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ABSTRACT (words: 199): 
 
Birdshot Uveitis (BU) is a blinding inflammatory eye condition that only affects HLA-A29-
positive individuals. Genetic association studies linked ERAP2 with BU, an aminopeptidase 
which trims peptides before their presentation by HLA class I at the cell surface, which 
suggests that ERAP2-dependent peptide presentation by HLA-A29 drives the pathogenesis 
of BU. However, it remains poorly understood whether the effects of ERAP2 on the HLA-A29 
peptidome are distinct from its effect on other HLA allotypes. To address this, we focused on 
the effects of ERAP2 on the immunopeptidome in patient-derived antigen presenting cells. 
Using complementary HLA-A29-based and pan-class I immunopurifications, isotope-labelled 
naturally processed and presented HLA-bound peptides were sequenced by mass 
spectrometry. We show that the effects of ERAP2 on the N-terminus of ligands of HLA-A29 
are shared across endogenous HLA allotypes, but discover and replicate that one peptide 
motif generated in the presence of ERAP2 is specifically bound by HLA-A29. This motif can 
be found in the amino acid sequence of putative autoantigens. We further show evidence for 
internal sequence specificity for ERAP2 imprinted in the immunopeptidome. These results 
reveal that ERAP2 can generate an HLA-A29-specific antigen repertoire, which supports that 
antigen presentation is a key disease pathway in BU. 
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Introduction 
 
Birdshot uveitis (BU) is a rare form of uveitis characterized by distinctive inflammatory foci 
across the retina, hypopigmented choroidal lesions, and cystoid macular edema, which 
causes visual impairment when undertreated1,2. Infiltration of T cells and elevated levels of T 
cell cytokines in eye tissues of patients suggest that T cell-mediated inflammation is among 
the driving disease mechanisms3-6. This is further supported by the fact that all patients with 
BU carry at least one copy of the Human leukocyte antigen (HLA)-A*29 allele, now widely 
considered as a prerequisite for diagnosis7,8. How HLA-A29 causes BU has remained 
unsolved, however, genetic association studies identified that in addition to the extreme 
association with the HLA-A*29:02 allele, polymorphisms in endoplasmic reticulum 
aminopeptidase (ERAP)-1 and ERAP2 confer strong disease risk9,10. Within the endoplasmic 
reticulum, ERAP aminopeptidases destroy or trim peptides to a length that is considered to 
influence their binding to HLA class I and presentation at the cell surface11. Importantly, of 
the two major haplotypes of ERAP2, the haplotype associated with canonical full-length 
ERAP2 (termed Haplotype A) is associated with BU9. The other common haplotype 
(haplotype B) encodes a transcript that undergoes alternative splicing and nonsense-
mediated RNA decay, resulting in undetectable ERAP2 protein12. Because the risk 
haplotypes of ERAP genes for BU have been shown to result in lower cellular expression 
and activity of ERAP1 in combination with high cellular expression of functional ERAP210, it 
is likely that ERAP2 generates a so far unknown, but highly HLA-A29-restricted antigen 
repertoire that dictates T cell- or NK cell responses. This renders antigen processing and 
presentation a key disease pathway in BU9.  
 
ERAPs trim the N-terminal residues of peptide substrates by loading the entire substrate 
inside the enzyme's cavity where the sum of interactions of amino acid side chains are 
considered to determine the rate and outcome of peptide proteolysis13,14. Both ERAP1 and 
ERAP2 have been shown to have preferences for the internal sequence of the peptide, 
although these preferences are broad and no specific motif has been identified 13-16. These 
and other observations17 support that ERAPs predominantly modulate the ‘free’ peptide 
cargo before binding to HLA, which suggests that physiologically-relevant sequence 
specificities for ERAP2 may be deciphered from the presented peptide repertoire.  
 
Mass-spectrometry based peptidomic studies of model high-passage cell lines have 
revealed that ERAPs can influence the peptide repertoire presented by HLA-A2918,19. 
However, to date, no studies have been conducted that studied the interaction of the major 
genetic risk haplotypes for ERAP1, ERAP2, and HLA-A*29:02 simultaneously in patient-
derived tissues and compared the effects of ERAP2 on HLA-A29 to the other competing 
alleles expressed by the same cell. Knowing the potential effects of ERAP2 across HLA 
class I alleles is important to be able to separate potential disease effects from canonical 
antigen processing in studies of the immunopeptidome and may help predict the outcome of 
pharmacological interference of ERAP2 activity using small molecule inhibitors20. 
 
We generated patient-derived lymphoblastoid cells that naturally express high levels of HLA 
and ERAPs, in which we stably expressed an autoantigen for BU (i.e. the retinal S-antigen, 
which is only expressed in the retina). An advantage of using lymphoblastoid cells is that 
they express high levels of the immunoproteasome (e.g., LMP7 subunit)21, which is also 
highly expressed in photoreceptors of the retina where the immunoproteasome is essential 
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for the maintenance of normal retinal function and vision transduction22. The use of newly 
established low-passage patient-derived antigen presenting cell lines better preserves the 
genetic architecture critically involved with BU in the context of physiologically relevant 
antigen processing. 
 
In this study, we compared the immunopeptidomes of ERAP2-wild-type and ERAP2-
deficient cells using mass spectrometry profiling of elutions from immunopurification with a 
HLA-A29-binding antibody and subsequent pan-class I antibody. Using several unbiased 
computational analyses, we accurately dissect the immunopeptidomes of HLA-A29 and 
other allotypes, which revealed commonly shared effects on position (P)1 and P7 of peptides 
across alleles, and hitherto unknown, specific effects on P2 in the HLA-A29 
immunopeptidome with potential implications for the disease mechanisms of BU.  
 
Materials & Methods 
 
Generation of patient-derived EBV-immortalized B cell lines 
EBV-immortalized lymphoblastoid cell lines (EBV-LCL) were generated from peripheral 
blood mononuclear cells (PBMC) from Birdshot patients, from which we selected a cell-line 
from a female patient (80 years old during sampling) homozygous for the risk haplotypes for 
ERAP1 (Hap10/Hap10) and ERAP2 (HapA/HapA)10. B95-8 marmoset-derived EBV 
supernatant was a kind gift from Dr. Willemijn Janssen, Center for Translational 
Immunology, UMC Utrecht. Cryopreserved PBMC were thawed and the cell number was 
determined. In a 24-well plate, 5-106 cells were plated and cultured in freshly thawed EBV 
supernatant overnight at 37°C, 5% CO2. The next day, transformation-medium (RPMI 1640 
+ 10% FBS + 1µg/ml cyclosporine) was added into the wells. The EBV-infected cells were 
observed under the microscope to look for transformed LCLs in clusters. Patient-derived cell 
lines were cultured in Roswell Park Memorial Institute 1640 medium (RPMI 1640, Thermo 
Fisher Scientific) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Biowest 
Riverside) and 1% penicillin/streptomycin (Thermo Fisher Scientific). To obtain stable cell 
lines overexpressing S-antigen, EBV-LCLs were transduced with the concentrated lentiviral 
supernatants (see Supplemental Info). 
 
ERAP2 KO using CRISPR-Cas9 
For the generation of ERAP2 KO EBV-LCLs the Alt-R CRISPR-Cas9 system (Integrated 
DNA Technologies) was used and cells were electroporated with the Neon Transfection 
System (Thermo Fisher Scientific). First, the RNP complex was assembled by combining the 
crRNA CTAATGGGGAACGATTTCCT with the Alt-R tracrRNA (at a ratio of 1:1) and 
incubated at 95°C for 5 min, cooled down at room temperature and mixed with the Alt-R S.p 
Cas9 Nuclease and Buffer R (Neon system). After incubating the RNP complex for 10 
minutes at room temperature, 8×105 EBV-LCLs were mixed with the crRNA:tracrRNA-Cas9 
complex and electroporated with two pulses of 1100 V and 30 ms each using the 10 µl Neon 
pipette tip. Electroporated cells were immediately taken up in antibiotic-free medium and 
cultured for minimal 7 days. This procedure was repeated for 3 times before ERAP2 protein 
expression levels were analyzed by western blot. A total of 5 rounds was required to reduce 
to levels of ERAP2 expression to near undetectable levels (Figure 1B). 
 
