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Abstract 

Anticipation of upcoming events plays a crucial role in automatic behaviors. It is, however, 

still unclear whether the event-related brain potential (ERP) markers of anticipation could 

track the implicit acquisition of probabilistic regularities that can be considered as building 

blocks of automatic behaviors. Therefore, in a four-choice reaction time (RT) task performed 

by young adults (N = 36), the contingent negative variation (CNV) as an ERP marker of 

anticipation was measured from the onset of a cue stimulus until the presentation of a target 

stimulus. Due to the probability structure of the task, target stimuli were either predictable or 

unpredictable, but this was unknown to participants. The cue did not contain predictive 

information on the upcoming target. Results showed that the CNV amplitude during response 

preparation was larger before the unpredictable than before the predictable target stimuli. In 

addition, although RTs increased, the P3 amplitude decreased for the unpredictable as 

compared with the predictable target stimuli, possibly due to the stronger response preparation 

that preceded stimulus presentation. These results suggest that enhanced attentional resources 

are allocated to the implicit anticipation and processing of unpredictable events. This possibly 

results from the formation of internal models on the probabilistic regularities of the stimulus 

stream, favoring predictable events. Overall, we provide ERP evidence for the implicit 

anticipation of probabilistic regularities, confirming the role of predictive processes in 

learning and memory. 

 

Keywords: anticipation, contingent negative variation, internal models, implicit 

statistical learning, predictive processes, transitional probabilities 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.08.14.251686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251686
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

1. Introduction 

Predicting future events is a core aspect of adaptive behavior. Predictions are guided by prior 

probabilities according to many theories of cognition, learning, and decision making (Daw, 

Gershman, Seymour, Dayan, & Dolan, 2011; Friston, 2005, 2010; Friston, Stephan, 

Montague, & Dolan, 2014; Gómez & Flores, 2011; Griffiths, Kemp, & Tenenbaum, 2008; 

Shohamy & Daw, 2015). Based on prior probabilities, the set of processes that facilitate 

perceptual, cognitive, and motor operations before their actual occurrence can be captured by 

the notion of anticipation (Hommel, 2009; van Boxtel & Böcker, 2004). Anticipation largely 

depends on the extraction and processing of probabilistic regularities organizing 

environmental events (e.g., Koelsch, Busch, Jentschke, & Rohrmeier, 2016; Maheu, Dehaene, 

& Meyniel, 2019; Meyniel, Maheu, & Dehaene, 2016), which have been found to be crucial 

in many automatized cognitive abilities (Armstrong, Frost, & Christiansen, 2017; Aslin, 2017; 

Conway, 2020). The presence and operation of anticipatory processes can be evidenced by 

reaction time (RT) changes and various measures derived from eye-tracking, 

electromyography, neuroimaging, and electrophysiology (e.g., Fan et al., 2007; Gómez & 

Flores, 2011; Killikelly & Szűcs, 2013; Medimorec, Milin, & Divjak, 2019; Tremblay & 

Saint-Aubin, 2009). Meanwhile, the question remains to what extent the electrophysiological 

markers of anticipation are sensitive to the processing of probabilistic regularities (Daltrozzo 

& Conway, 2014). Therefore, we investigated whether event-related brain potentials (ERPs) 

reflect the implicit anticipation of predictable and unpredictable regularities underlying the 

ongoing sensorimotor stream. 

A possible candidate among the slow cortical potentials related to anticipatory 

processes is the contingent negative variation (CNV). The CNV has usually been recorded in 

cued/forewarned RT tasks as an increasingly negative potential shift occurring over the 

frontal and central electrode sites in the time interval between a cue/warning/S1 stimulus and 
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a target/imperative/S2 stimulus requiring a response (Berchicci, Spinelli, & Di Russo, 2016; 

Brunia, 2003; Killikelly & Szűcs, 2013; Kononowicz & Penney, 2016; Leuthold, Sommer, & 

Ulrich, 2004; Molnár et al., 2008; Verleger, Paulick, Möcks, Smith, & Keller, 2013; Walter, 

Cooper, Aldridge, McCallum, & Winter, 1964). The CNV could be decomposed into multiple 

potentials: While the early phase of the component has been thought to reflect the orientation 

to the cue stimulus, the late phase could reflect the anticipatory activity for the target and the 

motor preparation of the related response (Loveless & Sanford, 1974; van Boxtel & Böcker, 

2004; Weerts & Lang, 1973). The present study focuses on the late CNV, considering that the 

cue stimulus is not predictive of the target and a relatively short cue-target interval is used 

(see Stimuli, task, and procedure section) that might not ensure the full development of the 

different composing waves (Berchicci et al., 2016; Di Russo et al., 2017). 

Given the different composing waves and the various paradigms applied, the 

suggested functional role of the CNV and its interpretation are also numerous. Beyond the 

above-listed processes and the original suggestion that the CNV indicates stimulus expectancy 

(Walter et al., 1964), this component has been linked to, for instance, time processing (Macar 

& Vidal, 2004), proactive control (Killikelly & Szűcs, 2013), motor pre/re-programming 

(Anatürk & Jentzsch, 2015; Jentzsch, Leuthold, & Richard ridderinkhof, 2004; Leuthold & 

Jentzsch, 2002), the complexity of preparation (Cui et al., 2000; De Kleine & Van der Lubbe, 

2011), feedback/reward anticipation (Hackley, Valle-Inclán, Masaki, & Hebert, 2014), and 

the amount of attentional resources or effort recruited and available for stimulus processing 

and response preparation (Cui et al., 2000; Emerson, Daltrozzo, & Conway, 2014; Pauletti et 

al., 2014; Stadler, Klimesch, Pouthas, & Ragot, 2006). Overall, the CNV is likely a marker of 

a task-specific preparatory state that tunes and optimizes perceptual, cognitive, and motor 

processes, supported by the activation of multiple sensory-motor brain areas and controlled by 
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the frontoparietal networks (Gómez & Flores, 2011; Kononowicz & Penney, 2016; Pauletti et 

al., 2014). 

