
1 

Logical modeling of dendritic cells in 1 

vitro differentiation from human 2 

monocytes unravels novel 3 

transcriptional regulatory interactions 4 

 5 

Karen J. Nuñez-Reza1,  6 
Aurélien Naldi2,  7 
Arantza Sanchéz-Jiménez1,  8 
Ana V. Leon-Apodaca1,  9 
M. Angélica Santana3,  10 
Morgane Thomas-Chollier2,  11 
Denis Thieffry2*,  12 
Alejandra Medina-Rivera1*. 13 
 14 
1) Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional 15 
Autónoma de México, Juriquilla, México.  16 
2) Computational Systems Biology team, Institut de Biologie de l’Ecole normale supérieure, 17 
Inserm, CNRS, Université PSL, Paris, France.  18 
3) Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de 19 
Morelos, Cuernavaca, México. 20 
*Corresponding author 21 

 22 

  23 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.14.251710doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.14.251710
http://creativecommons.org/licenses/by-nc/4.0/


2 

Abstract (Up to 200 words) 24 

Dendritic cells are the major specialized antigen-presenting cells, thereby connecting innate and 25 

adaptive immunity. Because of their role in establishing adaptive immunity, they have been used 26 

as targets for immunotherapy. Monocytes can differentiate into dendritic cells in vitro in the 27 

presence of colony-stimulating factor 2 (CSF2) and interleukin 4 (IL4), activating four signalling 28 

pathways (MAPK, JAK/STAT, NFKB, and PI3K). However, the transcriptional regulation 29 

responsible for dendritic cell differentiation from monocytes (moDCs) remains unknown. By 30 

curating scientific literature on moDCs differentiation, we established a preliminary logical model 31 

that helped us identify missing information for the activation of genes responsible for this 32 

differentiation, including missing targets for key transcription factors (TFs). Using ChIP-seq and 33 

RNA-seq data from the Blueprint consortium, we defined active and inactive promoters, together 34 

with differentially expressed genes in monocytes, moDCs, and macrophages (which correspond to 35 

an alternative cell fate). We then used this functional genomic information to predict novel targets 36 

for the identified TFs. We established a second logical model integrating this information, which 37 

enabled us to recapitulate the main established facts regarding moDCs differentiation. 38 

Prospectively, the resulting model should be useful to develop novel immunotherapies based on 39 

moDCs regulatory network. 40 

Keywords  41 

Dendritic cells, differentiation, Logical modeling, Regulatory networks 42 
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Introduction 43 

Dendritic cells (DCs) are the main antigen-presenting cells (1), whose role is to activate the innate 44 

immune response, by presenting antigens to the naïve lymphocytes in order to initiate the immune 45 

response (2). Dendritic cells have been used in immunotherapies for their capacity to activate the 46 

adaptive immune response,  in particular,  dendritic cells derived from monocytes (moDCs) (3), 47 

as monocytes circulate in peripheral blood, they are easily accessible. Furthermore, there is an 48 

established protocol for moDCs differentiation (3).  49 

 50 

The protocol to differentiate monocytes to moDCs consists in cultivating monocytes with colony-51 

stimulating factor 2 (CSF2) and interleukin 4 (IL4) (4). When only IL-4 is used, monocytes are 52 

activated, while treatment with CSF2 results in their differentiation into macrophages.  Only the 53 

combined stimuli results in DC differentiation, pointing to the importance of signalling interplay 54 

for the differentiation of moDCs. CSF2 signalling leads to the activation of NFΚB, MAPK, PI3K, 55 

JAK2, and STAT5 (5,6). IL4 signalling activates the JAK/STAT pathway, while JAK1 activates 56 

STAT3 and JAK3 activates STAT6 (7). There are some well-known transcription factors (TFs) 57 

ultimately activated by CSF2 and IL4 signalling pathways, but presumably, only a fraction of the 58 

target genes participating in moDCs differentiation have been reported (6,8,9). 59 

 60 

A good way to integrate multiple signalling pathways into a comprehensive regulatory network 61 

and check its coherence consists of developing a dynamical model (10).  As most of the available 62 

data are qualitative, it is natural to use a qualitative approach to build such a model. Logical models 63 

are well suited to represent this qualitative data and have been proposed for various similar 64 

processes  (11–13). This qualitative formalism relies on the construction of a regulatory graph, 65 
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whose nodes denote molecular components, while arcs denote (positive, negative, or dual) 66 

regulatory interactions. In the simplest cases, nodes are associated with Boolean variables, which 67 

take the values 0 or 1, denoting absence/inactivity or presence/activation, respectively (14). 68 