Cell Culture and HLA-Peptide Immunopurification 
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For stable isotope labeling by amino acids in cell culture (SILAC), EBV-LCLs were cultured 
in customized RPMI with the same formula but lacking the two amino acids tyrosine and 
phenylalanine (Thermo Fisher Scientific) and with dialysed FBS (Thermo Fisher Scientific) in 
order to avoid unlabeled (i.e., ‘light’) amino acid carry-over. The medium was supplemented 
with L-Tyrosine-13C9,

15N (Sigma Aldrich) and L-Phenylalanine-13C9,
15N (Cortecnet). Wildtype 

EBV-LCLs were cultured with the customized medium (‘heavy’ labeled) and ERAP2-KO 
EBV-LCLs were cultured in RPMI with 10% non-dialyzed FBS (‘light’, without the labeled 
amino acids). Two independent experimental cultures were performed; Biological replicates 
were defined as two separate experiments starting from the CRISPR-Cas9-mediated 
ERAP2-KO (i.e., independent SILAC-cultures, immunopurification, elution and mass 
spectrometry profiling). In each experiment, cells from each condition were cultured to obtain 
1x109 cells in total per cell line. Cell pellets were stored at -20°C before mass spectrometry 
was performed. HLA class I molecules were isolated using standard immunoaffinity 
purification (IP) as described before23 from a fixed sample volume of 2.0�ml cell pellet per 
condition and biological replicate. IP was done using the human monoclonal antibody (mAb) 
DK1G8 (IgG1)24 derived from a HLA-A29-negative multiparous woman sensitized to HLA-
A29 due to pregnancy, which specifically binds to 63-L-63-Q epitope in HLA-A*29:01 and 
A*29:02 and the very rare allele A*43:01, in a single antigen bead test. 
(https://www.epregistry.com.br/index/databases/database/ABC/), and a pan-HLA class I-
specific mAb W6/32. Cell pellets from light and heavy labeled cell lines (ERAP2-WT and 
ERAP2-KO conditions) were combined and stored at −80 °C until mass spectrometry 
analysis.  
 
HLA-A29-binding and W6/32 antibodies.  
The hybridoma cell line producing HLA-A29-binding mAb DK1G8 was cultured in protein-
free hybridoma medium supplemented with penicillin/streptomycin and L-glutamine in roller 
bottles. Cell culture supernatant was treated with Protein-A Sepharose beads to capture the 
mAb and eluted with glycine pH 2.5. Eluted mAb was covalently bound to Protein-A with 
dimethylpimelimidate for use in an immunoaffinity column (HLA-A29-Protein-A, W6/32-
Protein-A Sepharose at 2.5 mg/ml). The columns were stored in PBS pH 8.0 and 0.02% 
NaN3 at 4 °C. HLA-bound peptides were extracted as described previously23.  
 
Isolation of HLA Class I–presented Peptides 
The extraction of peptides associated with HLA class I molecules was performed as 
described elsewhere23. Briefly, pellets from a total of 2 × 109 LCLs were lysed for 2 hours at 
4 °C in 50 mm Tris-HCl, 150 mm NaCl, 5 mm EDTA, and 0.5% Zwittergent 3-12 (N-dodecyl-
N,N-dimethyl-3-ammonio-1-propanesulfonate) (pH 8.0) and the presence of Complete® 
protease inhibitor (Roche). The preparation was centrifuged for 10 min at 2500 rpm and 4 °C 
and supernatant was transferred to a new tube and centrifuged for 40 min at 30,000 x g and 
4 °C. The supernatant was pre-cleared with a 2-ml CL4B column and subjected to the 
immunoaffinity column (2ml with 5 mg ml). After washing, bound HLA class I–peptide 
complexes were eluted from the column and dissociated with 10% acetic acid. Peptides 
were separated from the HLA class I molecules via passage through a 10 kDa membrane 
(Microcon YM-10). The filtrate was freeze dried, dissolved in 50mM NH4HCO3 pH 8.4 and 
the peptides were further purified via ‘high pH reverse phase’ fractionation on a C18 column 
(Oasis HLB, Waters, Milford, MA). The peptides were eluted from the C18 Oasis column with 
successively 400 μl 10/90/0.1, 20/80/0.1 and 50/50/0.1 water/acetonitrile (ACN)/formic acid 
(FA), v/v/v. 
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MS analysis 
Peptides were lyophilized, dissolved in 95/3/0.1 v/v/v water/acetonitrile/formic acid and 
subsequently analysed by on‐line C18 nanoHPLC MS/MS with a system consisting of an 
Easy nLC 1200 gradient HPLC system (Thermo, Bremen, Germany), and a LUMOS mass 
spectrometer (Thermo). Fractions were injected onto a homemade precolumn (100 μm × 15 
mm; Reprosil-Pur C18-AQ 3 μm, Dr. Maisch, Ammerbuch, Germany) and eluted via a 
homemade analytical nano-HPLC column (30 cm × 50 μm; Reprosil-Pur C18-AQ 3 um). The 
gradient was run from 2% to 36% solvent B (20/80/0.1 water/acetonitrile/formic acid (FA) v/v) 
in 120 min. The nano-HPLC column was drawn to a tip of ∼5 μm and acted as the 
electrospray needle of the MS source. The LUMOS mass spectrometer was operated in 
data-dependent MS/MS mode for a cycle time of 3 seconds, with a HCD collision energy at 
32 V and recording of the MS2 spectrum in the orbitrap. In the master scan (MS1) the 
resolution was 60,000, the scan range 300-1400, at the standard AGC target @maximum fill 
time of 50 ms. Dynamic exclusion was after n=1 with an exclusion duration of 20s. Charge 
states 1-3 were included. For MS2 precursors were isolated with the quadrupole with an 
isolation width of 1.2 Da. Precursors of charge 1 were selected in the range of 800-1400, 
precursors of charge 2 were selected in the range 400-800, and precursors of charge 3 were 
selected in the range 300-600. The first mass was set to 110 Da. The MS2 scan resolution 
was 30,000 at the standard AGC target of 50,000 @dynamic injection time. 
In a post-analysis process, raw data were first converted to peak lists using Proteome 
Discoverer version 2.1 (Thermo Electron), and then submitted to the Uniprot Homo sapiens 
canonical database (67911 entries), using Mascot v. 2.2.07 (www.matrixscience.com) for 
protein identification. Mascot searches were with 10 ppm and 0.02 Da deviation for 
precursor and fragment mass, respectively, and no enzyme was specified. Methionine 
oxidation was set as a variable modification.  
 
Differential expression analysis  
Peptide confidence False Discovery Rates (FDRs) were calculated with the Mascot 
Percolator25 plug�in in Proteome Discoverer version 2.1 (Thermo Electron) and we used a 
strict target FDR of 1% (q<0.01) to obtain peptides detected with high confidence. To 
retrieve labeled peptides for downstream analysis, the high confidence peptides were further 
filtered to remove peptides with flags "InconsistentlyLabeled", "NoQuanValues", 
"Redundant", "IndistinguishableChannels". To detect significant changes in ligand 
abundance, we used the empirical Bayes workflow for mass spectrometry data based on the 
limma26 and qvalue27 R packages following Kammers and associates28 (see Supplemental 
Info). The qvalue R package was used to provide an unbiased estimate of the false 
discovery rate (FDR). Changes in peptide abundance between light and heavy conditions 
below a moderated q<0.01 (i.e., 1% empirical FDR) was considered affected by ERAP2. 
After differential expression analysis, peptides were assigned to HLA alleles using the 
HLAthena algorithm29, a state-of-the-art neural-network prediction algorithm trained on 
mass-spectrometry derived peptides from 95 mono-HLA expressing cell lines, which 
provides the binding score metric ‘MSi’ for each peptide and corresponding allele (range 
[0,1], MSi >0.6 was considered good, MSi>0.8 was considered strong). We used the 
GibbsCluster 2.0 server30 to deconvolute the detected 9-mers into a deconvolution solution 
of maximum three clusters (seeds=5, �=0.7, �=5, t=3). We picked a three-cluster solution 
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that best matched the canonical binding motifs of the HLA-A alleles HLA-A*29:02 (P�-Tyr/Y 
or Phe/F) and HLA-A*03:01 (P�-Lys/K or Arg/R).  
 
Non-metric mutidimensional scaling of peptides 
Non-metric multidimensional scaling of 9-mers using entropy-weighted (MolecularEntropy() 
function from HDMD R package31 peptide distances in two-dimensional space was 
conducted following the method of Sarkizova and associates29,32. This method uses a 
Hamming distance calculated with an amino acid substitution matrix (adapted from Kim et al. 
33) that is inversely weighted according to positional entropy to obtain the pairwise “distance” 
between 9-mers. To map the peptide distances in two dimensions, for each analysed HLA 
allele, non-metric multidimensional scaling (NMDS) was used with 10 separate ordinations of 
500 iterations using the nmds() function from the ecodist R package34. The configuration with 
the least stress was used for visualization of the peptidome. We next used density-based 
spatial clustering of applications with noise (DBSCAN)35 within the fpc R package36 to cluster 
peptides using the elbow method (KNNdisplot function() in dbscan R package35 to estimate 
the number of clusters that fit the data. Sequence logo plots were generated using the 
ggseqlogo R package37. The positional amino acid usage differences were calculated by 
determining the count for each amino acid at indicated positions (e.g., P1, P2) in the 
peptides using the MolecularEntropy() function from the HDMD R package and a fisher 
exact test was used (fisher.test () function in r base) to assess the differences at indicated 
positions. A chi-squared test (chisq.test() in r base) was used to assess for differences in the 
number of ERAP2 affected peptides per cluster. All P values were adjusted (termed Padj) 
using the bonferroni method as indicated. A grand average of hydropathicity (GRAVY) 
hydrophobicity index on the Kyte-Doolittle scale for each peptide was calculated with the 
hydrophobicity() function in Peptides R package38. Differences in binding scores and 
hydrophobicity index were assessed using the dunnTest() function in the FSA R package39.  
 
