 
reported in table 1, but is within the error. Moreover, it has been reported that dielectric 
permittivities calculated using a reaction-field scheme are more sensitive to the choice of 
simulation parameters such as the non-bonded cut-off. Given this, the lack of agreement is not 
unexpected, but as a matter of consistency with previous studies26, we decided to use the dielectric 
permittivity calculated in this section for the evaluation of the exclusion potential. Moreover, the 
dielectric permittivity for the WT4 water model calculated in this section is similar to the one 
calculated by Reif et.al26 with a reported value of 66.7 using the SPC model. 
 

Type C2 corrections correct for the presence of an interfacial potential at the ion surface. This 
term is proportional to the ratio of the ionic volume to the box volume. With this, its magnitude is 
very small for the systems used in this work, and has been neglected in the calculation of the 
corrected hydration free energies.  
 

Optimisation of charged side-chains.  All the optimisation simulations for the SIRAH beads 
were run with the optimised WT4-FB model (this work). 100 optimisation cycles were run. 
Systems were minimised for 5000 steps using a steepest descent algorithm followed by an NPT 
equilibration time of 5 ns. Production runs were performed for 10 ns. A leap-frog algorithm was 
used for integration of Newton’s equations of motion with a time-step of 20 fs. Electrostatic 
interactions are calculated using the Particle Mesh Ewald method12 with a direct cut-off of 1.2 nm 
and a grid spacing of 0.2 nm. A 1.2 nm cutoff was used for van der Waals interactions. The v-
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rescale thermostat16 and the Parrinello-Rahman barostat14 were used to maintain the temperature 
at 298.15 K and the pressure at 1 atm, respectively. The simulation conditions were consistent with 
the original SIRAH publication4. All simulations were run with GROMACS v. 2018.217.  
 

For the PMF calculations, the distance between the centre of mass of the BCG bead of Glu, and 
the BCE bead of Lys and BCZ bead of Arg, were used as collective variables. A total of 78 
windows have been used for umbrella sampling for both cases with distances spanning from 0.38 
nm to 1.8 nm, using a spring constant of 5000 kJ·mol-1. Simulations settings were similar to the 
previous one used: a leap-frog stochastic dynamics integrator was used for integration of Newton’s 
equations of motion with a time-step of 20 fs.  Electrostatic interactions were calculated using the 
PME procedure with a grid spacing of 0.2 nm. Non-bonded interactions were modelled using the 
classical Lennard-Jones potential and a Coulombic energy function, with a cut-off of 1.2 nm each. 
The LINCS algorithm was applied to constraint all H-bond lengths. All simulations were run with 
GROMACS v. 2018.2 at 1 atm with the Parrinello-Rahman barostat and at 298.15 K with the v-
rescale thermostat, and were preceded by the corresponding minimisation and NPT equilibration.  
 

Table S1. a simulation values used for the collection of <DU>a values, that correspond to the 
targets in the optimisation of the CG beads in ForceBalance. Atomistic analogues used are shown 
in parenthesis. 

Side-chain a values 

Asn (acetamide) 0.1, 0.2, 0.5 

Cys (methanethiol) 0.0, 0.2, 0.4 

His (methylimidazole) 0.1, 0.2, 0.4 

Met (methyl-ethylsulfide) 0.1, 0.2, 0.4 

Phe (toluene) 0.5, 0.6 

Ser (methanol) 0.1, 0.2, 0.5 

Trp (methylindole) 0.0, 0.4, 0.5 

Tyr (p-cresol) 0.1, 0.4, 0.5 

Val (propane) 0.0, 0.5 

Backbone (N-methylacetamide) 0.1, 0.3 

 

Parameter dependence. Initially, a screening test was performed to evaluate the parameter 
dependence of <DU>a with respect to the force field parameters, i.e. to evaluate the changes in 
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<DU>a based on changes in the force field parameters. For some of the cases (Ser, Asn and Val), 
both van der Waals sigma (s) and epsilon (e) values were optimised in a first attempt. Based on 
the parameter dependence observed in figure S2 for the case of Val, the <DU>a values do not 
significantly change within a sensible range of van der Waals s values. On the contrary, an 
important parameter dependence is shown with respect to the van der Waals e values (i.e. big 
changes in <DU>a are observed when changes in the parameters are performed). In figure S2, the 
van der Waals parameters are plotted in the form of internal optimisation variables in ForceBalance 
(“mathematical parameters”), which are related to the physical parameters (i.e. the parameters that 
are actually printed in the force field file) as a shifted displacement form the original value: 

 
K���� = K����* + SF ∗ K���� (S4) 

where Kphys corresponds to the parameter that is used in the simulation after the optimisation 
process, Kphys0 is the initial parameter before the optimisation, SF is the scaling factor and Kmath 
the mathematical value used in the optimisation process. Finally, only van der Waals e values and 
charges were optimised given the parameter sensitivity that exists (see table S2 and figure S2). 
 