Logical models are usually derived based on a careful manual curation of relevant scientific 69 

literature; but they can also be enriched using other sources of information, such as high-70 

throughput sequencing data (15). Logical models can integrate different kinds of molecular entities 71 

(genes, proteins, lncRNA, etc.) (15). 72 

 73 

GINsim is a computational tool dedicated to the building and analysis of logical models,  enabling 74 

the delineation of logical regulatory graphs, together with various dynamical analyses, through 75 

model simulations, but also with the support of efficient algorithms to identify the attractors (stable 76 

states and/or oscillatory behavior) of the system, for wild-type or mutant conditions (14). The 77 

resulting model can be further analysed using the CoLoMoTo tool suite, an interactive toolbox 78 

integrating several logical modeling software tools, with a uniform interface to perform 79 

simulations and other analyses, which are easy to share, and reproduce through the use of 80 

notebooks (16).  81 

 82 

The aim of our study was to integrate all the information gathered from scientific literature and 83 

high-throughput data (RNA-seq and ChIP-seq) into a logical model of the regulatory network 84 

underlying moDCs differentiation. After iterative enhancement, our final model is able to properly 85 

recapitulate cell commitment for each of the initial conditions considered: (i) IL4 alone fosters 86 

monocyte activation, (ii) CSF2 alone fosters macrophage commitments, while (iii) CSF2 and IL4 87 

together foster moDC commitment.  88 
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Results 89 

Information gathered from literature curation leads to a fragmentary model of monocytes 90 

to dendritic cells differentiation 91 

To better understand the regulatory network controlling moDCs differentiation, we analysed the 92 

scientific literature and integrated relevant information into a regulatory graph. In this process, we 93 

focused on monocyte to moDCs differentiation studies carried on human cells, in particular, on 94 

studies where CSF2 and IL4 were used in similar culture conditions. The resulting regulatory graph 95 

is shown in Figure 1.   96 

 97 
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Figure 1. Regulatory graph controlling monocyte to moDCs differentiation, as derived from the 98 

scientific literature (last update “17april/2020”). The green nodes at the top represent the inputs 99 

(CSF2 and IL4), the yellow nodes denote transcription factors, the blue nodes denote moDCs 100 

specific genes, and orange nodes denote macrophage-specific genes. Nodes left in white 101 

correspond to components of generic signalling pathways. Green and red arcs denote positive and 102 

negative interactions, respectively. 103 

 104 

Based on this first regulatory graph, we used GINsim to define logical rules (combining conditions 105 

on regulatory nodes with NOT, AND and OR Boolean operators), to compute the corresponding 106 

stable states and to perform simulations in order to determine the cellular phenotypes reached for 107 

each specific input condition. For this preliminary model, we found six stable states, but only one 108 

of them could be directly interpreted as a cellular phenotype (predenditic cells), while the other 109 

stable states did not recapitulate the typical signatures of activated monocytes or of macrophages.  110 

 111 

Regarding the regulatory interactions between TFs and their target genes displayed in Figure 1, 112 

we observed that STAT6 has the highest number of interactions, while other TFs have only few 113 

interactions, such as STAT5, that only activates CIITA gene, or CREB that only activates 114 

ALOX15 gene. Furthermore, this regulatory graph contains very few specific moDCs markers.  115 

To complete this preliminary network, we decided to exploit epigenome and transcriptome data to 116 

infer novel regulatory interactions and integrate them into our logical model (a proof of concept 117 

of this approach can be found in Collombet et. al. 2016 (15)). 118 

 119 

Epigenome annotations help to unravel relevant transcription factor regulatory interactions 120 
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In order to complete our model of the regulatory network controlling the differentiation of 121 

monocytes into moDCs, we included the TFs known to be activated by CSF2 and IL4 signals in 122 

moDCs, as well as established monocytes markers. Moreover, we included information regarding 123 

the differentiation of monocytes into macrophages, which occurs when monocytes are treated with 124 

CSF2 alone (17). In short, we (i) used monocytes, moDCs, and macrophage epigenome data to 125 

define chromatin states, (ii) defined genomic regions likely to be involved in the regulation of the 126 

genes of the model, and (iii) searched for putative TFs binding sites in these regions. 127 