Western Blot analysis 
Protein levels of S-antigen, ERAP1 and ERAP2 were analysed using western blotting. Total 
cell lysates were prepared using the NP40 lysis buffer (1% NP40, 135 mM NaCl, 5 mM 
EDTA, 20 mM Tris-HCl, pH�=�7.4) complemented with complete protease inhibitor cocktail 
(Roche). Protein lysates (10 μl/lane) were separated on a 4-20% Mini-PROTEAN TGX gel 
(Bio-Rad Laboratories) and transferred to a polyvinylidene difluoride membrane (Immobilon-
P PVDF, Millipore). Membranes were blocked in 5% nonfat dry milk in TBST and probed 
overnight at 4°C with antibodies recognizing ERAP1 (AF2334, R&D Systems), ERAP2 
(AF3830, R&D Systems), S-antigen (α-mGFP, TA180076, Origene, to detect the fusion 
protein S-antigen-GFP) or α-tubulin (T6199, Sigma). After washing, membranes were 
incubated with anti-mouse secondary antibody conjugated to horseradish peroxidase (HRP) 
(DAKO) or anti-goat secondary antibody conjugated to HRP (DAKO). Protein bands were 
detected with Amersham Prima Western Blotting (RPN22361, GE Healthcare) on the 
ChemiDoc Gel Imaging System (Bio-Rad Laboratories). The ratio of the intensity was 
calculated using Image Lab 5.1 (Bio-Rad Laboratories) for each experiment. 
 
High-density SNP-array analysis 
SNP-array copy number profiling and analysis of regions of homozygosity were performed 
on DNA isolated from WT and CRISPR-Cas9 edited LCLs (ERAP2-KO) according to 
standard procedures using the Infinium Human CytoSNP-850K v1.2 BeadChip (Illumina, 
San Diego, CA, USA). Samples were scanned using the iScan system (Illumina). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.08.14.250654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.250654
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

Subsequently, visualizations of SNP-array results and data analysis were carried out using 
NxClinical software v5.1 (BioDiscovery, Los Angeles, CA, USA). Human genome build Feb. 
2009 GRCh37/hg19 was used. 
 
Data availability. 
Analysis code, genotype data, and supporting data files can be found at 
https://github.com/jonaskuiper/ERAP2_HLA-A29_peptidome. Mass spectrometric raw data 
has been deposited in the MassIVE depository (MassIVE dataset XXXXX) under the creative 
commons zero license (CC0 1.0).  
 
Results 
 
Generation of a model for ERAP2-mediated antigen processing and presentation  
We generated lymphoblastoid cells (LCLs) from a HLA-A*29:02-positive Birdshot patient 
homozygous for risk haplotypes of ERAP1 (Hap10/Hap10) and ERAP2 (HapA/HapA)(Figure 
1A)9,10 and the retinal S-antigen was stably expressed by lentiviral transduction (see 
Supplemental Notes). Genotyping of the patient revealed HLA-A*29:02, HLA-A*03:01, 
HLA-B*40:01, HLA-B*44:03, HLA-C*16:01, and HLA-C*03:04 alleles. Because the risk 
allotype of ERAP1 shows relatively low aminopeptidase activity10, we focused our analysis 
on the effects of ERAP2 on the immunopeptidome. We used CRISPR-Cas9 
ribonucleoprotein delivery with a guideRNA targeting exon 2 in ERAP2 (Figure 1A) to 
disrupt protein expression of ERAP2 and generate an ERAP2-KO LCL, while preserving the 
protein expression of ERAP1 (Figure 1B). SNP-array copy number profiling and analysis of 
regions of homozygosity were performed using the Infinium Human CytoSNP-850K capable 
of detecting genomic gains and losses with an approximate resolution of ~10 kb by profiling 
850,000 single nucleotide polymorphism (SNP) markers spanning the entire genome. SNP-
array analysis resulted in a normal female array profile (arr(1-22,X)x2) for both cell 
conditions (Figure S1), and detected no changes between the WT and ERAP2-KO clones, 
including the ERAP region 5q15 (Figure S2). This confirms that our editing strategy did not 
introduce wide spread genomic changes and thus that the conditions are highly suitable for 
comparison. Genotype date for 92 SNPs at 5q15 for these cell lines is shown in Table S1.  
 
Next, we used stable isotope labeling by amino acids in cell culture (SILAC) to incorporate 
“heavy” L-Tyrosine-13C9,

15N (Tyr/Y) and L-Phenylalanine-13C9,
15N (Phe/F) in the ‘wild type’ 

(WT) LCLs and compare these to unlabeled (“light”) culture conditions for the ERAP2-KO 
LCL cells (Figure 1C, 1D). The amino acids Y/F are observed in 95% of previously identified 
HLA-A29 ligands (Figure 2A), but are also found in the majority of peptides presented by the 
other HLA allotypes - with exception of HLA-B40:01.  
 
Capture of a high-quality HLA-A29 peptidome  
Using the HLA-A29-binding antibody, a total of 2315 unique peptides were identified with 
high confidence (Mascot Percolator q<0.01) between biological replicates (Jaccard similarity 
= 0.64)(Figure 1D) that were used for further analysis. These were predominantly 9-11 mers 
(88%), which fits the length distribution40 of HLA-A29 ligands (Figure 2B). The HLA-A29-
binding antibody may weakly cross-react with other HLA-A allotypes (see Methods). This is 
of relevance given that HLA-A*29 alleles are low expressed HLA-A alleles41 compared to 
high expressed HLA-A*03 alleles. We used GibbsCluster 2.0 for unbiased clustering of the 
peptides, which found a deconvoluted solution that consisted of three clusters; two motifs 
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fitting the canonical HLA-A29:02 binding motif (C-terminal position Y or P�-Y) and one 
cluster highly similar to the dominant HLA-A03:01 motif (P� Lysine (K) or Arginine 
(R)(Figure 2C) and shows that the HLA-A29 antibody cross-reacts with HLA-A03:01. 
Indeed, when we used the HLAthena algorithm29, ligands in cluster 1 and 2 were 
predominantly assigned to HLA-A29:02 (84% and 86%, respectively), and 93% of ligands in 
cluster 3 were assigned to HLA-A03:01 (Figure 2D). However, because 66% and 20% of 
peptides in clusters 1 and 2 assigned to other endogenous HLA alleles also showed high 
binding scores for HLA-A29:02 (Figure 2E), we later choose to filter the dataset using 
bindings scores for HLA-A29:02 (Figure 2G).  
 
Because we were interested in determining significant changes in peptide abundance 
associated with ERAP2, we first jointly analyzed the relative abundance (fold change) of light 
(KO) over heavy (WT) labeled peptides from both experiments using limma28. A total of 
1,896 peptides (Figure 2F) were detected in both light and heavy channels and used for 
analysis. Analysis of peptides unique to one of the conditions is shown in the Supplemental 
Info. Note that the log fold changes of pooled normalized peptides abundances from light 
and heavy channels by limma strongly correlate (spearman r = 0.95) with the light/heavy 
ratio abundance of each experiment (Figure 2F), thus the normalization steps preserve the 
data structure, while improving the power to detect significant changes28. From the 1,330 8- 
to 11-mers HLA-A29 epitopes (MSi>0.6 by HLAthena)(Figure 2G), 1,195/1,330 (89%) of the 
peptides in our HLA-A29 dataset have been reported as ligands for HLA-A29 of which 78% 
detected in mono-allelic or homozygous HLA-A29-expressing cell systems 18,29, supporting 
the notion that the approach taken yields an accurate representation of the peptide-
presenting properties of HLA-A29:02.  
 