So far, only a few studies have examined directly the sensitivity of the CNV to the 

probabilistic regularities underlying a stimulus sequence while implicitly acquiring the 

sequence per se (Daltrozzo & Conway, 2014). In a visual S1-S2 associative learning task, the 

CNV amplitude decreased before the S2 in the predictable condition while it increased in the 

unpredictable condition as the acquisition of the probability structure progressed (Rose, 

Verleger, & Wascher, 2001). Meanwhile, the CNV amplitude increased for regular vs. 

random targets in an auditory learning-oddball task (Jongsma et al., 2006) and for possible vs. 

impossible target occurrence in another oddball task with tone pairs (Stadler et al., 2006). A 

further auditory sequential learning task showed that the CNV emerged only after the high- 

and low-probability predictor tones and not after the zero-probability predictors (Emerson et 

al., 2014). Overall, it seems that either enhanced or decreased CNV amplitudes could indicate 

the sensitivity to probabilistic regularities. 

In this study, therefore, we aimed to measure implicit anticipatory processes in a four-

choice RT task that, unknown to participants, included a sequential regularity between non-

adjacent trials yielding a probability structure with predictable and unpredictable stimuli. By 

means of RTs, using a version of this task, we have already shown that the implicitly acquired 

prior knowledge on the probabilistic regularities influenced the processing of further stimuli 

lacking a predictable structure (Kóbor, Horváth, Kardos, Nemeth, & Janacsek, in press). We 

assumed that this persistence of knowledge occurred through the formation of internal 

models. Therefore, it is conceivable that anticipatory processes based on similar internal 

models would start to operate before each stimulus is presented, at least after the probability 

structure of the task has been acquired. Because of these internal models, the anticipation of 

predictable stimuli and the preparation of appropriate responses possibly become automatic 
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and require less attentional resources, as opposed to the unpredictable stimuli (Horváth et al., 

in press). Accordingly, considering the functional significance of the CNV, its amplitude was 

expected to be larger for unpredictable than for predictable stimuli. In parallel, according to 

other behavioral studies with this task (e.g., D. V. Howard et al., 2004; Nemeth et al., 2010; 

Takács et al., 2018; Tóth et al., 2017), we expected slower RTs to unpredictable than to 

predictable stimuli.  

   

2. Material and methods 

2.1 Participants 

Thirty-six healthy young adults (23 females) between the ages of 18 and 28 (M = 21.6, SD = 

2.2) participated in the study. They were undergraduate students from Budapest, Hungary 

(years of education: M = 14.6, SD = 1.5). Handedness was assessed with the Edinburgh 

Handedness Inventory revised version (Dragovic, 2004a, 2004b; Oldfield, 1971), according to 

which the mean Laterality Quotient was 80.3 (SD = 35.3; -100 means complete left-

handedness, 100 means complete right-handedness). Participants had normal or corrected-to-

normal vision, and according to the pre-defined inclusion criteria, none of them reported a 

history of any neurological and/or psychiatric condition, and none of them was taking any 

psychoactive medication. They performed in the normal range on standard 

neuropsychological tests that were administered before the EEG experiment, part of the 

standard participant screening procedure we follow in the lab (Wisconsin Card Sorting Task 

[perseverative error percentage]: M = 10.42, SD = 2.23; Digit span task [mean short-term 

memory span; possible range: 3–9]: M = 6.31, SD = 1.31; Counting span task [mean working 

memory span; possible range: 2–6]: M = 3.64, SD = 0.72; Go/No-Go task [discriminability 

index: hit rate minus false alarm rate]: M = .76, SD = .15; these results are not published 

elsewhere). All participants provided written informed consent before enrollment and 
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received course credit for taking part in the study. The study was approved by the United 

Ethical Review Committee for Research in Psychology (EPKEB) in Hungary and was 

conducted in accordance with the Declaration of Helsinki. 

 

2.2 Stimuli, task, and procedure 

Implicit acquisition of probabilistic regularities was measured by a modified cued version of 

the Alternating Serial Reaction Time (ASRT) task (Horváth et al., in press; Kóbor et al., 2019; 

Kóbor et al., 2018; Nemeth et al., 2010). In this task version, an experimental trial consisted 

of the presentation of two subsequent stimuli: a cue and a target. First, a central fixation cross 

that served as the cue was presented for a fixed duration of 900 ms. Second, after this 

duration, the cue was replaced by an arrow stimulus that served as the target, presented at the 

center of the screen for a fixed duration of 200 ms (cf. Kóbor et al., 2019; Kóbor et al., 2018). 

After target offset, a blank response window was displayed for a fixed duration of 700 ms. 

Then, the next trial started, yielding an 1800-ms-long inter-trial-interval that consisted of an 

anticipatory/response preparation phase (from cue onset to target onset) and a response 

execution phase (from target onset to the next cue onset, see Fig. 1A). 

Participants were instructed to respond as quickly and accurately as possible to the 

direction of the target by pressing one of the four response keys of a Cedrus RB-530 response 

pad (Cedrus Corporation, San Pedro, CA). The spatial directions of the arrow stimuli were 

mapped onto the four response keys (left direction/left response key = left thumb, up = left 

index finger, down = right thumb, and right = right index finger). Participants were also asked 

to pay attention to and maintain their gaze on the fixation cross and try not to blink, because it 

was shortly followed by the target. If an incorrect response occurred, the fixation cross 

starting the next trial was presented in red color instead of the original black one. If no 

response occurred during target presentation or in the predefined response window (i.e., 
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missing response), the fixation cross starting the next trial was presented in blue instead of 

black. Participants were informed that the color of the fixation cross would change if they did 

not provide the correct response. As the fixation cross did not convey information on the 

following target, no other details were provided about its function. After an incorrect or 

missing response, although participants could provide further behavioral responses, this did 

not influence the presentation and timing of the next trial.  

Unbeknownst to the participants, the arrow stimuli were presented according to an 

eight-element sequence, within which predetermined/pattern (P) and random (r) elements 

alternated with one another (see Fig. 1A). For instance, 2 – r – 1 – r – 3 – r – 4 – r was one of 

the sequences, where numbers denoted the four predetermined spatial directions [1 = left, 2 = 

up, 3 = down, 4 = right] of the arrows and rs denoted the randomly chosen directions out of 

the four possible ones (see Fig. 1B). There were 24 permutations of the four spatial directions 

that could determine the applied sequence; however, because of the continuous presentation 

of the stimuli, there were only six unique permutations: 1 – r – 2 – r – 3 – r – 4 – r, 1 – r – 2 – 

r – 4 – r – 3 – r, 1 – r – 3 – r – 2 – r – 4 – r, 1 – r – 3 – r – 4 – r – 2 – r, 1 – r – 4 – r – 2 – r – 3 

– r, and 1 – r – 4 – r – 3 – r – 2 – r. Note that each of these six permutations could start at any 

position; i.e., 1 – r – 3 – r – 4 – r – 2 – r and 2 – r – 1 – r – 3 – r – 4 – r were identical 

sequence permutations. The applied sequence for each participant was determined by only one 

of the six unique permutations of the 24 possible ones. The given permutation was selected 

for each participant in a pseudorandom manner (see also J. H. Howard, Jr. & Howard, 1997; 

Kóbor et al., 2019; Kóbor et al., 2018; Nemeth et al., 2010). 