We analysed ChIP-seq data from the Blueprint consortium for six histone marks (H3K4me1, 128 

H3K4me3, H3K27ac, H3K36me3, H3K9me3 and H3K27me3) in monocytes, moDCs, and 129 

macrophages derived from monocytes. We then used ChromHMM (18) to annotate the epigenome 130 

in each cell type based on these data. The resulting states (segments) were classified as 131 

Quiescent/low signal, Polycomb repressed, Poised regulation, Active TSS, Active promoter, 132 

Primed enhancer, Active gene/enhancer, Low transcription, TSS repressed and Strong 133 

transcription (Figure 2a). As expected, it is possible to visualize clear differences in the epigenome 134 

of moDCs and monocytes when exploring genes with specific cell expression in a genome 135 

browser, for example, the gene IRF4, a TF that mediates the differentiation of moDCs, is only 136 

active in moDCs while it is poised on macrophages and monocytes (Figure 2b).  137 

 138 

 139 
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 140 
Figure 2. Epigenomic annotations of monocytes, moDCs, and macrophages. (a) Heatmap showing 141 

the histone mark enrichment in each of the states determined with ChromHMM. (b) IRF4 genomic 142 

region visualized in the UCSC browser, each row of segmentation corresponds to a specific cell 143 

type. Segmentation results from ChromHMM analysis, each color represents a state according to 144 

the color code used in the heatmap. State annotation was manually done based on biological 145 

knowledge. moDCs are the only cell type with the active gene marks (in green).  146 

 147 
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We selected the epigenome annotations regions with promoter-associated functions:  Active TSS, 148 

Repressed TSS, Active gene/enhancer, and Poised regulation. These regulatory regions were then 149 

used to predict binding sites for the fourteen TFs activated by CSF2 and IL4 pathways (Figure 1) 150 

using the position-weight matrices collected in the Jaspar database (19) with the pattern-matching 151 

tool matrix-scan (20) from the RSAT suite (21). This led us to define novel regulatory interactions 152 

targeting specific gene markers for moDCs, monocytes, and macrophages (Table 1), thereby 153 

enabling us to complete the regulatory network controlling monocytes to moDCs differentiation. 154 

 155 

Table1. Cell type-specific gene markers selected to be added into the model. Based on the 156 

epigenome analysis we identified relevant regulatory interactions that helped select candidate 157 

genes to be added to the model.  158 

Cell-type Gene 

moDCs TLR8 

moDCs TLR7 

moDCs TLR6 

moDCs TLR4 

moDCs TLR3 

moDCs NCOR2 

moDCs DEC205 
(LY75) 

moDCs DCIR 
(CLEC4A) 

moDCs CD83 

moDCs CD48 

moDCs CD226 

moDCs CD209 

moDCs CD1C 

moDCs CD1B 
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moDCs CD1A 

moDCs CD141 
(THBD) 

moDCs ITGAX 
(CD11C) 

moDCs CCL22 

moDCs CCL2 

Monocyte CD14 

Monocyte SELL 

Macrophage CD163 

Macrophage CCDC151 

Macrophage MERTK 

Macrophage CD206 

 159 

For thirteen out of 20 genes related to moDCs phenotype, we found putative binding sites for the 160 

TF IRF4 (Figure 3a), corroborating a central role for IRF4 in the moDCs differentiation. In 161 

particular, we predicted that IRF4 directly regulates TLR genes (TLR3, 4 and 7), which play a 162 

crucial role in antigen recognition and are thus relevant for moDCs function. Furthermore, we 163 

predicted that  TLR6 and TLR8 are regulated by STAT6, another essential TF in moDCs (6). In 164 

addition, we predicted that the genes encoding for the external proteins CD1A, CD1B, and CD1C 165 

are regulated by IRF4, as well as by other TFs (PU.1, PRDM1, NR4A1, CEBPA) related to moDC 166 

differentiation. Furthermore, we predicted that the gene coding for CD48, a costimulatory 167 

molecule involved in T cell activation, is regulated by PU.1, which is known to participate in  the 168 

differentiation of  STEM cell progenitors into leukocytes at different stages (22). We also looked 169 

for regulatory interactions between the identified TFs. Additionally, we validated interactions of 170 

PU.1 with CEBPA, IRF4, and IRF8. We also identified that AHR is regulating IRF4, MAFB, and 171 