 

Figure S1. Parameter dependence for Val. Changes of <DU>0 (in units of kcal·mol-1) with respect 
to the van der Waals (vdW) s and e values are shown (left and right panel, respectively). 
Simulations were run at a = 0.0 (fully on solute) for 25 ns. The simulation conditions were the 
same as the ones used for the side-chain optimisations (see stage A). Van der Waals values are 
plotted as mathematical values (mvals). 

 
Atomistic gradient choice. It is important to note that for most cases, AT gradients at a=0 were 
too high to be fitted by ForceBalance due to the large magnitude of the gradient and the large 
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difference between AT and CG. Inclusion of the a=0.0 point would have introduced a very large 
contribution to the objective function and worsened the quality of fit of all the other a points. We 
are assuming that the gradients should behave in a similar manner between the all-atom and coarse-
grained systems, but this might not be the case. Using the free energy gradients as a proxy for the 
free energies, instead of the free energy itself, relies on the assumption that 1) if one of the free 
energy gradients is correct, we expect a better performance across the whole range of a values, 
and 2) coarse-grained and atomistic systems should have similar free energy gradients. Neither of 
these is necessarily true.  
 
The methionine case. The optimisation of methionine is an example where our method has 
worked (Fig. S2), finding a minimum, i.e. the optimal set of parameters to minimise the objective 
function. A manual search of 441 parameter combinations shown in figure S2 led us to similar 
results to those obtained for the full optimisation of methionine, with values of vdWs = 0.49 nm, 
vdWe = 4.56 kJ·mol-1, and vdWs = 0.48 nm and vdWe = 4.22 kJ·mol-1, respectively. Figure S3 
shows the free energy gradients for the atomistic and coarse-grained methionine side-chain. The 
overall shape of the profile is maintained, but differences exists in the magnitude of the gradients. 
This may account for the differences observed for the calculated HFEs. Fortuitously, the optimised 
parameters led to better agreement with experimental hydration free energies.  
 
In the case of phenylalanine, the optimised SIRAF-OBAFE parameters performed worse 
compared to the original SIRAH force fields, with values of 0.50 ± 0.05 kcal·mol-1 for the SIRAH 
1.0 force field, 0.57 ± 0.05 kcal·mol-1 for the SIRAH 2.0 force field, vs. 1.12 ± 0.06 kcal·mol-1 for 
the optimised SIRAH-OBAFE. We believe this is mainly due the complexity on the free energy 
gradient profile for this residue. Moreover, later optimisation runs of side-chains that share the 
A2C bead-types with phenylalanine (such as His, Tyr, and Trp) were performed using this 
parameter fixed to its original value. 
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Figure S2. Methionine objective function surface. 441 combinations (21 x 21) of vdWs and vdWe 
simulations were performed, and single calculations of the objective function were extracted and 
plotted. The maximum and minimum values for the objective function are shown as blue and red 
dots, respectively, and for each of these the parameter combination is shown. 

 

 

 

Figure S3. Free energy gradients for methionine. (A) atomistic free energy gradients and (B) 
coarse-grained free energy gradients. The results represent 11 a simulations with average <DU>a 
values for each of those simulations shown.  
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Figure S4. HFE-fitted charge values for the optimised charged side-chain. Schematic 
representation of the three optimised charged side-chains (Lys, Arg and Glu/Asp), for the original 
SIRAH 1.0 and the HFE-fitted parameter set (after the initial optimisation). 

 

 

 

Figure S5. HFE-fitted VDWε values for the optimised charged side-chain. Schematic 
representation of the three optimised charged side-chains (Lys, Arg and Glu/Asp), for the original 
SIRAH 1.0 and the HFE- fitted parameter set (after the initial optimisation). All values are in units 
of kJ·mol-1. 
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Figure S6. RMSD times series against the last frame. RMSD trajectory analysis is shown as a time 
series comparison with respect to the Cα carbons of the CG representation to the last frame of the 
trajectory for (A) Serum albumin, (B) GFP protein, (C) Gamma-adaptin domain, (D) L7Ae 
Archeal ribosomal protein, (E) CRO repressor and (F) the N-terminal domain of phage 434 
repressor. PDB codes are shown in the figure titles. Simulations were run using the SIRAH 2.0 
(black) and SIRAH-OBAFE (green) force fields. 
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Table S2. Optimised parameters for the SIRAH-OBAFE and WT4-FB force fields 

 Bead typea VDWs (nm) VDWe (kJ·mol-1) Charge (e) 

Side-chain beads (SIRAH-OBAFE) 