One block of the ASRT task contained 85 trials. In each block, the eight-element 

sequence repeated 10 times after five warm-up trials consisting only of random stimuli. The 

trials of each block were categorized as chunks of three successive trials, hereafter referred to 

as triplets. Particularly, each trial was categorized as the third trial of a triplet and the third 
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trial of a triplet was also the second trial of the following triplet, e.g., 2 – 3 – 1, 3 – 1 – 2 

(Kóbor, Janacsek, Takács, & Nemeth, 2017; Kóbor et al., 2018; Szegedi-Hallgató et al., 

2017). The warm-up trials at the beginning of each block were not categorized as triplets. The 

warm-up trials were followed by two starter trials containing the first two elements of the 

alternating sequence. These two starter trials were not categorized as triplets either, since also 

the foremost triplet technically requires three successive trials. Thus, trials were categorized 

as triplets from the 8th trial of the block. Altogether 30 blocks, containing 2550 trials in total, 

were completed. From these trials, 2340 triplets were constructed, but not all of them were 

used in the analysis (see Behavioral data analysis section below). 

The alternating sequence yields a probability structure in which some triplets are more 

probable than others. Thus, the construction of triplets could be considered as a method for 

identifying a hidden probability structure in the ASRT task. Particularly, while the third trials 

of some triplets are probable (predictable) continuations for the first trials, the third trials of 

other triplets are less probable continuations for the first trials. The former triplets are referred 

to as high-probability triplets while the latter ones are referred to as low-probability triplets 

(e.g., Nemeth & Janacsek, 2011; Nemeth, Janacsek, Polner, & Kovacs, 2013). Because of the 

alternating sequence, although high-probability triplets could have P – r – P or r – P – r 

structure, low-probability triplets could only have a r – P – r structure (see Fig. 1B). In the 

case of the 2 – r – 1 – r – 3 – r – 4 – r sequence, 2 – X – 1, 1 – X – 3, 3 – X – 4, and 4 – X – 2 

are high-probability triplets (X denotes the middle trial of the triplet), and, for instance, 1 – X 

– 2 and 4 – X – 3 are low-probability ones. From another perspective, random trials that are 

the 50% of all trials appear either with high or low probability, while pattern trials that are the 

other 50% of all trials always appear with high probability. Overall, the combination of the 

sequential and probability properties yields three possible triplet types: pattern high-
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probability, random high-probability, and random low-probability triplets (occurring with an 

overall probability of 50%, 12.5%, and 37.5%, respectively; see Fig. 1B).  

After completing each block, participants received feedback (lasting for 4000 ms) 

about their mean reaction time and accuracy in the given block, then, they could have a short 

rest before starting the next block. The experimental procedure lasted about 2.5 hours, 

including the application and removal of the electrode cap. The ASRT task was written in and 

controlled by the Presentation software (v. 18.1, Neurobehavioral Systems). Stimuli were 

displayed on a 21” LCD screen at a viewing distance of 125 cm. Neuropsychological tests 

(see Participants section) were administered a few days before the EEG experiment during a 

one-hour-long session.  

 

 

Figure 1. Design of the experiment. (A) In this version of the Alternating Serial Reaction Time (ASRT) task, a 

central fixation cross that serves as the cue is followed by an arrow stimulus that serves as the target. The cue is 

not predictive of the target. The duration of the cue is 900 ms, the duration of the target is 200 ms, and responses 

are recorded from target onset until the end of the trial (for altogether 900 ms). This yields a fixed 1800-ms-long 
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inter-trial-interval. The presentation of the target stimuli follows an eight-element sequence, within which pattern 

(P) and random (r) elements alternate with one another. (B) In the alternating sequence structure, numbers 

denote the four spatial directions (1 = left, 2 = up, 3 = down, 4 = right) of the arrows. The alternating sequence 

makes some runs of three consecutive trials (triplets) more probable than others. High-probability triplets are 

denoted with dark-grey shading and low-probability triplets are denoted with coral shading. Each pattern and 

random trials are categorized as the last trial of a high- or a low-probability triplet, thus, three different triplets 

occur: pattern high-probability (P – r – P structure), random high-probability (r – P – r structure), and random 

low-probability (r – P – r structure) triplets. This study analyses only pattern high-probability or predictable 

(dark-grey shading in the lower table) and random low-probability or unpredictable triplets (coral shading in the 

lower table). 

 

2.3 Behavioral data analysis  

The set of the constructed triplets was narrowed for further analysis. First, following the 

standard data analysis protocol established in previous studies using the ASRT task (e.g., J. H. 

Howard, Jr. & Howard, 1997; Kóbor et al., 2017; Nemeth, Janacsek, Polner, et al., 2013; 

Song, Howard, & Howard, 2007; Virag et al., 2015), two types of low-probability triplets – 

repetitions (e.g., 1 – 1 – 1, 4 – 4 – 4) and trills (e.g., 1 – 2 – 1, 2 – 4 – 2) – were excluded, 

because pre-existing response tendencies have often been shown to them (D. V. Howard et 

al., 2004). Therefore, the analyzed low-probability triplet category consisted of low-

probability triplets without trills and repetitions (but see Szegedi-Hallgató, Janacsek, & 

Nemeth, 2019).  

Second, all random high-probability triplets were excluded from further analyses (cf. 