ERAP2 shapes P1 of HLA-A29 ligands. 
At a false discovery rate of 1%, in ERAP2-WT compared to ERAP2-KO cells, a total of 226 
peptides were detected at decreased abundance in the binding groove of HLA-A29 (termed 
ERAP2-“sensitive” peptides), and 228 peptides were increased in abundance (termed 
ERAP2-“dependent” peptides) (Figure 2H and Table S2). We detected the 9-mer 
VTLTCAFRY from retinal S-antigen, which was ~6-fold higher (Log2[FC] = 2.45) in ERAP2-
KO cells compared to ERAP2-WT cells, indicating ERAP2 destroys this epitope (Figure 2H 
and Table S2). We observed moderate changes in the length distribution (Figure 2I and 
Figure S3) or predicted binding affinities of peptides affected by ERAP2 (Kruskal-Wallis P = 
0.06)(Figure 2J). In contrast, comparison of the peptide motifs revealed evident and 
consistent changes at the N-terminal amino acid positions for ERAP2-sensitive 9-11 mer 
peptides compared to peptides not affected by ERAP2 (Figure 2K, Figure S4), which aligns 
with the current view that ERAP2 trims the N-terminal amino acids of peptide substrates13. In 
detail, P1 of 9-mers revealed a contrasting residue preference for ERAP2-sensitive and 
ERAP2-dependent peptides (Figure 3A); Alanine(A), K, and R amino acids were seen 
significantly more often, while amino acids Y and F were seen significantly less often in 
sensitive peptides compared to non-affected peptides (Fisher’s Exact test, Padj <0.05, Table 
S3). In contrast, the most common P1 residues for dependent and non-affected peptides 
were Y and F (Y/F at P1; 45% and 30%, respectively) with F statistically more abundant at 
P1 and P2 in dependent peptides (Figure 3A, Table S3-4). Intriguingly, we detected no 
significant effects of ERAP2 at the N-terminal residue of the precursor peptide (position P-
1)(Figure S5). Together these data show that ERAP2 has a selective effect on P1 of the 
HLA-A29 immunopeptidome in part by driving the depletion of peptides with preferred P1 
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substrates (e.g., A,K,R)42 of ERAP2. This finding is consistent with previous reports that 
ERAP2 has primarily a destructive role by over-trimming susceptible peptide sequences and 
thus removing them from the immunopeptidome42.  
 
ERAP2 increases the abundance of peptides with a cryptic aromatic P2 motif  
ERAP2 trims peptides by sequestering them into the relatively large internal enzyme 
cavity13, where peptide side chains across the amino acid sequence can interact with 
pockets inside the cavity of ERAP213,14. To evaluate if sequence-specific selectivity16 by 
ERAP2 could be interpreted from the HLA-A29 peptidome, we conducted non-metric 
multidimensional scaling (NMDS) of all 9-mers29. This analysis projects peptides in two-
dimensional space based on the similarity of the amino acid sequences (Figure 3B). 
Considering peptides with significant changes between ERAP2-WT and -KO conditions 
revealed distinct patterns for co-clustered (“similar”) peptides, with ERAP2-sensitive peptides 
located ‘away’ from ERAP2-dependent peptides (Figure 3C). To quantify these differences, 
we compared the amount of ERAP2-sensitive (Figure 3B in blue, n=155) versus ERAP2-
dependent peptides (in red, n=164) across five clusters of peptides or ‘submotifs’32. This 
analysis revealed that ERAP2-sensitive peptides were overrepresented in cluster 3 (Χ2, 
Bonferroni n=clusters, Padj = 0.046) and ERAP2-dependent peptides overrepresented in 
cluster 2 (Padj = 5.1 × 10-6)(Figure 3D). Cluster 2 (n=172 in total) was defined by nonpolar 
aromatic residues F (Padj = 1.0 × 10-49), or Y (Padj = 2.1 × 10-22) at P2 (F/Y in 97% of 
peptides in cluster 2 compared to 13% of peptides in all other clusters). ERAP2-dependent 
peptides (n=53) made up a considerable proportion of cluster 2 (unaffected peptides; 
n=106).  
Peptides in cluster 3 (n=356) were distinguished by a L at P7 (99% of peptides in cluster 3 
compared to 3% in other clusters, Padj = 2.0 × 10-230)(Figure 3C and Table S5). Peptides in 
cluster 3 showed an overall higher binding score for HLA-A29:02 and higher hydrophobicity 
index compared to cluster 2 (Figure 3E). Note that submotifs cluster 2 and cluster 3 are 
bona fide submotifs of HLA-A29 that are highly reproducible in other datasets (cluster 1 and 
4 in Figure S6 and cluster 1 and 3 in Figure S7). We further replicated our findings in HLA-
A29 immunopeptidome data from Sanz-Bravo et al.18 of ERAP2-competent and naturally 
ERAP2-deficient HLA-A29-positive cell lines (Figure S6) and, thus, demonstrate that 
ERAP2-positive cell lines commonly display selectively increased peptides with the motif of 
cluster 2. In contrast, ERAP1 did not selectively contribute to cluster 2 peptides (Figure S7). 
Also, the effect of ERAP1 and ERAP2 on HLA-A29 peptides correlated weakly (spearman 
rho=0.12, Figure S8), suggesting non-redundant effects for ERAP1 and 2 on the HLA-A29 
peptidome. Although the analysis for 10-mers (n=235) in our dataset was considered to lack 
sufficient resolution to map the effects of ERAP2 on the submotif level, most of the ERAP2-
dependent 10-mers also mapped to a submotif of HLA-A29 with F at P2 (Figure S9). In 
summary, ERAP2 selectively increases the expression of HLA-A29-binding peptides with a 
submotif with aromatic residues at P2. 
 
ERAP2-dependent peptides of cluster 2 are selective for HLA-A29 
HLA class I peptides display promiscuity43 and it is therefore of interest that HLA-A03:01 can 
present peptides with a Y at P� (similar to HLA-A29) only with L at P7 is present40. As 
expected, peptides from cluster 3 (Figure 3C) were also predicted as potential binders for 
HLA-A03:01, while cluster 2 peptides (Figure 3C) were not (Figure S10). To further test the 
HLA allotype restriction, we compared the binding scores for the differentially expressed 
peptides in cluster 2 and 3 for eight alleles which display binding motifs that overlap with 
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HLA-A29:02 (based on Sarkizova et al.29). As shown in Figure 3F, ERAP2-sensitive 
peptides in cluster 3 show relatively good (MSi>0.8) binding scores for several other alleles 
(e.g., HLA-A30:02). Note that the S-antigen peptide VTLTCAFRY (in cluster 1, Figure 3B, 
3C, 3F) also shows good binding scores for other alleles (e.g., HLA-A30:02 MSi = 0.86). In 
contrast, ERAP2-dependent peptides from cluster 2 are predicted to poorly bind other class I 
alleles (median MSi<0.6)(Figure 3F). We extended this analysis to 95 alleles, which 
supported that the ERAP2-dependent peptides in cluster 2 are highly specific for HLA-A29 
(Figure S11), with the exception of HLA-C*14:03 (>100 times lower allele frequency 
compared to HLA-A*29:02 in European populations) (Table S6). The motif of cluster 2 
peptides is present in the amino acid sequences of proteins encoded by ~300 genes highly 
expressed in the retina (Table S7), of which putative HLA-A29-restricted peptides (MSi>0.9 
for HLA-A29 and MSi<0.6 for 94 other alleles) were found in key factors in melanocyte 
biology (ARMC9, OCA2, SLC45A2, PLXNC1)(Table S8). This is of significance, because 
progressive loss of ocular melanocytes is a hallmark feature of BU2,5,8,50,51. We conclude that 
these data support that ERAP2 may apply selective pressure on the repertoire of HLA-A29. 
 
ERAP2 has similar effects on P1 across the HLA class I immunopeptidome 
Next, we were interested to see how ERAP2 affects the global peptidome of the other class I 
alleles. We use the flow-through of the HLA-A29-binding antibody immunopurifications to 
capture HLA class I molecules (Figure 1D). After filtering, a total of 10,233 unique peptides 
were identified between biological replicates (Jaccard similarity = 0.73) of which 6,678 8-11 
mers were considered for differential expression analysis (Figure 1D)(Table S9). A total of 
2,170 peptides were differentially expressed (Table S9). Notwithstanding allele-specific 
differences, K, R, and A were seen more often at P1 of ERAP2-sensitive peptides, while F 
and Y were typically underrepresented across the other five alleles (Figure 4)(Tables S10-
S14). This was supported by a global assessment of all 9-11-mers (Figure S12). These 
results indicate that ERAP2 has globally similar effects on P1 across HLA allotypes and in 
line with the observation that the P1 across HLA class I ligands is enrichment for residues A, 
K, and R 32. 
 