PRDM1, which represent interesting candidates to assess experimentally. Figure 3b summarizes 172 
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the regulatory interactions that compose our final logical model, where colored squares emphasize 173 

novel regulations, and asterisks denote interactions already described in the literature.  174 

 175 

Figure 3. Predicted transcriptional regulatory interactions by TFs activated through CSF2 and IL4 176 

signalling cascades. Each TF binding motif was used to search for putative binding sites in selected 177 

regulatory regions (based on chromatin state annotations) of specific gene or TF. (a) The y-axis 178 

shows the list of regulatory TFs and the x-axis shows the moDCs specific target genes. (b) The y-179 

axis shows the list of regulatory TFs and the x-axis shows target TFs, in order to identify new 180 

regulatory interactions between TFs. Turquoise colored squares show predicted binding sites for 181 

the specified TF. Asterisks mark the binding sites for target genes or trans-regulation for target TF 182 

that have been already reported. Numbers at the end of each row correspond to the numbers of 183 

genes with regulatory interactions for each TF. Numbers at the top of every column correspond to 184 

the numbers of TF regulating each target gene. 185 

 186 

Integration of new relevant regulatory interactions improves model accuracy 187 

We integrated the selected gene markers for each cell type with the predicted regulatory TFs into 188 

our model by adding the discovered regulatory interactions summarized in Figure 3. Using the 189 
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new version of the model together with relevant Boolean rules, we set out to compute its stable 190 

states, which much better recapitulated the main cell fates compared to our first model (Figure 4a).   191 

Our revised model is characterised by four stable states. The first stable state corresponds to cell-192 

death, which is the expected outcome for monocytes without cytokine stimulation. The second 193 

state, with IL4 ON, corresponds to monocyte signature (KLF4, SELL, and CD14 genes). The third 194 

stable state, with CSF2 ON, corresponds to monocytes that display a macrophage signature 195 

(MAFB, CEBPB, CD163, and CD206 genes). Finally, the last stable state, with CSF2 and IL4 ON, 196 

displays the moDCs signature (i.e. with IRF4, STAT6, CD1A, and CD209 all ON) (Figure 4b).  197 

Once we performed the analysis of stable states computation using our model, we validated that 198 

the PI3K signalling remained inhibited in order to reach moDCs commitment, this behavior was 199 

described by Van de Laar et. al. 2012 (23).  200 

 201 
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Figure 4. Logical model of monocytes to dendritic cells differentiation in vitro. (a) The green 202 

nodes at the top represent the inputs (CSF2 and IL4), the yellow nodes denote other TFs, blue 203 

nodes correspond to moDC specific genes, orange nodes to macrophage-specific genes, and purple 204 

nodes to monocyte specific genes. Green and red arcs denote positive and negative interactions, 205 

respectively. (b) Stables states of selected nodes (signature for each cell type), with the mention 206 

of the corresponding cell type. The first column corresponds to the final outcome in the absence 207 

of both IL4 and CSF2, i.e. cell-death of the monocytes. The second column corresponds to the 208 

stimulation of monocytes by IL4. The third column corresponds to the macrophage outcome, in 209 

the presence of the sole CSF2. Finally, the fourth column corresponds to moDCs commitment, in 210 

the presence of both IL4 and CSF2, where STAT3 reaches the level 2 in the presence of the long 211 

non-coding RNA LnC-DC, and PU.1 reaches the level 2, which is required to turn-off MAFB 212 

during moDCs commitment. SuppFig1 displays the complete set of nodes.  213 

 214 

We used gene expression information to validate the different cell commitment expression 215 

signatures. To do that, we analysed RNA-seq data from monocytes, moDCs, and macrophages. 216 

Figure 5 displays the differential expression of the genes included in the model. Interestingly, we 217 

found two main clusters of genes highly expressed in moDCs, but down regulated in macrophages. 218 

These moDCs differentially express clusters of genes, including STAT3, STAT6, CEBPA, IRF4, 219 

TFs that participate in moDCs differentiation, also including CD206, MAOA, SLAMF1, that are 220 

specific markers for moDCs. Additionally, monocytes show highly expressed genes, like KLF4, 221 