Horváth et al., in press). Random high-probability triplets could be considered as 

“accidentally-regular” random triplets, which are predictable but rarely occurring at the level 

of unique triplets. These trials integrate characteristics related to both the alternating P – r – P 

– r sequence and the hidden probability structure (Kóbor et al., 2019). In addition, some pre-

existing response biases originating from higher levels of the alternating sequence have also 
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been observed for these triplets (Szegedi-Hallgató et al., 2019). Therefore, the exclusion of 

random high-probability triplets enabled us to focus on contrasting the predictable pattern 

events with the unpredictable random events (i.e., pattern high-probability triplets vs. random 

low-probability triplets),  

Ten-block-long bins of the behavioral data were grouped into three periods, labeled 

consecutively in this paper (1, 2, etc.). For each participant and period, separately for pattern 

high-probability and random low-probability triplets, median RT was calculated for those 

correct responses that also followed correct responses. Independent of triplet types, general 

skill improvements (faster RTs) reflecting more efficient visuomotor and motor-motor 

coordination due to practice were also considered (cf. Hallgató, Győri-Dani, Pekár, Janacsek, 

& Nemeth, 2013; Juhasz, Nemeth, & Janacsek, 2019).  

The mean accuracy of responding for each triplet type and period are provided in 

Table 1; otherwise, the paper focuses on the RT analysis (cf. Kóbor et al., 2019; Kóbor et al., 

2018). We have three reasons to do so: accuracy is influenced by (1) the feedback given to 

participants after each block; (2) the presentation of the cue increased the length of the trial 

that possibly provided more time for accurate response selection; and (3) overall accuracy has 

usually been high with relatively low variability in samples of healthy young adults 

performing the ASRT task (J. H. Howard, Jr. & Howard, 1997; Janacsek, Ambrus, Paulus, 

Antal, & Nemeth, 2015; Nemeth et al., 2010; Romano, Howard, & Howard, 2010). 
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Table 1. Mean percentage (%) and standard deviation of response accuracy split by triplet 

type and period. 

 

Pattern High Random Low 

  M (SD) M (SD) 

Period1 96.0 (2.8) 95.8 (3.0) 

Period2 95.9 (2.8) 95.6 (2.5) 

Period3 95.8 (2.6) 95.1 (3.2) 

Overall 95.9 (2.5) 95.5 (2.6) 

 

2.4 EEG recording and analysis 

The continuous EEG activity was recorded in an electrically shielded, acoustically attenuated, 

and dimly lit room using the actiCAP active electrode system with BrainAmp Standard 

amplifier and BrainVision Recorder 1.2 software (BrainProducts GmbH, Gilching, Germany). 

The 64 sensors consisting of Ag/AgCl electrodes integrated with active circuits were mounted 

in an elastic cap and placed according to the 10% equidistant system. The FCz electrode was 

used as reference and the Fpz electrode was used as ground. The sampling rate was 1000 Hz. 

During recording, the impedance of the electrodes was kept below 10 kΩ. 

The continuous EEG data were analyzed offline using the BrainVision Analyzer 2.1.2 

software (BrainProducts GmbH). The pre-processing steps described below followed those 

presented in the Kóbor et al. (2018) and Kóbor et al. (2019) papers with minor modifications 

(e.g., filter settings, length of the segment, number of time bins) to fit the purposes of the 

present study. First, after visual screening for major deflections, if necessary, bad electrodes 

were replaced by spline interpolation: A maximum of one electrode per participant (M = 0.14, 

SD = 0.35) was interpolated. Second, the EEG data were band-pass filtered within 0.03-30 Hz 

(48 dB/oct) and notch filtered at 50 Hz to remove additional electrical noise. Third, horizontal 

and vertical eye-movement artifacts and heartbeats were corrected with independent 
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component analysis (Delorme, Sejnowski, & Makeig, 2007): Components between one and 

three per participant (M = 1.97, SD = 0.51) were rejected, then, the channel-based EEG data 

were recomposed. Fourth, EEG data were re-referenced to the average activity of all 

electrodes. (The FCz, which was the online reference electrode, was also included in the 

calculation of the offline average reference and then re-used to analyze its signals, as well.) 

Fifth, the continuous EEG data were segmented in two steps as follows.  

To track the temporal trajectory of acquisition, as in the case of the behavioral data, 

the data were cut into three periods, each containing ten consecutive blocks of the ASRT task. 

Next, within each period, segments were extracted from -200 to 1500 ms relative to cue onset, 

separately for pattern high-probability and random low-probability triplets. Only those 

correctly responded triplets were included in this step of the segmentation that also followed 

correctly responded triplets. Triplets with any responses occurring during the response 

preparation phase (i.e., before the presentation of the target) were omitted from the analyses. 

As in the case of the behavioral data, trills and repetitions were also excluded and random 

high-probability triplets were not analyzed. Altogether six (two triplet types * three periods) 

segment types were created for the cue-locked averages.  

Following segmentation, the segments were baseline corrected based on the mean 

activity from -200 ms to 0 ms (pre-cue baseline). Then, to remove artifacts still present in the 

data after ICA corrections, an automatic artifact rejection algorithm implemented in the 

BrainVision Analyzer software was applied, which rejected segments where the activity 

exceeded +/- 100 µV at any of the electrode sites. In addition, after this automated cleaning 

procedure, the retained segments were visually inspected for low frequency electrode drifts 

that could confound the CNV measurement. Segments with low frequency electrode drifts 

were manually rejected. After, the mean numbers of the retained (artifact-free) segments were 

336.0 (SD = 43.2, range: 185 – 382) for pattern high-probability triplets and 167.1 (SD = 24.5, 
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range: 75 – 210) for random low-probability triplets. This means that the mean proportion of 

the removed segments was 6.1% for pattern high-probability triplets and 6.3% for random 

low-probability triplets. Finally, the retained (artifact-free) segments were averaged for the 

two triplet types in each of the three periods. 

Grand average ERP waveforms calculated separately for each triplet type in each 

period as well as averaged for the entire acquisition phase across all periods were created. 