Internal sequence preferences of ERAP2 can be interpreted from the immunopeptidome  
We further conducted NMDS of the 9-mers for HLA-A03:01, HLA-B40:01, and HLA-B44:03 
(Figure 5A, D, G and Figure S13). The HLA-C peptidomes captured were too sparse to 
provide sufficient resolution. Investigation of HLA-A03:01 was hampered by a relatively high 
level of submotifs, characteristic for this allele 29,32, in comparison to the density of the 
peptide data (Figure 5B), possibly due to loss of peptides by the initial immunopurification 
(Figure 1D). Regardless, ERAP2-sensitive peptides were enriched in cluster 4 (Χ2, Padj = 
9.5 × 10-3)(Figure 5C), but 37/92 (40%) peptides of cluster 4 were also in the HLA-A29 
peptidome (20 in cluster 3 of HLA-A29:02, Figure 3C). Reanalysis of immunopeptidome 
data from mono-allelic cell lines29 support that HLA-A29:02 and HLA-A03:01 can each 
present peptides with the motif of cluster 4 (Figure S14) and demonstrates that ERAP2 
influences multiple alleles in part by peptide promiscuity. Considering the other clusters, no 
evidence for effects of ERAP2 beyond P1 could be observed.  
In contrast to HLA-A03:01, strong residue preferences at P2 and P� of HLA-B40:01 resulted 
in few submotifs (Figure 5D). The distribution of ERAP2-sensitive ‘away’ from dependent 
peptides in two-dimensional space was reminiscent of the ‘pattern’ observed in the 
projection of HLA-A29:02 peptides (Figure 5D). Submotif analysis revealed that cluster 1 
and 4 were enriched for sensitive peptides and were distinguished by a preference for F or Y 
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at P3 (Figure 5E, F)(Table S15). Cluster 3 (enriched for dependent peptides) was 
distinguished by a F/Y at P1 (Figure 5E), similar to the overall motif of ERAP2-dependent 
peptides (Figure 3B, C).  
Finally, HLA-B44:03 submotifs enriched for sensitive peptides (cluster 3 and cluster 2) 
(Figure 5G-I) showed a preference for F at P3, similar to HLA-B40:01(Table S15). These 
observations are consistent with recognition of P3 by a hydrophobic pocket revealed by 
structural analysis of ERAP2 (Figure S15). Note that cluster 4 was enriched for dependent 
peptides (Figure 5I) and enriched for E at P1 (Table S15), a negatively charged amino acid 
that is resistant to trimming by ERAP2. In summary, immunopeptidome data revealed 
internal peptide sequence preferences of ERAP2 that shape the ligand repertoire in a HLA 
class I-specific manner.  
 
Discussion 
 
In this study, we showed that ERAP2 shapes the HLA-A29 peptidome predominantly by 
over-trimming peptides carrying susceptible residues at their N-terminus while sparing others 
carrying a sub-optimal residue at the N-terminal positions. We showed that in the presence 
of ERAP2 preferred amino acids A,K, and R42 are underrepresented, while amino acids F 
and Y are over-represented at P1, but that these effects on P1 are commonly shared with 
other class I alleles. Strikingly, we identified that ERAP2 specifically increases the 
abundance of peptides with a distinct submotif (cluster 2, Figure 3C) defined by nonpolar 
aromatic residues F or Y at P2 that specifically binds to HLA-A29. Replication of these 
findings in non-related HLA-A29-positive cell lines suggests that these effects of ERAP2 on 
HLA-A29 are common. Indeed, in known crystal structures of ERAP2 with peptides, the P2 
side-chain is accommodated in a very shallow pocket that cannot easily accommodate large 
residues such as F and Y due to steric clashes with nearby enzyme residues13 thus making 
peptides carrying large hydrophobic bulky residues at P2, poorer substrates (Figure S15). 
Note that we further showed that the effects of ERAP2 on this cluster of peptides is different 
from ERAP1, which did not show selectivity for this submotif of HLA-A29 (Figure S7). This 
fits with the observation that the pocket in ERAP1 that interacts with P2 provides more space 
for bulky residues14. In fact, using correlation as a metric of the effects of ERAP1 and 
ERAP2, we show that ERAP1 and ERAP2 show non-redundant effects on the HLA-A29 
peptidome (Figure S8), which is in line with genetic studies that revealed that ERAP1 and 
ERAP2 independently contribute to the disease risk for BU10.  
  
Structural studies support that ERAP2 trims the N-terminal residues from peptide substrates 
by first sequestering the entire peptide sequence inside the enzyme's cavity. There, the 
peptide substrate interacts with amino acid side chains of the enzyme, which are considered 
to influence the stability of the interaction and thus the trimming rates of the peptides13,14. 
The exact internal peptide sequence preferences for ERAP2 remain poorly understood. In 
an attempt to map its relevance to antigen presentation, here we considered the entire 
peptide sequence to capture the full effects of ERAP2 on the class I immuno peptidomes, 
and identify functional submotifs which may be missed using traditional single residue or 
motif analysis. We describe highly reproducible motifs of HLA-A29 and identified that 
peptides that are destroyed by ERAP2 (i.e., ‘sensitive’ to trimming) showed a strong 
preference for Leucine at P7 and often are presented by multiple alleles (promiscuity). 
Although we formally cannot exclude the contribution of residual HLA-A29 molecules in the 
analysis of HLA-A03:01, data from single-HLA cell lines supported overlap in presented 
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peptides with P7-L (Figure S14). Based on the crystal structure of ERAP213, the sidechain 
P7 can be accommodated within a shallow hydrophobic pocket, which suggests that 
hydrophobic residues like Leucine would be preferred (Figure S15).  
 
Thus, structural analysis indicates that L at P7 is near-optimal for trimming by ERAP2, while 
bulky residues at P2 (e.g., F) reduce trimming by ERAP2. Therefore, we hypothesize that 
the increase in peptides with bulky residues at P2 in the presence of ERAP2 is a result of the 
decreased availability of competing peptides with P7-L due to overtrimming by ERAP2. 
Importantly, nonpolar aromatic residues F or Y at P3 were associated with peptides that are 
destroyed in the HLA-B40:01 an HLA-B44:03 peptidome, which is consistent with recognition 
of P3 by a hydrophobic pocket lined by two other aromatic residues (Tyr892 and Tyr455) 
that can make favorable pi-stacking interactions with the peptide aromatic side-chain (Figure 
S15). F at P3 was also the most common residue considering all 9-11-mers detected by 
immunoprecipitation of HLA class I (Figure S12). The seemingly contrasting preference of F 
dependent on the position in the peptide substrate, also suggests that predicting substrate 
specificity based on widely used fluorogenic aminopeptidase substrates (e.g., R-AMC) or 
peptide series that vary only the N-terminal residue may obscure the full breadth of substrate 
specificity for this amino peptidase. We do emphasize that the binding motif of HLA-A29 
(and other alleles investigated) can obscure the detection of the full internal sequence 
preferences of ERAP2, but using the presented peptides as a read-out provides the net 
effect of any internal sequence preferences on antigen presentation. 
 
We showed that the ERAP-sensitive peptides presented by HLA-A29:02 are promiscuous 
based on their predicted binding scores for other class I alleles, and their detection in the 
HLA-A29-negative fraction in mass spectrometry analysis. Since these peptides are also 
characterized by P1 composition (e.g, A, K, R) that is shared with the other HLA allotypes 
investigated, it is tempting to speculate that HLA-A29 epitope destruction by ERAP2 is a 
canonical phenomenon common to class I alleles. This is supported by the observation that 
HLA class I ligands in general show a depletion for residues A, K, and R at P1 in ERAP2-
positive cell lines32, which are preferred substrates of ERAP2. High hydrophobicity of T-cell 
receptor contact residues in presented peptides - in particular a hydrophobic P7 - is 
associated with immunogenicity44,45. Perhaps a canonical function of ERAP2 is to destroy 
epitopes to lower the immunogenic index of peptide cargo presented. This is supported by 
observations in cancer immunotherapy, where high ERAP2 expression (the risk haplotype 
for BU) is a strong prognostic predictor of poor survival in patients receiving checkpoint 
inhibitor therapy to induce T-cell mediated antitumor immunity46. Of interest, the size of P1 of 
the presented peptide modulates the configuration of position 167 in HLA-A47, which was 
shown to critically influence T cell recognition47. F or Y at P1 gives a similar configuration for 
position 167, which is different from the conformation mediated by K and R at P1 in one 
study47, which suggests that the effects of ERAP2 on P1 may influence T cell receptor 
recognition.  
 
Given that HLA-A29 is prerequisite for the development of BU, we hypothesize that disease 
mechanisms associated with antigen presentation are most likely driven by a limited set of 
epitopes (Table S8) because of promiscuity of peptides43. ERAP2 destroyed the only S-
antigen peptide detected in the HLA-A29 peptidome, which also shows good binding scores 
for other alleles, suggesting that HLA-A29-mediated presentation of S-antigen fragments is 
less relevant during disease initiation, but perhaps more relevant in later stages of the 
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disease after the blood retina barrier has been breached. This is supported by the common 
immune reactivity towards S-antigen in patients with clinically distinct phenotypes of uveitis.2 
Based on the submotifs of peptides (i.e. cluster 2, Figure 3C), we hypothesize that 
‘uveitogenic’ HLA-A29-restricted peptides may more likely harbor a F or Y at P2. The 
importance of P2 is supported by the fact that fine mapping studies of the MHC linked BU 
risk to amino acid positions 62-Leu and 63-Gln of HLA-A 48, which are unique to HLA-A29 
and directly interact with P2 of the anchoring peptide. Although the HLA-C*14:03 allele also 
showed good binding scores for the ERAP2-dependent peptides with F or Y at P2, HLA-C 
alleles are notoriously low expressed49 and the allele frequency of HLA-C*14:03 is >100 
times lower compared to HLA-A*29:02. Also, the peptidomes of HLA-A29 and HLA-C14:03 
are starkly different (Jaccard similarity index ±1% using peptidome data from Sarkizova and 
associates29) and T cells recognizing the same peptide in a different HLA molecule may not 
show immune reactivity. Regardless, we show that the amino acid sequence of retina-
expressed genes contain peptides with the motif of cluster 2, which supports that ERAP2-
mediated HLA-A29-restricted presentation of ocular epitopes could be a key disease 
mechanism for BU. Of course, functional experiments of antigen presentation in the eye and 
tetramer-analysis of T cell immunity to these putative epitopes is warranted. It is, however, of 
interest that among the predicted epitopes we found peptides derived from key factors in 
melanocyte biology. A hallmark feature of BU is the progressive loss of stromal melanocytes 
in the choroid corresponding to the characteristic cream-colored birdshot fundus 
lesions2,8,50,51, and BU has been associated with melanoma5,6,52. 
 