IRF8, SELL, and CD14. 222 

 223 
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After integrating epigenome and transcriptome data into the model, we performed further 224 

simulations using the CoLoMoTo toolbox, with the purpose of recapitulating documented cellular 225 

commitment experiments. 226 

 227 
Figure 5. Clustered heatmap showing differentially expressed genes between cell types. The first 228 

three columns are moDCs, the next three columns are macrophages, and the last three columns are 229 

monocytes (columns represent biological replicates). The Z-score indicates the level of differential 230 

expression gene by gene bases. The colored column at the right represents specific gene markers 231 
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per cell type, in blue for moDCs, orange for macrophages, and purple for monocytes. The heatmap 232 

is clustered by differential expression. 233 

 234 

Model simulations correctly estimate cellular commitment to differentiation 235 

We imported our model into the CoLoMoTo Interactive Notebook, a digital notebook that enables 236 

integrated complementary analyses software (with PINT, BioLQM, and MaBOSS) and facilitates 237 

reproducibility (24). The notebook is available as supplementary material. We used the tool Pint 238 

(25) to assess nine single gene mutants (IRF4, STAT6, PU.1, IRF8, MAFB, NCOR2, AHR, JAK3, 239 

CEBPB) that have been reported in the literature to affect the differentiation process. We were 240 

able to replicate the behavior of each mutant (perturbations) with our model. Table 2 shows the 241 

summary of the results obtained for these perturbations, while Figure 6 shows the behavior of each 242 

node for each perturbation at the corresponding stable states. 243 

  244 
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Table 2. Perturbations tested in the model of monocyte to moDCs differentiation. 245 
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 247 

Figure 6. Clustered heatmap of the stable states obtained for all the perturbations considered. Each 248 

row represents one perturbation and one corresponding stable state. For example, NCOR2%0 1 249 

denotes a knockout of NCOR2 and corresponds to the stable state 1 obtained for this condition. 250 

Every column represents one of the 95 nodes of the logical model. 251 
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We used the tool BioLQM to validate the reachability of each cell type commitment according to 252 

each stimulus combination. In order to verify the percentage of the final cell fate with the different 253 

initial stimulus, we used the stochastic Boolean simulation tool MaBoSS to estimate the 254 

probabilities to reach alternative states, where the final stable states represent alternative cell fate 255 

commitment (30). 256 

From the literature, we know that CSF2 and ILF4 presence commits cells to differentiate to 257 

moDCs. Using MaBoSS, we tested cell commitment with the combination of CSF2 and IL4 ON 258 

at the initial state. This simulation showed that 100% of cells then commit to become moDCs 259 

(Figure 7c). For IL4 ON but not CSF2, 100% of the cells differentiate into stimulated monocytes, 260 

with the corresponding gene markers ON (figure 7a). For CSF2 ON but not IL4, 100% of the cells 261 

differentiated to macrophages, as expected (Figure 7b). In figure 7, we can clearly distinguish the 262 

three stable states corresponding to monocytes, moDCs, and macrophages, respectively. 263 
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 264 

Figure 7. Stochastic simulations with MaBoSS trajectories correctly recapitulate cellular 265 

commitment. The x-axis shows the time, the y-axis shows the probability to reach every final 266 

commitment. Highlighted in a rectangle is the final cellular commitment per stimulus. (a) IL4 ON 267 

gives rise to 100% differentiated cells into stimulated monocytes. (b) CSF2 ON gives rise to100% 268 
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of the cells differentiated into macrophages. (c) With both CSF2 and IL4 ON 100% of cells commit 269 

to the moDC phenotype. 270 

 271 

Discussion 272 

The construction of logical models traditionally relies on manual curation of the literature of a 273 

biological system of interest. In this work, we further took advantage of public ChIP-seq and RNA-274 

seq data from the Blueprint consortium (31) to delineate in more detail the network driving the 275 

differentiation of monocytes into moDCs. We were able to fill various gaps in this regulatory 276 

network, which allowed us to reach a better understanding of this particular differentiation process. 277 

In the process, we predicted a series of novel interactions, validated in silico through our 278 

simulations, and amenable to further experimental tests. 279 

 280 

In particular, we delineated a series of target genes presumably important for the differentiation of 281 

monocytes into moDCs. Some TFs are already well known, such as IRF4, AHR, STAT6, and PU.1 282 

(6,9,32). In our analysis, we were able to recapitulate key features regarding the expression of the 283 

corresponding genes, such as a high expression of IRF4 and STAT6 genes in moDCs. We further 284 

validated the results obtained by Vento et al 2016 (6), in which STAT6 is required for moDCs 285 

differentiation; according to our model, STAT6 is indeed required for moDCs differentiation, but 286 

not for macrophage commitment.  287 

 We were also able to unravel TFs not previously reported as relevant in this process, such as 288 