These grand averages were visually inspected to determine the latency range where the CNV 

component would emerge and vary as a function of triplet types. Accordingly, the time 

window for the CNV analysis was determined in a post-hoc manner between 800 ms and 900 

ms after cue onset (cf. Boehm, van Maanen, Forstmann, & van Rijn, 2014). For both triplet 

types, the CNV showed maximal negativity in this time window, after its steep increase 

starting around 700 ms following cue onset over the frontocentral, central, and centroparietal 

electrode sites. The electrodes for CNV analysis were also chosen in a post-hoc manner based 

on the difference waveforms calculated as ERPs for random low-probability triplets minus 

ERPs for pattern high-probability triplets. The difference waveforms were maximal over the 

central and centroparietal electrode sites (cf. Brunia & Damen, 1988; De Kleine & Van der 

Lubbe, 2011; Gómez, Marco, & Grau, 2003; Leynes, Allen, & Marsh, 1998; Verleger, 

Wauschkuhn, van der Lubbe, Jaśkowski, & Trillenberg, 2000). Therefore, based on the 

observed topographical distribution of the CNV difference waveform, a centroparietal (CP) 

electrode pool was defined by calculating the average activity of the electrodes C1, Cz, C2, 

CP1, CPz, CP2, P1, Pz, and P2. Altogether, the CNV was quantified over this centroparietal 

electrode pool as the mean amplitude between 800 ms and 900 ms after cue onset for all 

triplet types and periods. 

The distribution of the between-triplets difference remained stable after target onset, 

which is in line with the observation that the CNV and the P3 components could overlap 
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(Verleger, Paehge, Kolev, Yordanova, & Jaśkowski, 2006; Verleger et al., 2013; Verleger, 

Siller, Ouyang, & Śmigasiewicz, 2017). Therefore, the peak of the P3 and the late descending 

flank of the P3 (hereafter referred to as the late P3) were also examined over the same 

centroparietal electrode pool. The peak of the P3 was quantified as the mean amplitude 

between 1200 ms and 1300 ms after cue onset. The late P3 was quantified in the remaining 

interval of the segment, as the mean amplitude between 1300 ms and 1500 ms (cf. Kóbor et 

al., 2019). 

 

2.5 Statistical analysis 

The implicit acquisition and prediction of probabilistic regularities was quantified with two-

way repeated measures analyses of variance (ANOVA) with Type (pattern high-probability 

vs. random low-probability triplet) and Period (1–3) as within-subjects factors on the RTs, the 

mean amplitude of the CNV, and the mean amplitudes of the P3 peak and the late P3. In all 

ANOVAs, the Greenhouse-Geisser epsilon (ε) correction (Greenhouse & Geisser, 1959) was 

used when necessary, i.e., when sphericity was violated as indicated by the significance of the 

Mauchly’s sphericity test. (The test statistics and the p values for the Mauchly’s test are not 

reported.) Note that the assumption of sphericity was not relevant in the case of the Type 

factor as it involved less than three levels. Original df values and corrected p values (if 

applicable) are reported together with partial eta-squared (ηp
2) as the measure of effect size. 

LSD (Least Significant Difference) tests for pairwise comparisons were used to control for 

Type I error. 
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3. Results 

3.1 Behavioral results 

The Type (pattern high-probability vs. random low-probability triplet) by Period (1–3) 

ANOVA on the RTs revealed a significant main effect of Type, F(1, 35) = 8.86, p = .005, ηp
2 

= .202, indicating faster RTs on pattern high-probability triplets than on random low-

probability ones (362.3 ms vs. 364.3 ms; see Fig. 2A). Although the Type * Period interaction 

was only a tendency, F(2, 70) = 2.42, p = .096, ηp
2 = .065, pairwise comparisons showed that 

the difference between pattern high-probability and random low-probability triplets was 

significant in period3 (3.5 ms, p = .004) but not before (period1: 1.4 ms, p = .144, period2: 1.0 

ms, p = .217). In addition, this difference was significantly larger in period3 than in period2 (p 

= .026; other pairwise differences were nonsignificant, p ≥ .136). In details, RTs on pattern 

high-probability triplets tended to become faster as the task progressed (period3 vs. period1: 

360.4 ms vs. 364.7 ms, p = .052); meanwhile, the fastest RTs on low-probability triplets were 

found in period2 (period2 vs. period1: 362.7 ms vs. 366.1 ms, p = .028; other pairwise 

differences did not approach significance for both triplet types, p ≥ .120). General skills did 

not reliably improve: The Period main effect was only a tendency, F(2, 70) = 2.39, p = .099, 

ηp
2 = .064, and, according to the pairwise comparisons, improvement between period1 and 

period2 just reached significance (365.4 ms vs. 362.2, p = .050) and no further change was 

observed (ps ≥ .113). Overall, RTs differed between the triplet types and some indication was 

found for the stabilization of this difference by the end of the task. 
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Figure 2. (A) Group-average RTs of correctly responded triplets split by period (1–3) and triplet type (pattern 

high-probability vs. random low-probability triplets) (left panel, line chart) and split by triplet type but collapsed 
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across periods (right panel, bar chart). (B) Group-average CNV mean amplitudes split by period and triplet type 

(left panel, line chart) and split by triplet type but collapsed across periods (right panel, bar chart). Values along 

the vertical axes are plotted in a reversed scale. (C) Group-average P3 peak mean amplitudes split by period and 

triplet type (left panel, line chart) and split by triplet type but collapsed across periods (right panel, bar chart). 

(D) Group-average late P3 mean amplitudes split by period and triplet type (left panel, line chart) and split by 

triplet type but collapsed across periods (right panel, bar chart). Error bars denote standard error of mean. On the 

left panel, asterisks/plus marks above the means of each period denote the significance of the difference between 

triplet types (note that these pairwise differences are indicated here although nonsignificant Type * Period 

interactions were found). Asterisks/plus marks below the line charts denote the pairwise differences between 

periods collapsed across triplet types (i.e., pairwise differences related to the Period main effects). 

Note: + p < .010, * p < .050, ** p < .010, *** p < .001 

 

3.2 ERP results 

Grand average ERP waveforms for the two triplet types averaged for all periods and split by 

period over the centroparietal electrode pool are presented in Figures 3-4, respectively. 