Previous HLA peptidomic studies of ERAPs are based on single-HLA or long-established 
cell lines which after years of continuous cultivation are notorious for their profound 
chromosomal aberrations reported to also affect ERAP and HLA genes42,53-55. In addition, 
these studies have been conducted with label-free approaches using independent 
experimental runs, which makes accurate quantification of effects of ERAPs on the 
immunopeptidome more challenging. To study ERAPs in a physiologically more relevant 
environment, we exploited MS analysis using newly-established patient-derived cell lines 
and SILAC labeling to address several potential sources of ambiguity that are non-trivial to 
resolve with in silico methods, including often unaccounted genetic variability (i.e., 
polymorphisms) in comparing different cell lines or quantitative error caused by the individual 
analysis of to be compared conditions. Regardless, the results in this study can also be 
influenced by several factors. Although abundant peptides are more likely to be sufficiently 
detected in individual elutions (~90% of peptides were reported before), less abundant 
peptides might be missed. This means that additional undiscovered effects of ERAP2 on the 
peptidomes investigated could be present. For example, we limited our labeling and analysis 
to peptides that contain F and/or Y for SILAC labeling, which obscured our capability to 
cover the majority of the HLA-B40:01 peptidome or potential uncharted domains of the 
peptidomes of the other alleles.  
 
In conclusion, we show that ERAP2 significantly influences the immunopeptidome across 
the cellular HLA class I allotypes. The effects of ERAP2 are consistent with proposed 
ERAP2 sequence specificity and highlight that observed substrate-enzyme interactions can 
be translated to observed effects on the immunopeptidome. We have narrowed down the 
potential sequences for autoimmunity-inducing antigenic peptides based on the selective 
effect of ERAP2 on the peptide cargo of HLA-A29 in the pathogenesis of Birdshot Uveitis.  
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Figures: 

 

Figure 1. Study design and sample preparation. a) Design of the patient-derived model for antigen 
processing by ERAP2. b) Western blot analysis of the protein expression of ERAP1, ERAP2, and 
Tubulin as a control in the HLA-A*29:02-positive Birdshot uveitis model cell lines in ERAP2-wild type 
cells (WT) and cells after CRISPR-Cas9 mediated knock-out (KO) of ERAP2. The relative amount of 
protein (in microgram) used for each lane is indicated. M; marker. c) Overview of cultured SILAC 
labeled WT LCLs and unlabeled ERAP2 KO LCLs followed by combining the differentially labeled 
conditions for lysis and immunoprecipitation of HLA-A29 and, subsequently other HLA class I 
molecules, respectively. HLA-bound peptides were eluted, followed by LC/MS analysis. All steps in c 
were conducted in two separate experiments to generate biological replicates. d) Schematic overview 
of filtering steps of the identified peptides in this study. All peptides identified in both biological 
replicates with high confidence were filtered for limma analysis (see methods). After differential 
expression analysis, 8-11 mers were used to deconvolute and assign peptides to HLA alleles using 
HLAthena. The venn diagrams indicate the overlap from data sets and subsetting for subsequent 
analysis.  
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Figure 2. ERAP2 shapes the HLA-A29 peptidome. a) The percentage of peptides that contain 
Phenylalanine and/or Tyrosine in peptidomic studies of monoallelic cell lines by Sarkizova and 
associates29. b) The length distribution of the 2315 peptides detected in both biological replicates. c) 
GibbsCluster 2.0 results for unbiased clustering of the 9-mers (n=1471 unique peptides) eluted with 
the HLA-A29-binding monoclonal antibody. The motifs correspond with the HLA-A genotype (HLA-
A*29:02/HLA-A*03:01) of the sample. Cluster 1 and 2 match the binding motif of HLA-A29:02, and 
Cluster 3 matches the binding motif of HLA-A03:01. d) Pie diagrams (percentages) of best assigned 
alleles for the peptides in the clusters identified in c. The alleles which correspond to the best score 
for each peptide (‘Best Allele’ output from HLAthena) was used to obtain the percentages of peptides 
assigned to each of the six HLA-A, -B, and -C alleles. e) The binding scores for HLA-A29:02 for 
peptides from the clusters identified in C assigned to the other alleles. f) Strong correlation between 
the raw peptide abundance data (n=1896) and normalized data by limma used in the differential 
expression analysis. g) The 1768 8-11 mers before (left plot) and after (right plot) filtering out the 1330 
HLA-A29-binding peptides. h) Volcano plot of the differentially expressed 8-11 mers. In red are 
peptides that are increased in expression in the presence of ERAP2, while peptides indicated in blue 
are decreased. The identified peptide VTLTCAFRY from the retinal S-antigen is indicated. i) The 
length distribution and j) binding scores for HLA-A29 of the peptide groups identified in h. k) 
Sequence logos generated using a non-redundant list of 9-mers and 10-mers (11-mers see Figure 
S4). 
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Figure 3. ERAP2 facilitates the increased expression of a cryptic binding motif selective for 
HLA-A29. a) Comparison of amino acid proportion at P1 and P2 of 9-mers (in percentage for each 
group of peptides) between peptides that decrease in abundance (‘sensitive’ peptides, significant 
changes indicated with the blue asterix), peptides that increase in abundance (‘dependent’ peptides, 
significant changes indicated with the red asterix), compared to peptides not affected in ERAP2-WT 
cells (in grey). The P values and summary statistics from the fisher tests are indicated in Table S3-4. 
b) Non-metric multidimensional scaling (NMDS) visualization of 948 9-mer peptides for HLA-A29:02. 
Peptide distance was defined on the basis of sequence similarity. Each circle represents a unique 9-
mer peptide and is color-coded according to the effect of ERAP2; grey: not affected, blue: ERAP2-
sensitive peptide (peptides decrease in abundance in the ERAP2-WT condition compared to the 
ERAP2-KO condition), red: ERAP2-dependent peptide (increased in abundance in the ERAP2-WT 
condition compared to the ERAP2-KO condition). The peptide VTLTCAFRY from the retinal S-antigen 
is indicated. c) NMDS plot of clusters of peptides for HLA-A29:02. Each circle represents a unique 9-
mer peptide and is color-coded according to the clustering by DBSCAN. Sequence logos representing 
these clusters are shown (in Bits). A probability plot for amino acids at position 1 (P1) and position 2 
(P2) in 9-mers for cluster 2 and 3 are also shown. d) Comparison of the number of ERAP2-sensitive 
and -dependent peptides in each peptide cluster from Figure 3C. Padj = bonferroni corrected (5 
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clusters) P values from Χ2 tests. e) binding scores (in MSi metric calculated with HLAthena) for HLA-
A29:02 and hydrophobicity index for each peptide cluster. f) Predicted binding scores (in MSi) for 
ERAP2-dependent peptides in cluster 2, and ERAP2-sensitive peptides in cluster 3 for HLA-A29:02 
and 9 HLA alleles with relatively similar binding motifs (based on correlation in peptide space 
determined by Sarkizova et al.29). *) indicates bonferroni corrected P<0.05 from a Dunn’s Test. 
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Figure 4. ERAP2 shapes P1 across the HLA class I immunopeptidome. Sequence motifs depict 
specific amino acid preferences at P1-P9 and were generated from a non-redundant list of 9-mers for 
each class I allele. Comparison of amino acid proportion at P1 and P2 of 9-mers (in percentage for 
each group of peptides) between peptides that decrease in abundance (‘sensitive’ peptides, 
significant changes indicated with the blue asterix), peptides that increase in abundance (‘dependent’ 
peptides, significant changes indicated with the red asterix), compared to peptides not affected in 
ERAP2-WT cells (in grey). The P values and summary statistics from the fisher tests are indicated in 
Table S10-S14.  
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Figure 5. NMDS plots showing 9-mer peptide clustering for individual HLA alleles. Non-metric 
multidimensional scaling (NMDS) visualization of 9-mer peptides and ERAP2 affected peptides for 
HLA-A*03:01 (a,b,c), HLA-B*40:01 (d,e,f), and HLA-B*44:03 (g,h,i). Peptide distance was defined on 
the basis of sequence similarity. Each circle represents a unique 9-mer peptide and is color-coded 
according to the effect of ERAP2; grey: not affected, blue: ERAP2-sensitive peptides red: ERAP2-
dependent peptides. The NMDS plot of clusters of peptides for each class I allele peptide are color-
coded according to the clustering by DBSCAN. Sequence logos representing these clusters are 
indicated. * indicates significant changes of amino acid composition tested at P1, P2 and and/or P7 
(Fisher’s exact test corrected for 20 amino acid residues. Given the entropy-weighted clustering, 
anchor positions P2 and P9 were not considered for testing. Clusters with significant differences in the 
count of ERAP2-sensitive and -dependent peptides are highlighted with blue and red ellipses and 
correspond with the barplots in c,f, and i. The predicted binding scores for each cluster is shown in 
Figure S13. Padj = bonferroni corrected (n=clusters) P values from Χ2 tests. All other comparisons 
were Padj>0.05. 
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Supplemental Methods and Info: 
 