FOXO1, C/EBPɑ, AP1, and PRDM1, tentatively regulating specific moDCs genes. We predict 289 

that FOXO1 regulates at least six moDCs genes, while C/EBPɑ regulates at least seven of them. 290 
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Particularly, AP1 regulates TLR4, DEC205 (LY75), and CD209 (DC-SING), which are relevant 291 

for an antigen-presenting cell. CREB1 is also participating in the regulation of moDC genes, 292 

through the activation of CD141 y CD1A. We also predict for the first time that NR4A1 could 293 

regulate CD1C, a protein found at the surface of moDCs.  294 

 295 

We further reviewed data recently published on the predicted TF-gene interaction considered in 296 

our model, and we found that some of these interactions have been recently experimentally 297 

confirmed. In particular, the regulation for the ITGAX gene was shown to be regulated by PU.1 298 

and IRF4 (32), as predicted by our epigenomic analysis. 299 

 300 

This study represents the first effort to integrate the current knowledge on monocytes to moDCs 301 

differentiation in vitro and should foster our understanding of this process. Additionally, we 302 

unraveled novel TFs and regulatory links potentially involved in this differentiation process. 303 

 304 

Material and methods 305 

GINsim implementation and simulations.  306 

Using the software GINsim version 3.0 (14), we integrated the previously described signalling 307 

pathways that are activated when monocytes are cultured with CSF2 and IL4 (studies reviews are 308 

inside GINsim model as annotations, and in the SuppFile1). We also performed a review of the 309 

available literature related to the process of monocyte to moDCs differentiation.  The logical model 310 

was built using GINsim (33), where nodes represent genes or proteins, and edges represent the 311 

interactions between them, these interactions can be negative (red arrow) or positive (green arrow). 312 
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In general, each node can take two values, zero or one, but in special cases, activation (ON) 313 

requires to consider different qualitative levels of activation (e.g.: STAT3 expression is activated 314 

by JAK1, but the presence of LncDC leads to a further increase of STAT3 expression). For these 315 

special cases, it is possible to use multilevel nodes, e.g. ternary variables enabling an additional 316 

level of activation (hence taking the values 0, 1, and 2). Logical rules are associated with each 317 

component of the network, combining literals (i.e. regulatory variables with specific values) with 318 

the classical Boolean operators AND (&), OR (|) and NOT(!), thereby defining in which conditions 319 

each of these components can be activated or shut down.  320 

 321 

ChIP-seq data analysis.  322 

Raw fastq files from ChIP-seq experiments were retrieved from the Blueprint Consortium (31) 323 

data access portal (http://dcc.blueprint-epigenome.eu/#/datasets) with dataset identifiers 324 

EGAD00001001552, EGAD00001002484, EGAD00001002485, EGAD00001001576, 325 

EGAD00001002504. We processed six histone marks data (H3K4me1, H3K4me3, H3K27ac, 326 

H3K36me3, H3K9me3, and H3K27me3) with two biological replicates from human monocytes, 327 

macrophages, and moDCs. We performed quality control of read sequences with FastQC/0.11.3 328 

tool (34),  then we used Trimmomatic/0.33 (35) to improve quality reads before mapping them 329 

with bowtie2-2.2.6 (36) to the human hg38 reference genome. Second quality control is required 330 

after alignment, for which we used ENCODE QC, which consists of three major tests:  NRF (non-331 

redundant fraction), PBC1 (PCR Bottleneck coefficient 1), and PBC2 (PCR Bottleneck coefficient 332 

2) (37). IDR analysis (37) was performed to replicate control.  333 

 334 

Chromatin states definition.  335 
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We used one set of the six histone marks (H3K4me1, H3K4me3, H3K27ac, H3K36me3, 336 

H3K9me3, and H3K27me3) ChIP-seq data for each cell type (monocytes, macrophages, and 337 

moDCs) and their respective input control. Chromatin states were defined using ChromHMM (18) 338 

version 1.12 (38) with the recommended parameters (BinarizeBed -b 200, assembly hg38), and 339 

specifying 10 states. In order to define the description for the states, we used the probability of 340 

appearance of different marks in every state (e.g. H3K27ac-Enhancers, H3Kme1-Enhancers, 341 

