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 77 

Synopsis 78 

The microbial markers identified at the species/strain levels may be useful for 79 

non-invasive diagnosis of NAFLD. The microbial differences in bile acid metabolism 80 

and strain-specific differences among NAFLD microbiota highlight the potential for 81 

precision medicine in NAFLD treatment. 82 

 83 

 84 

  85 
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Abstract 86 

Background & Aims: Multiple mechanisms for the gut microbiome contributing to 87 

the pathogenesis of non-alcoholic fatty liver disease (NAFLD) have been implicated. 88 

Here, we aim to investigate the contribution and potential application for altered bile 89 

acid (BA) metabolizing microbe in NAFLD using whole metagenome sequencing 90 

(WMS) data.  91 

Methods: 86 well-characterized biopsy-proven NAFLD patients and 38 healthy 92 

controls were included in the discovery cohort. Assembly-based analysis was 93 

performed to identify BA-metabolizing microbes. Statistical tests, feature selection 94 

and microbial interaction analysis were integrated to identify microbial alterations and 95 

markers in NAFLD. An independent validation cohort was subjected to similar 96 

analyses.  97 

Results: NAFLD microbiota exhibited decreased diversity and microbial interactions. 98 

We established a classifier model with 53 differential species exhibiting a robust 99 

diagnostic accuracy (AUC=0.97) for dectecting NAFLD. Next, 8 important 100 

differential pathway markers including secondary BA biosynthesis were identified. 101 

Specifically, increased abundance of 7α-HSDH, baiA and baiB were detected in 102 

NAFLD. Further, 10 of 50 BA-metabolizing metagenome-assembled genomes 103 

(MAG)s, from Bacteroides ovatus and Eubacterium biforme, were dominant in 104 

NAFLD and interplayed as a synergetic ecological guild. Importantly, two subtypes 105 

of NAFLD patients were observed according to secondary BA metabolism potentials. 106 
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Elevated capability for secondary BA biosynthesis was also observed in the validation 107 

cohort.  108 

Conclusions: We identified novel bacterial BA-metabolizing genes and microbes that 109 

may contribute to NAFLD pathogenesis and serve as disease markers. Microbial 110 

differences in BA-metabolism and strain-specific differences among patients highlight 111 

the potential for precision medicine in NAFLD treatment. 112 

Keywords: NAFLD; gut microbiota; secondary BA synthesis; whole metagenome 113 

sequencing data  114 

  115 
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Introduction 116 

Non-alcoholic fatty liver disease(NAFLD) has become one of the leading causes of 117 

liver disease worldwide, with the global prevalence estimated to be 24%.[1] NAFLD 118 

is expected to be the No. 1 cause for cirrhosis in the United States within a decade.[2]  119 

The pathogenic mechanism of NAFLD remains unclear. The current multiple-hit 120 

hypothesis is that NAFLD is a consequence of a myriad of factors acting in a parallel 121 

and synergistic manner in individuals with genetic predisposition.[3] Factors such as 122 

insulin resistance, central obesity, environmental or nutritional factors, and gut 123 

microbiota, as well as genetic and epigenetic factors, are linked to its pathogenesis.[2, 124 

4, 5]  125 

Recently, the crosstalk between the gut and the liver is increasingly recognized, and 126 

many studies have reported dysregulated gut microbiota in NAFLD patients. [6-10] 127 

There are several potential mechanisms for the gut microbiota to influence NAFLD 128 

development. These effects are mediated by microbial components and metabolites, 129 

such as lipopolysaccharide, alcohol, and bile acid(BA).[11]  130 

BA not only facilitate the digestion and absorption of fatty foods as detergent, they 131 

also act as important signaling molecules via nuclear receptors, such as farnesoid X 132 

receptor(FXR) and G protein coupled BA receptor(GPBAR1 or TGR5) to modulate 133 

hepatic BA synthesis, glucose and lipid metabolism. Recently, we observed 134 

suppressed BA-mediated FXR signaling in NAFLD liver and intestine, which is in 135 

harmony with increased secondary BA production. Furthermore, using 16S rRNA 136 
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data, we observed elevated abundance of secondary BA metabolizing related bacteria 137 

and pathways in the gut microbiome of NAFLD. [12] However, the 16S rRNA 138 

sequencing data has limited resolution which does not allow the identification of the 139 

species or an accurate functional analysis. [13] 140 

Whole metagenome sequencing(WMS) allows us to achieve a satisfactory 141 

resolution of the microbiome. Earlier we have used the WMS data to characterize the 142 

gut microbiota in NAFLD patients with and without advanced fibrosis and identified 143 

37 differential bacterial species, among which the abundance of Escherichia coli and 144 

Bacteroides vulgatus was increased in patients with advanced fibrosis and it’s 145 

association with microbial metabolites.[9, 14-16] WMS data were also used to study 146 

the interactions between the gut microbiome and steatosis in obesity.[15, 17] 147 