Lentiviral vector production 
HEK-293T cells were seeded into 10 cm dishes (2×106 cells/dish) and cultured in Dulbecco's 
Modified Eagle Medium (DMEM, Thermo Fisher Scientific). The next day, 293T cells were 
co-transfected with 2 µg transfer vector (Lenti ORF clone of Human S-antigen mGFP 
tagged, RC220057L2 from Origene) and components of 2nd generation packaging vectors: 
8.33 µg psPAX2 packaging vector and 2.77 µg pMD2.G envelope vector at a ratio of 4:1. 
Transfection was done in serum-free DMEM using Lipofectamine 2000 (Thermo Fisher 
Scientific) according to manufacturer's instructions. Medium was replaced with 10 mL DMEM 
supplemented with 10% FBS and incubated at 37°C, 5% CO2 after 24 hours. The 
conditioned medium containing lentiviral particles was collected 48 hours after transfection 
and an additional 10 mL of fresh culture medium was added to the cells. After 12 hours, 
harvested supernatants were combined and cleared by centrifugation at 1500 rpm for 5 
minutes at 4°C then passed through a 0.45 μm filter. 
Concentration of lentiviral supernatants using ultracentrifugation was performed with a 
Beckman Coulter Optima centrifuge using a SW32Ti rotor. Filtered supernatant was added 
to 38.5 mL Ultra-Clear tubes (Beckman Coulter). Centrifugation was performed for 120 
minutes at 32,000�rpm. Supernatant was completely removed and virus pellets were 
resuspended in 1 mL RPMI (containing 10% FBS and 1% penicillin/streptomycin) and stored 
at -80°C. 
 
Lentiviral transduction of S-antigen in EBV-LCL 
To obtain stable cell lines overexpressing S-antigen, EBV-LCLs were transduced with the 
concentrated lentiviral supernatants. To transduce EBV-LCLs, 1x106 cells were seeded in a 
24-wells plate with the lentivirus and a final polybrene concentration of 6 µg/mL. After 24 
hours, the medium was replaced and the cells were cultured for another 3 days, without 
exceeding a cell concentration of 1.5 × 106 cells/mL. Transduction efficiency was monitored 
by fluorescent light microscopy. GFP-positive EBV-LCLs were sorted using the BD 
FACSAria™ III sorter and S-antigen expression levels were detected by western blot.  
 
Differential expression analysis of peptides using limma 
For differential expression analysis we used the workflow from Kammers et al., 2015 available at 
http://www.biostat.jhsph.edu/~kkammers/software/eupa/R_guide.html. Their method exploits 
the R package limma for shrinking a peptide's sample variance towards a pooled estimate 
that boosts power for stable detection of (truly) significant changes in small proteomic data 
sets. Peptide data were preprocessed using the read.peptides() function, which excludes 
peptides with missing values (i.e., not detected in either the light or heavy channel). We 
computed dummy variables for the “Isolation.Interference”, “Quan.Usage”, ”Quan.info” 
variables, because quality control of the input data was completed as described in the main 
manuscript. The peptide sequence was used as the “Protein.Group.Accessions” variable. 
Overlapping peptide data from the biological replicates were independently normalized using 
the quantify.proteins() function. Following the workflow of Kammers et al., we used peptides 
(with a Mascot Percolator q<0.01 in all analyses) detected in both biological replicates (i.e., 
peptides unique to one of the conditions are left out for normalization and statistical 
analysis). For example, for peptides detected by DK1G8 (anti-HLA-A29) with a HLAthena 
binding score [MSi]>0.6 for HLA-A*29:02 a total of 1330 peptides were detected in both 
channels, while 41 peptides in either the light or heavy channel (with consistent detection in 
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the same channel in both experiments) and were not considered for statistical analyses. We 
blocked for batch effect (two independent experiments) in limma by including them in the 
design matrix. HLA-A29 peptidome analysis considering also peptides detected in either the 
heavy or light channels is provided in Figure S3. Here, we used dummy variables for the 
moderate q-value (set to 1 × 10-6) and log2FC (log2FC= -6.6 for peptides only detected in the 
ERAP2 KO-cell line and log2FC=6.6 for peptides detected only in the ERAP2 WT-cell line), 
because these parameters were only used to subset peptides unique to either of the 
conditions (using moderate q<0.01 as a threshold) together with the differentially expressed 
peptides detected in both channels. Also, although Mascot Percolator exploits a number of 
relevant peptide features and has been shown to be superior in accurate peptide 
identification compared to previous Mascot scoring based on one metric (Borsch et 
al.,2009), we also conducted this analysis of the HLA-A29 peptidome using the the 
percolator q-value in conjunction with the Mascot ions score >30, which showed similar 
effects for ERAP2 at the submotif level as the analysis using the percolator q-value (see 
Figure S3). 
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Supplemental Figures 

 

 
 

Supplemental Figure S1. Whole genome analysis using SNP arrays on unedited (LCL Wildtype, WT) 
and edited (ERAP2-KO) cell lines used in this study. SNPs were detected by the Infinium Human 
CytoSNP-850K v1.1 BeadChip (Illumina, San Diego, CA, USA) and show highly consistent genomes. 
The panels show the array results for the whole. On the X-axis the chromosomes and chromosomal 
region are indicated. The upper Y-axis shows the Log2 R ratio and the lower Y-axis indicates the B 
allele frequency for each SNP. 
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Supplemental Figure S2. Whole genome analysis using SNP arrays on unedited (LCL Wildtype, WT) 
and edited (ERAP2-KO) cell line using the Infinium Human CytoSNP-850K v1.1 BeadChip (Illumina, 
San Diego, CA, USA), similar to Supplemental Figure S1, but here  the panels show the array 
results for the region near 5q15 including ERAP1, ERAP2, and LNPEP. The SNP probes are 
indicated by black dots. The upper Y-axis shows the Log2 R ratio for the probes and the lower Y-axis 
indicates the B allele frequency for each SNP (BAF). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.08.14.250654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.250654
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 
Supplemental Figure S3. HLA-A29 peptidome data analysis including peptides unique to either 
ERAP2-KO or ERAP2-WT cells. a) A total of 1342 peptides overlapping between the two biological 
replicates with percolator q<0.01 and Mascot Ions score >30, were filtered according to the steps 
indicated. Note that after the limma analysis, the 73 “unique” peptides detected in either the heavy or 
light labeled conditions (with consistent detection in the same channel in both experiments) were 
added to the dataset before deconvolution with HLAthena to filter for HLA-A29 ligands. b) The 
sequence logos for 9-mers and 10-mers in this dataset. ERAP2-sensitive peptides are peptides that 
decrease in amount in the presence of ERAP2 and ERAP2-dependent peptides increase in amount in 
the presence of ERAP2. c) Nonmetric multidimensional scaling of 573 9-mers in this dataset. The 
ERAP2-sensitive and ERAP2-dependent peptides are indicated in blue and red, respectively. 
Peptides uniquely identified in the ERAP2 WT-condition are shown in dark red (n=14). d) Four 
clusters were estimated (eps parameter for DBSCAN, using k=5) using the elbow method. The 
sequence logos for each cluster are indicated on the right. e) Comparison of the number of ERAP2-
sensitive and ERAP2-dependent peptides in each peptide cluster identified in b. Padj = bonferroni 
corrected (n=clusters) P values from Χ2 tests. All other comparisons were Padj>0.05. f) The 
percentage of 8-11-mers in peptides sets of this dataset. This analysis shows length dependent 
effects seen for ERAP2 in an hypoactive ERAP1 background. 
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Supplemental Figure S4. The sequence logos for non-redundant 11-mers from HLA-A29. Peptides 
that decrease in the presence of ERAP2 are termed ERAP2-sensitive, peptides that increased in 
relative amounts are termed ERAP2-dependent. Peptides that did not change in relative amounts in 
the presence of ERAP2 are termed ‘not affected’. 
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Supplemental Figure S5. The sequence logos for 948 non-redundant 9-mers and their designated P-
1 derived from the amino acid sequence of the putative proteins. Peptides that decrease in the 
presence of ERAP2 are termed ERAP2-sensitive, peptides that increase in abundance are termed 
ERAP2-dependent. Peptides that did not change in abundance in the presence of ERAP2 are termed 
‘not affected’. 
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Supplemental Figure S6. a) Non-metric multidimensional scaling of the 895 shared 9-mers eluted 
from the HLA-A29-positive cell lines GM19452 (ERAP2-expressing cell line) and GM19397 (ERAP2-
deficient cell line). The 895 9-mers were derived from supplemental data from Sanz-Bravo et al., 2018 
In this study, the normalized intensity ratio (GM19452/GM19397) of each peptide in the two cell lines 
was used to infer the relative abundance of each peptide, which we adapted to assign peptides as 
ERAP2-sensitive (IR ≤ 0.67, n=171 peptides) or ERAP2-dependent (IR ≥ 1.5, 172 peptides). b) Four 
clusters were estimated (eps parameter for DBSCAN, using k=5, based on Figure 3C) using the 
elbow method. The sequence logos for each cluster are indicated on the right. Cluster 0 indicates 
unassigned peptides. c) Comparison of the number of ERAP2-sensitive and ERAP2-dependent 
peptides in each peptide cluster identified in b. Padj = bonferroni corrected (n=clusters) P values from 
Χ

