Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Identifying causes of social evolution: The Price approach, contextual analysis, and multilevel selection

View ORCID ProfileChristoph Thies, Richard A. Watson
doi: https://doi.org/10.1101/2020.08.14.233122
Christoph Thies
ECS, University of Southampton, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christoph Thies
  • For correspondence: christoph.thies@posteo.de
Richard A. Watson
ECS, University of Southampton, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Kin selection theory and multilevel selection theory are different approaches to explaining the evolution of social traits. The latter claims that it is useful to regard selection as a process that can occur on multiple levels of organisation such as the level of individuals and the level of groups. This is reflected in a decomposition of fitness into an individual component and a group component. However, the two major statistical tools to determine the coefficients of such a decomposition, the multilevel Price equation and contextual analysis, are inconsistent and may disagree on whether group selection is present. Here we show that the reason for the discrepancies is that underlying the multilevel Price equation and contextual analysis are two nonequivalent causal models for the generation of individual fitness effects (thus leaving different ‘remainders’ explained by group effects). While the multilevel Price equation assumes that the individual effect of a trait determines an individual’s relative success within a group, contextual analysis posits that the individual effect is context-independent. Since these different assumptions reflect claims about the causal structure of the system, the correct approach cannot be determined on general theoretical or statistical grounds but must be identified by experimental intervention. We outline interventions that reveal the underlying causal structure and thus facilitate choosing the appropriate approach. We note that the reductionist viewpoint of kin selection theory with its focus on the individual is immune to such inconsistency because it does not address causal structure with respect to levels of organisation. In contrast, our analysis of the two approaches to measuring group selection demonstrates that multilevel selection theory adds meaningful (falsifiable) causal structure to explain the sources of individual fitness and thereby constitutes a proper refinement of kin selection theory.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted August 14, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Identifying causes of social evolution: The Price approach, contextual analysis, and multilevel selection
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Identifying causes of social evolution: The Price approach, contextual analysis, and multilevel selection
Christoph Thies, Richard A. Watson
bioRxiv 2020.08.14.233122; doi: https://doi.org/10.1101/2020.08.14.233122
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Identifying causes of social evolution: The Price approach, contextual analysis, and multilevel selection
Christoph Thies, Richard A. Watson
bioRxiv 2020.08.14.233122; doi: https://doi.org/10.1101/2020.08.14.233122

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4682)
  • Biochemistry (10357)
  • Bioengineering (7670)
  • Bioinformatics (26330)
  • Biophysics (13523)
  • Cancer Biology (10683)
  • Cell Biology (15438)
  • Clinical Trials (138)
  • Developmental Biology (8497)
  • Ecology (12820)
  • Epidemiology (2067)
  • Evolutionary Biology (16851)
  • Genetics (11399)
  • Genomics (15478)
  • Immunology (10616)
  • Microbiology (25207)
  • Molecular Biology (10220)
  • Neuroscience (54463)
  • Paleontology (401)
  • Pathology (1668)
  • Pharmacology and Toxicology (2897)
  • Physiology (4342)
  • Plant Biology (9243)
  • Scientific Communication and Education (1586)
  • Synthetic Biology (2557)
  • Systems Biology (6780)
  • Zoology (1466)