 

3.2.1 CNV  

The Type by Period ANOVA on the CNV showed a significant main effect of Type, F(1, 35) 

= 12.33, p = .001, ηp
2 = .261, indicating that the mean amplitude of the CNV was larger (more 

negative) for random low-probability triplets than for pattern high-probability ones (-0.84 µV 

vs. -0.70 µV; see Fig. 2B and Fig. 3B, C). This difference did not change with practice 

(nonsignificant Type * Period interaction, F(2, 70) = 1.54, p = .221, ηp
2 = .042; see Fig. 4A, 

B). Meanwhile, as shown by the significant Period main effect, F(2, 70) = 13.24, ε = .715, p < 

.001, ηp
2 = .274, the overall CNV amplitude gradually increased as the task progressed 

(period1: -0.44 µV, period2: -0.84 µV, period3: -1.05 µV; all pairwise differences were 

significant at p ≤ .014; see Fig. 2B and Fig. 4A). 
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3.2.2 P3 peak 

The Type by Period ANOVA on the P3 peak showed a significant main effect of Type, F(1, 

35) = 11.03, p = .002, ηp
2 = .240, indicating that the P3 peak amplitude was lower for random 

low-probability triplets than for pattern high-probability ones (3.40 µV vs. 3.54 µV; see Fig. 

2C and Fig. 3B, C). This difference did not change with practice (nonsignificant Type * 

Period interaction, F(2, 70) = 1.43, p = .246, ηp
2 = .039; see Fig 4A, B). The significant Period 

main effect, F(2, 70) = 4.64, ε = .708, p = .024, ηp
2 = .117, showed that the overall P3 peak 

amplitude decreased as the task progressed (period1: 3.70 µV, period2: 3.47 µV, period3: 3.25 

µV; period1 > period3, p = .021, period2 > period3, p = .045; see Fig. 2C and Fig. 4A). In terms 

of the Type main effect, comparable results were obtained when the response-locked P3 peak 

was analyzed (see Supplementary Material). 

 

3.2.3 Late P3  

Similar results emerged for the late P3 from the Type by Period ANOVA. The mean 

amplitude of the late P3 was lower for random low-probability triplets than for pattern high-

probability ones (significant main effect of Type, F(1, 35) = 13.51, p = .001, ηp
2 = .278; 2.07 

µV vs. 2.23 µV; see Fig. 2D and Fig. 3B, C), and, irrespective of the triplet type, the overall 

mean amplitude of the late P3 decreased with practice (significant main effect of Period, F(2, 

70) = 11.26, ε = .804, p < .001, ηp
2 = .243; period1: 2.49 µV, period2: 2.05 µV, period3: 1.90 

µV; period1 > period2, p = .002, period1 > period3, p < .001; see Fig. 2D and Fig. 4A). The 

Type * Period interaction was nonsignificant, F(2, 70) = 0.06, p = .942, ηp
2 = .002 (see Fig. 

4A, B). In terms of the Type main effect, comparable results were obtained when the late 

phase of the response-locked P3 was analyzed (see Supplementary Material). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.08.14.251686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251686
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Figure 3. Grand average ERP waveforms at (A) electrode FCz and over (B) the centroparietal electrode pool are 

presented, displaying the CNV and the P3 components for pattern high-probability and random low-probability 

triplets, averaged for all periods. The cue onset was at 0 ms, the target onset was at 900 ms; the latter is denoted 

by small arrows above the horizontal axes. In part (B) of this figure, the light-grey shaded area indicates the time 

window in which the CNV was quantified (800-900 ms), the medium-grey shaded area indicates the time 

window in which the P3 peak was quantified (1200-1300 ms), and the dark-grey shaded area indicates the time 

window in which the late P3 was quantified (1300-1500 ms). Negativity is plotted upwards here and in Figure 4. 

(C) The scalp topography (amplitude distribution) of ERP differences for random low-probability minus pattern 

high-probability triplets and for pattern high-probability minus random low-probability triplets in the time 

windows of the CNV, the P3 peak, and the late P3, respectively (from left to right), averaged for all periods. 
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Figure 4. (A) Grand average ERP waveforms over the centroparietal electrode pool are presented, displaying the 

CNV and the P3 components for each period (1–3) and triplet type (pattern high-probability and random low-

probability triplets). The cue onset was at 0 ms, the target onset was at 900 ms; the latter is denoted by small 

arrows above the horizontal axes. The light-grey shaded area indicates the time window in which the CNV was 

quantified (800-900 ms), the medium-grey shaded area is the time window of the P3 peak (1200-1300 ms), and 

the dark-grey shaded area is the time window of the late P3 (1300-1500 ms). (B) The scalp topography 

(amplitude distribution) of ERP differences in each period for random low-probability minus pattern high 

probability triplets in the time window of the CNV (left panel), and for pattern high-probability minus random 

low-probability triplets in the time windows of the P3 peak (right panel, top tow) and the late P3 

(right panel, bottom row). 

 

3.2.4 Correlations between the behavioral and ERP measures 

Correlational analyses were performed to test (1) the potential speed-accuracy trade-off in 

task performance and (2) whether behavioral measures were related to the ERPs. Therefore, 

associations (Pearson correlations) between (1) RTs and accuracy and (2) between each of 
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these behavioral measures and the CNV, P3 peak, and late P3 amplitudes were investigated. 

These analyses were run for each triplet type separately in the corresponding time periods 

(e.g., RTs to random low-probability triplets in period2 with CNV amplitude for random low-

probability triplets in period2) as well as for the entire acquisition phase (e.g., mean accuracy 

for pattern high-probability triplets with the mean amplitude of the CNV for pattern high-

probability triplets). 

None of the correlations were significant between RTs and accuracy (all |r|s ≤ .150, ps 

≥ .382), indicating the lack of speed-accuracy trade-off. Similarly, no significant correlations 

were found between the behavioral measures and the CNV amplitude (all |r|s ≤ .166, ps ≥ 

.334). In contrast, significant negative correlations consistently emerged between RTs and the 

P3 peak, indicating that faster responses were associated with larger P3 peak amplitudes 

(pattern high-probability triplets: period1 r(34) = -.449, p = .006; period2 r(34) = -.516, p = 

.001; period3 r(34) = -.456, p = .005; all periods: r(34) = -.485, p = .003; random low-

probability triplets: period1 r(34) = -.455, p = .005; period2 r(34) = -.448, p = .006; period3 

r(34) = -.405, p = .014; all periods: r(34) = -.443, p = .007). However, this was not observed 

in the case of accuracy (all |r|s ≤ .304, ps ≥ .071; but see the response-locked averages in the 

Supplementary Material). In terms of the response-locked P3 peak, a similar pattern of 

associations emerged with the RTs, albeit the correlations were weaker and less consistent 

(the correlations were significant only in the first two periods for pattern high-probability 

triplets and in the first period for random low-probability triplets, see Supplementary 