H3K4me3-Promoters, H3K27me3-Repressive, H3K9me3-Repressive, H3K36me3-Transcribed 342 

(39), and then we looked into the enrichment of the states for several genome annotations 343 

(CpGIsland, RefSeqExon, RefSeqGene, RefSeqTES, RefSeqTSS, and RefSeq2kb). Integrating 344 

this information, we were able to manually assign a functional description to each state. Once we 345 

described every state, we focused on Active TSS, Repressed TSS, Active gene/enhancer, and 346 

Poised regulation regions to look for regulatory interactions between TFs and target genes. For 347 

poised regulation, it is well known that regions go from poised to active regions when cells are 348 

under differentiation. Additionally, we took the whole segment for each state selected result from 349 

ChromHMM. 350 

 351 

Search for TFBS using matrix-scan 352 

From manual curation of literature, we identified 22 TFs that participate after monocyte 353 

stimulation leading to the differentiation of macrophages or moDCs. We retrieved one PSSM 354 

(Position-Specific Scoring Matrix) for each of the 22 TFs (SuppTable1) from the JASPAR2018 355 

database human collection (19). We performed pattern-matching searches for TF motif instances 356 

using the 22 PSSMs in the selected chromatin regions (Active TSS, Repressed TSS, Active 357 

gene/enhancer, and Poised regulation) from ChromHMM results. For this task we used the tool 358 
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matrix-scan (20) from the RSAT suite (21) with the following main parameters: background model 359 

of Markov order 1 and stringent thresholds of p-value ≤ 10-5 and score 1 (-markov 1 -lth score 1 360 

-uth pval 1e-5). 361 

 362 

RNA-seq analyses 363 

Raw fastq files from RNA-seq experiments were retrieved from the Blueprint Consortium (31) 364 

data access portal (http://dcc.blueprint-epigenome.eu/#/datasets) with dataset identifiers: 365 

EGAD00001002308, EGAD00001001506, EGAD00001002526, EGAD00001002507, and 366 

EGAD00001001582. For this analysis, we used the methods described in Law et al 2016 (40). In 367 

brief, that is quality control with FastQC/0.11.3 (41), pseudo-alignment and count determination 368 

with Kallisto 0.43.1 (42) using the release-90  from Ensembl (ftp://ftp.ensembl.org/pub/release-369 

90/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz) to create our index with the 370 

following command: kallisto index -i index_kallisto_hsap_90_cdna --make-unique 371 

Homo_sapiens.GRCh38.cdna.all.fa.gz. Counts were assigned to genes using Tximport 1.14.0 (43), 372 

and were processed from raw-scale to counts per million (CPM), then they were transformed to 373 

log-CPM. Genes below 1 of expression were removed. Then we normalized raw library sizes using 374 

the calcNormFactors function from edgeR library in R. Afterwards, we performed a differential 375 

gene expression analysis with edgeR 3.28.0 (44). Finally, we used heatmap.2 from the gplots 376 

library to plot the genes found in our model (Figure 5). 377 

 378 

CoLoMoTo analysis 379 

In order to assure reproducibility, we used the CoLoMoTo toolbox(16) that integrates several 380 

logical modeling tools, including GINsim, bioLQM, Pint, and MaBoSS. We used GINsim to 381 
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compute the stable states, and bioLQM to identify trap spaces approximating cyclic attractors. The 382 

computation of mean stochastic trajectories was performed using MaBoSS (30). The GINsim 383 

model and the CoLoMoTo notebook are available at 384 

https://github.com/karenunez/moDC_model_differentiation. 385 

 386 

Figures generation 387 

Figure 1, and 4A were generated with the GINsim software. The plots in Figures 2A, 3A, 3B, and 388 

4B were done using the ggplot2 library from R. Figures 6, and 7 are from the CoLoMoTo notebook 389 

constructed in this study. 390 

Supplemental material 391 

Supplementary files are available at https://github.com/karenunez/moDC_model_differentiation. 392 

SuppFile1. Model_annotation.doc 393 

SuppFile2. Mo_Mac_moDCs_ChromHMM_summary.html 394 

SuppFile3. moDC_E7_ActiveGeneEnhancer.bed 395 

SuppTable1. TFs_JASPARID_matrixes.xlsx 396 

SuppFigure1.StableStates_95nodes.png 397 
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