Asn/Gln P3Cn/q SaOb 3.5217E-01 0.00 

 P5N SaO 5.5453E-01 5.9527E-01 

 P4O SaO 5.547E-01 -5.9527E-01 

Cys P1S SaO 1.0547E+00 -6.0817E-01 

 P2P SaO 2.2622E-01 6.0817E-01 

His (epsilon protonated) A2C SaO SaO 0.00 

 A5E SaO 1.7084E+00 5.0449E-01 

 A5D SaO 1.7023E+00 -5.0449E-01 

Met Y3Sm SaO 4.7181E+00 0.00 

Phe A2C SaO SaO 0.00 

 A1C SaO SaO 0.00 

Ser/Thr P1O SaO 4.4658E-01 -9.1874E-01 

 P2P SaO 2.2622E-01 9.1874E-01 

Trp A2C SaO SaO 0.00 

 A7N SaO 6.9916E-01 -3.5323E-01 

 A8P SaO 1.5469E+00 3.5323E-01 

 A1Cw SaO 3.1449E+00 0.00 

Tyr A2C SaO SaO 0.00 

 A4O SaO 2.0418E+00 -3.5107E-01 

 A3P SaO 2.0491E+00 3.5107E-01 

Val/Leu/Ile Y4Cv/Y1C SaO 5.0887E-01 0.00 

Backbone GC SaO 5.5058E-01 4.2176E-01 

 GO SaO 5.2511E-01 -6.7336E-01 

 GN SaO 5.5058E-01 2.5161E-01  

Arg C2Cr SaO SaO SaO 

 C3Cr SaO SaO SaO 
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 C5N SaO SaO SaO 

Lys C1Ck SaO SaO SaO 

 C7Nk SaO SaO SaO 

Asp/Glu C4Ce/d SaO SaO SaO 

 C6O SaO SaO SaO 

WT4-FB 

 WN1 4.2474E-01 7.6717E-01 -2.6730E-01 

 WN2 4.2474E-01 7.6717E-01 -5.6223E-01 

 WP1 4.2474E-01 7.6717E-01 2.6730E-01 

 WP2 4.2474E-01 7.6717E-01 5.6223E-01 

a Bead types taken from the original SIRAH publication4.  

b SaO, same as original, taken from the SIRAH protein force field publication4. 
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Table S3 Hydration free energies of neutral side-chains and backbone using the OPLS-AA, 
AMBER-14SB, SIRAH 1.0, SIRAH 2.0 and SIRAH-OBAFE force fieldsa,b 

 Expt. OPLS-AAc SIRAH 1.0c SIRAH 2.0 c SIRAH-OBAFEc  

Backbone (NMA) 10.1 
7.40 ± 0.04 

(AMBER-14SB) -1.73 ± 0.07 -0.16 ± 0.05 10.91 ± 0.05 

Val (propane) -1.99 -2.45 ± 0.06 -0.02 ± 0.01 -0.18 ± 0.01 -2.26 ± 0.03 

Leu (isobutane) -2.28 -2.69 ± 0.10 -0.02 ± 0.01 -0.18 ± 0.01 -2.26 ± 0.03 

Ile (butane) -2.15 -2.59 ± 0.08 -0.02 ± 0.01 -0.18 ± 0.01 -2.26 ± 0.03 

Ser (methanol) 5.06 4.44 ± 0.01 -1.87 ± 0.04 0.10 ± 0.09 5.26 ± 0.10 

Thr (ethanol) 4.88 4.12 ± 0.11 -1.87 ± 0.04 -0.40 ± 0.01 5.26 ± 0.10 

Cys (methanethiol) 1.24 0.39 ± 0.02 -1.78 ± 0.03 -0.71 ± 0.01 0.92 ± 0.07 

Met (methyl-
ethylsulfide) 1.48 0.06 ± 0.01 -0.03 ± 0.02 -0.01 ± 0.03 1.36 ± 0.02 

Asn (acetamide) 9.68 8.46 ± 0.02 2.87 ± 0.07 2.85 ± 0.04 8.12 ± 0.05 

Gln (propionamide) 9.38 8.36 ± 0.04 2.87 ± 0.07 2.86 ± 0.04 8.12 ± 0.05 

Phe (toluene) 0.76 0.40 ± 0.04 0.50 ± 0.05 0.57 ± 0.05 1.12 ± 0.06 

Tyr (p-cresol) 6.11 4.61 ± 0.13 0.70 ± 0.06 0.67 ± 0.02 5.10 ± 0.04 

His (methyimidazole) 10.27 7.70 ± 0.06 1.47 ± 0.04 1.24 ± 0.02 8.46 ± 0.08 

Trp (methylindole) 5.88 5.55 ± 0.22 -0.47 ± 0.09 1.52 ± 0.02 4.51 ± 0.04 

MUEb  1.04 5.03 4.45 0.68 

MSEb  -1.04 -4.13 -3.61 -0.43 

R2  0.98 0.10 0.40 0.97 

a Values are in the units of kcal·mol-1. Experimental values were obtained from reference 27. 
OPLS-AA and AMBER-14SB values were re-calculated using the corresponding side-chain 
analogues listed in parenthesis, based on reference 26. 

b Mean signed error (MSE), mean unsigned error (MUE) and determination coefficient (R2). 

c Error bars modelled as standard errors across three repeat simulations. 
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