Material). No significant correlations were found between the behavioral measures and the 

amplitude of the late P3 (neither in the cue-locked nor in the response-locked averages; all |r|s 

≤ .216, ps ≥ .205).  
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4. Discussion 

This study provided ERP evidence for the operation of implicit anticipatory processes in the 

acquisition of probabilistic regularities. The CNV developed during the presentation of the 

cue until target onset and its amplitude was larger before unpredictable than before 

predictable targets. Importantly, the cue was not predictive of the target. The ERP difference 

reflecting sensitivity to the underlying regularities was continuously present with the same 

magnitude in the time window of target processing, indicated by the amplitudes of the P3 

peak and the late P3 being lower for unpredictable than for predictable targets. As expected, 

anticipatory processing was shown not only by the CNV but also by the RTs that were faster 

to predictable targets. Based on these results, we propose that internal models have been 

implicitly formed on the probabilistic regularities of the stimulus stream. These internal 

models could have guided a series of anticipatory and preparatory processes that eventually 

facilitated stimulus processing. 

Behavioral evidence accumulated so far indicates that participants respond overall 

faster or increasingly faster to high-probability triplets than to low-probability ones in the 

ASRT task (e.g., Janacsek et al., 2015; Kóbor et al., 2017; Nemeth et al., 2010; Nemeth, 

Janacsek, Polner, et al., 2013; Szegedi-Hallgató et al., 2019; Takács et al., 2017; Tóth et al., 

2017). Faster responses specifically to pattern high-probability triplets than to random low-

probability ones were also observed in implicit and explicit task versions without target-

preceding cues (Horváth et al., in press; Kóbor et al., 2019; Kóbor et al., 2018; Nemeth, 

Janacsek, & Fiser, 2013; Szegedi-Hallgató et al., 2019). The present task was a relatively 

slow-paced version: Participants had plenty of time (900 ms) to prepare their responses and 

their performance reflected high accuracy. Even this way, RTs differed between pattern high-

probability and random low-probability triplets (cf. Vékony et al., 2020). This is in line with 

previous behavioral (cf. Juhasz et al., 2019; Kóbor et al., in press; Szegedi-Hallgató et al., 
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2019; Török, Janacsek, Nagy, Orbán, & Nemeth, 2017) and ERP results (Kóbor et al., 2019; 

Kóbor et al., 2018), proposing that the sensitivity to multiple probabilistic regularities has 

possibly been grounded in the implicit extraction of the triplet-level probability structure. 

As in the present study, larger CNV for unpredictable vs. predictable visual stimuli 

was found previously during the implicit acquisition of probabilistic relations (Rose et al., 

2001). Meanwhile, studies involving more easily learnable sequences of auditory stimuli 

(Jongsma et al., 2006; Stadler et al., 2006) and those that contrasted predictive auditory 

contexts with random ones in explicit experimental settings (Fogelson et al., 2009) showed 

the opposite. However, in those studies, repeating predictor/standard–target sequences were 

used. These sequences differ from the one we applied in the present implicit ASRT task 

version: Here, a stream of perceptually identical, task-relevant targets that all require 

keypresses create the ongoing stimulus context, and the exact directions of the targets are 

determined only by the underlying regularity. In our view, the processes reflected by the CNV 

in our task are related to the pre-allocation of attentional resources and to response 

preparation in an implicit and nonconscious manner. We base this interpretation on the 

assumption that the random low-probability, unpredictable stimuli would be more complex 

to-be-responded targets than the pattern high-probability ones, as already observed at the 

behavioral level. The potential functional role of the CNV in the current setting is further 

elaborated below. 

The observed centroparietal distribution of the CNV difference between unpredictable 

and predictable targets might originate from the characteristics of the current task and the 

neurocognitive processes underlying performance. As in our study, the late CNV is more 

centrally distributed and involves a posterior cortical network in other perceptual-motor tasks 

(e.g., Berchicci et al., 2016; Brunia & Damen, 1988; De Kleine & Van der Lubbe, 2011; 

Gómez et al., 2003; Leynes et al., 1998). Furthermore, it has been suggested that the late CNV 
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reflects two aspects of the parieto-frontal motor system: the maintenance of the stimulus-

response (S–R) links and the activation of the hand-motor area (Verleger et al., 2000). 

Therefore, the observed CNV difference in the present study might indicate the binding of 

stimulus information with the related response to help the selection between different motor 

programs. However, beyond response preparation, implicit and nonconscious predictions 

were likely generated about the direction of the upcoming target (cf. Kóbor et al., in press; 

Kóbor et al., 2019). Consequently, it is conceivable that the presentation of the target arrow 

per se served as a feedback about the “correctness” of these predictions (i.e., whether the 

targets were anticipated outcomes or not). Thus, the late CNV could have also consisted of the 

stimulus-preceding negativity (SPN) reflecting anticipatory attention to the perceptual 

informational delivered by the target, which might additionally contribute to the more 

posterior scalp distribution of the difference (Brunia, Hackley, van Boxtel, Kotani, & Ohgami, 

2011; Hackley et al., 2014; van Boxtel & Brunia, 1994).  

We intended to measure the genuine predictability of the targets because of acquiring 

the probability structure of the task. To this end, a simple fixation cross was used as the cue, 

which is somewhat unusual in cued RT tasks (but see Boehm et al., 2014; Pauletti et al., 

2014). The fixation cross did not contain probability or direction information about the 

upcoming target. Since no information was delivered about which S–R links should be 

selected before target presentation, a generic pre-activation of the sensory-motor areas might 

have been needed for fast and accurate responding (Pauletti et al., 2014). Similarly, sustained 

activity in the frontoparietal network mediating response selection (cf. Schumacher, 

Hendricks, & D'Esposito, 2005; Verleger et al., 2000) might have also been involved in task 

solving. Supporting this notion, the amplitude of the CNV was not only modulated as a 

function of target probability but it also increased as the task progressed in time, irrespective 

of probability information. In our earlier study, when the pattern high-probability triplets were 
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perceptually distinguishable from the random ones (i.e., marked with different colors) and no 

other cues were used, proficiency in the task and response automatization for the former 

triplets were evidenced by the decreasing amplitude of different ERP components (N2, P3, 

Ne, Horváth et al., in press; Kóbor et al., 2018). In contrast, since target probability was not 

explicitly denoted in the present experiment, and the task was perceived as increasingly 

exhausting according to verbal reports, the probability-non-specific CNV amplitude 

enhancement likely indicates the growing effort participants needed to maintain task 

performance. Sustained effort needed for stimulus processing and responding is also reflected 

in the RTs. Although RTs became faster due to practice at the descriptive level, general skill 

improvements were not statistically significant over task periods. (Note that general skill 

improvements are independent of the observed RT difference between high- and low-

probability triplets.) According to the correlational results, no speed-accuracy trade-off 

characterized task performance, and it is unlikely that the CNV amplitude enhancement was 

associated with lower response caution and/or increased response speed (cf. Boehm et al., 

2014).  