2 tests. All other comparisons were Padj>0.05. d). The percentage of 9-mers and 10-mers in 
peptides sets using different cut-offs for the intensity ratio (IR) - the metric use for differential 
expression by Sanz-Bravo and coworkers. This analysis confirms the length dependent effects seen 
for ERAP2 in an active ERAP1 background (as reported by Sanz-Bravo et. al.,2018) in these cell lines 
that are homozygous for allotypes with high enzymatic activity. 
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Supplemental Figure S7. Non-metric multidimensional scaling of the 1329 shared 9-mers 
eluted from the HLA-A29-positive cell lines PF97387 (ERAP1 high expression/activity) and 
SWEIG (ERAP1 low expression/activity). The 1329 9-mers were filtered (removed peptides with 
value 0 in any of the 3 replicates from PF97387 or SWEIG) from a total of 5584 (3828 9-mers) 
peptides from Alvarez-Navarro et al.,2015. In this study, the normalized intensity ratio 
(PF97387/SWEIG) of each peptide in the two cell lines was used to infer the relative abundance of 
each peptide, which we adapted to assign peptides as ERAP2-dependent (IR ≥ 1.5 or IR ≥ 3) or 
ERAP2-sensitive (IR ≤ 0.76 or IR ≤ 0.33). We used IR≤ 0.76 (instead of 0.67) compared to IR ≥ 1.5 so 
the peptide datasets would be of equal size. a) Comparison of amino acid proportion at P1 and P2 of 
9-mers (in percentage for each group of peptides) between peptides that decrease in abundance (in 
blue) in the presence of ERAP1 or that increase in abundance (red), compared to peptides not 
affected by ERAP1 cells (in grey). All comparisons were not significant; Padj>0.05. b) Non-metric 
multidimensional scaling of the 1329 9-mers c) Five clusters were estimated (eps parameter for 
DBSCAN, using k=5, based on Figure 3C) using the elbow method. The sequence logos for each 
cluster are indicated on the right. d) Comparison of the number of ERAP1-dependent (IR ≥ 1.5 or IR ≥ 
3) and ERAP1-sensitive peptides (IR ≤ 0.76 or IR ≤ 0.33) in each peptide cluster identified in b. Padj = 
bonferroni corrected (n=clusters) Χ2 tests. The difference between the count of sensitive and 
dependent peptides in each cluster was not significant or Padj>0.05. e) The percentage of 9-mers and 
10-mers in peptides sets using different cut-offs for the intensity ratio (IR). This analysis confirms the 
length effects seen for ERAP1 as reported by Alvarez-Navarro et al., 2015 in these cell lines (which 
are ERAP2-deficient). 
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Supplemental Figure S8. Correlation of the effects of ERAP1 and ERAP2 on the HLA-A29 
peptidome. We used the 974 HLA-A29-presented peptides detected in both (identical peptide 
sequences) datasets from Sanz-Bravo et al., 2018 (ERAP2, n=1140) and Alvarez-Navarro et al., 2015 
(ERAP1, n=5584) of which 917 showed normalized intensity values >0. In these studies, the 
normalized intensity ratio of each peptide in two cell lines was used to infer the relative abundance of 
each peptide in ERAP positive versus ERAP negative cell lines. The SWEIG cell line has very low 
ERAP1 levels and was considered functionally ‘negative’ for ERAP1. We plotted the normalized 
intensity ratio for each peptide as reported in the supplemental data from each study. The spearman’s 
correlation coefficient (rho) is shown for all 947 peptides in grey. The black lines indicate the threshold 
of IR>1.5 used in each of the studies. This analysis suggests very low correlation between the effects 
of ERAP1 and ERAP2 on similar peptides presented by HLA-A29.  
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Supplemental Figure S9. Non-metric multidimensional scaling plot of 235 10-mers eluted from HLA-
A29:02. Differentially expressed peptides are indicated in blue (ERAP2 sensitive that decrease in 
abundance in the presence of ERAP2) and red (ERAP2-dependent peptides that increase in 
abundance in the presence of ERAP2). A total of four clusters were identified and the sequence logos 
for each cluster are indicated. Cluster 0 indicates the unassigned peptides. 10-mer peptides of cluster 
2 also show the P2-F motif for HLA-A29 and contains enrichment for ERAP2-dependent peptides 
compared to ERAP2-sensitive peptides, which reflects the results from 9-mers in Figure 3.  
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Supplemental Figure S10. Non-metric multidimensional scaling plot of 948 9-mers eluted from HLA-
A29:02 in this study. Peptides with a binding score MSi>0.6 for HLA-A03:01 from HLAthena 
(https://HLAthena.tools) are highlighted in magenta. Peptides with a binding score MSi>0.6 for HLA-
A03:01 that are differentially expressed (moderate q<0.01) are indicated in black. 
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Supplemental Figure S11. Predicted binding scores (in MSi from HLAthena) for the 53 ERAP2-
dependent peptides in cluster 2 (Figure 3C) across 95 HLA alleles (selection of alleles tested based 
on Sarkizova et al., 2020).  
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Supplemental Figure S12. The effect of ERAP2 on the HLA class I peptidome. Sequence motifs 
depict specific amino acid preferences for 9-, 10-, and 11-mers were generated from a non-redundant 
list of peptides from HLA class I (W6/32). Comparison of amino acid proportion at P1, P2, and P3 of 
(in percentage for each group of peptides) between peptides that decrease in abundance (‘sensitive’), 
peptides that increase in abundance (‘dependent’ peptides) compared to peptides not affected in 
ERAP2-WT cells (in grey).   
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Supplemental Figure S13. Peptide bindings scores from HLAthena (HLAthena.tools) for peptide 
clusters from Figure 4. a) The binding score (MSi) for 9-mers with a MSi>0.8 used for the non-metric 
multidimensional scaling of HLA-A*03:01, HLA-B*40:01, and HLA-B*44:03. The binding score ranges 
from 0 (low) to 1 (high). Clusters identified by DBSCAN are indicated and color-coded. b) The binding 
score for HLA-A*29:02 (MSi) for the same 9-mers and clusters as shown in a.  
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.08.14.250654doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.250654
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 
 
Supplemental Figure S14. Venn diagram of 9-mers presented by monoallelic cell lines expressing 
only HLA-A29:02 or only HLA-A03:01 from Sarkizova et al., 2020 A total of 59 9-mers were detected 
in both datasets. The sequence logos for peptides uniquely observed in HLA-A29, overlapping 
peptides found in both monoallelic datasets, and peptides uniquely observed in HLA-A03 are 
indicated on the right.   
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Supplemental Figure S15. Putative specificity pockets of ERAP2 that help explain observed 
sequence motifs. ERAP2 (from PDB code 5AB0) is shown in surface representation colored by 
electrostatic potential (red=negative, white=neutral, blue=negative). Peptide analogue DG025 that 
was crystallized bound onto ERAP2 is shown in yellow sticks (carbon=yellow, oxygen=red, 
nitrogen=blue). Nearby ERAP2 residues that help form indicated specificity pockets are shown in 
green sticks. Specificity pockets are indicated as a) S2, b) S3-P4, c) S7 and d) S9. Peptide residue 
side-chains that are accommodated in the pockets are indicated as P2, P3-4, P7 and P9. 
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