The differential ERP effect for predictable vs. unpredictable stimuli persisted in the 

time window of the P3 component with similar magnitude. Particularly, the enhanced ERP 

amplitudes before unpredictable target stimuli appeared as decreased amplitudes after target 

onset (cf. Killikelly & Szűcs, 2013). The P3 amplitude has long been suggested to scale the 

probability of the stimulus (Donchin, 1981; Donchin & Coles, 1988; Mars et al., 2008) and to 

be modulated by the acquisition of predictive relations embedded in the stimulus sequence 

(e.g., Batterink, Reber, Neville, & Paller, 2015; Eimer, Goschke, Schlaghecken, & Stürmer, 

1996; Jost, Conway, Purdy, Walk, & Hendricks, 2015; Rüsseler, Münte, & Wiswede, 2018). 

Meanwhile, current theoretical accounts of this component suggest its more intricate 

functional relevance in decision making and in linking stimulus evaluation to response 
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selection (Kelly & O’Connell, 2015; Twomey, Murphy, Kelly, & O'Connell, 2015; Verleger, 

Jaśkowski, & Wascher, 2005; Verleger & Śmigasiewicz, 2016).  

Particularly, the P3 component could be considered as reflecting the process of 

mapping a task-relevant stimulus onto an appropriate response (Berchicci et al., 2016; 

Folstein & van Petten, 2011; Stock, Steenbergen, Colzato, & Beste, 2016; Verleger et al., 

2005). Analysis of the response-locked averages strengthens this notion by showing the 

differentiation of predictable vs. unpredictable stimuli also in the response-locked P3 

component (see Supplementary Material and note that at the descriptive level, this effect is 

slightly weaker in the response-locked than in the cue-locked averages, especially in the case 

of the P3 peak). The relation between the P3 component and motor responses were further 

supported by the negative correlations emerging between RTs and the P3 peak (in both the 

cue-locked and response-locked averages), indicating faster responses associated with larger 

P3 peaks, irrespective of the predictability of the target.  

In terms of the theoretical accounts of the P3, the concept of S–R link might help 

explaining the P3 findings. According to this concept, S–R links established with practice 

during the task are reactivated for initiating the correct response, and the P3 reflects the 

amount of this reactivation process (e.g., Verleger, Hamann, Asanowicz, & Śmigasiewicz, 

2015; Verleger et al., 2017). The implicit acquisition of the probability structure could change 

the S–R links related to unpredictable stimuli that might require stronger reactivation, yielding 

larger P3 amplitudes (cf. Kóbor et al., 2019). However, due to the cued design, some of the 

stimulus processing might occur in an anticipatory manner. It is possible that the stronger 

response preparation before the unpredictable stimuli facilitates target processing that uses 

less attentional resources (Polich, 2007; Polich & Criado, 2006) and operates at a lower 

decision threshold (Kelly & O’Connell, 2015), eventually yielding decreased P3 amplitudes. 

Decreased P3 amplitudes have been found to reflect decision uncertainty and that the 
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resources for stimulus processing are needed elsewhere during effortful processing 

(Beauducel, Brocke, & Leue, 2006; Johnson, 1986; Kok, 2001), which could also explain the 

increased CNV and decreased P3 for unpredictable stimuli. At the same time, the facilitated 

“pre-processing” is not reflected in the RTs, as those are still slower for unpredictable stimuli. 

The implicit, nonconscious aspect of the task, however, might explain this matter, since 

“implicit preparation” might be enough for responding correctly but not for responding as fast 

as to predictable targets. Nevertheless, this finding is also in line with the assumption that 

movement initiation and movement preparation could be independent processes (Haith, 

Pakpoor, & Krakauer, 2016). 

As delineated above, the CNV and the P3 seem to be interrelated. Accordingly, the 

observed ERP variation in the P3 time window can be regarded as a “CNV return” to baseline 

and its “overshoot” into the positive direction (Verleger et al., 2013). To further support this 

concept, not only the ERP effect related to predictability persisted after target onset but also 

the time-on-task effect, i.e., the overall CNV enhancement, which appeared as decreasing P3 

amplitudes as the task progressed. Although the response-locked P3 amplitudes did not 

change in time, the CNV also appeared to be time-invariant in those averages (see 

Supplementary Figs. S1-S2), additionally indicating associations between the two 

components. Moreover, although the CNV looks mostly unaffected by ERP locking 

(Berchicci et al., 2016), response-locked waveforms imply that the CNV is more likely related 

to the target stimulus than to the response: It develops until target onset and returns to 

baseline before response onset. This observation does not preclude that the CNV amplitude 

modulation possibly reflects the activation and maintenance of the S–R link relevant to the 

given target (Verleger et al., 2000). 

To conclude, the behavioral and ERP markers of implicit anticipation differed between 

predictable and unpredictable events arranged in a sequence of visual stimuli. Although the 
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cue signals were unspecific to the predictability of these target events, lengthened RTs 

together with enhanced CNV and attenuated P3 amplitudes were recorded for unpredictable 

as compared with predictable events. To explain these ERP amplitude modulations, we 

propose that, during the preparatory phase of processing, more resources were needed to 

maintain the stimulus-response contingencies appropriate for the unpredictable events. This 

pattern of results possibly emerged due to the incidental and implicit acquisition of the 

probabilistic regularities through the formation of internal models, which is fundamental not 

only in perceptual and response selection processes but also in learning and memory. In line 

with this interpretation, our results further suggest that the CNV, by reflecting the active 

operation of these internal models, could be considered as a neurocognitive marker of 

uncertainty. This ERP component would be useful in investigating the acquisition of 

probabilistic regularities in clinical and non-clinical samples. 
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