However, a similar study is lacking for the comparison of the gut community between 148 

healthy and NAFLD subjects using WMS data, which is our goal in this study. Here 149 

we report the structural and functional characteristics of the gut microbiome in 150 

NAFLD, and its association with BA metabolism.  151 

 152 

Results 153 

Gut microbiota alterations between NAFLD patients and healthy controls 154 

WMS data from 86 well-characterized biopsy-proven NAFLD patients and 38 healthy 155 

controls with similar characteristics (Table 1 and Table S1) were chosen to study the 156 
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structural and functional differences in gut microbiota between NAFLD patients and 157 

healthy controls. And we have confirmed that gender or age distribution did not 158 

account for the observed microbial differences in this study (Figure S1). 159 

Compositional changes in NAFLD gut microbiota 160 

We determined the microbial compositions of NAFLD and healthy controls using 161 

WMS data. Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria were the 162 

dominant phyla that collectively account for around 90% proportions in both groups 163 

(Figure S2A). NAFLD individuals had lower bacterial diversity than healthy controls 164 

(Figure S2B). Besides, significant compositional differences were observed between 165 

these two groups (Figure S2C).  166 

To identify microbial markers that may distinguish NAFLD from healthy subjects, 167 

differential species were determined with Mann-Whitney U-tests. 53 species with 168 

FDR values < 0.1 were identified as differential species (Figure 1 & Table S2). 169 

Among these, 11 species were dominant in NAFLD patients, which mainly belong to 170 

Clostridia class, including Eubacterium siraeum, Clostridium bolteae, E. coli and 171 

B.ovatus, B.stercoris from Bacteroidia class. On the other hand, 42 species 172 

significantly reduced in NAFLD patients were mainly of Bacteroidia class, including, 173 

Bacteroides dorei, Alistipes shahii, and of Clostridia class, for instance, Eubacterium 174 

eligens, Eubacterium hallii, and Faecalibacterium prausnitzii. In addition, random 175 

forest (RF) model constructed with differential species achieved an AUC of 0.97 to 176 

detect NAFLD patients from controls (Figure S3). 177 
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Ecological structural changes in NAFLD gut microbiota 178 

Furthermore, at whole-community level, microbial interaction analysis was performed 179 

to investigate potential changes in ecological structure. There were more species in 180 

healthy communities than those in NAFLD communities (167 nodes vs 141 nodes) 181 

though with similar amount of interactions. Then, we examined the “core community” 182 

(interactions with magnitudes > 0.4) of healthy and NAFLD groups, respectively. 183 

Considerable discrepancies existed in the “core community” of healthy and NAFLD 184 

(Figure 2A&B). In detail, the healthy “core community” was more complex, with 162 185 

species and 565 interactions, compared to the NAFLD community with 81 species 186 

and 166 interactions. And the NAFLD community was separated into 8 isolated 187 

components, an indication of unstable microbial community. Among them, the major 188 

component harbored most species from Clostridia class, such as BA production 189 

bacteria, C.bolteae (node NO. 78), C.clostridioforme (node NO. 138) with increased 190 

proportion in NAFLD, while species from Bacilli class were dominant in the second 191 

major component. Besides, species with increased abundance in NAFLD patients 192 

(circle nodes in Figure 2B) were dominant in the “core community” and positively 193 

interacted with each other. Then, we looked into the top 20 hub species of “core 194 

community”, respectively. 10 of them were common in both group, such as C.bolteae, 195 

C.hathewayi, Dorea longicatena, Flavonifractor plautii, which may play the role as 196 

the “keystone” to sustain the homeostasis (Figure 2C&D).  197 

 198 
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Functional changes in NAFLD gut microbiota  199 

Microbial functional profiles were determined at pathway level using HUMAnN2 and 200 

92 differential pathways were identified between the NAFLD and the healthy groups 201 

(Table S3). Similarly, we identified 8 important pathway features (Figure 3A) to build 202 

RF model (AUC=0.83) that could distinguish NAFLD patients from healthy subjects 203 

(Figure 3B). Most pathways were more represented in NAFLD microbiota than in 204 

controls. These pathways included secondary BA synthesis (ko00121) (Figure 3C), 205 

benzoate degradation (ko00362), biosynthesis of ansamycins (ko01051) and oxidative 206 

phosphorylation (ko00190) (Figure S4).  207 

Novel genes and microbial genomes associated with secondary BA synthesis 208 

The fact that the secondary BAs biosynthesis pathway was significantly elevated in 209 

NAFLD (Figure 3C) prompted us to examine the relevant BA metabolizing enzymes 210 

encoded by the microbiome. Taking advantage of the WMS data, we were able to 211 

quantify the gene abundance and to map these genes to specific microbial genomes. 212 

Genes related to secondary BA synthesis 213 

Bacterial genes directly involved in secondary BA synthesis catalyze the 214 

deconjugation, the oxidation and epimerization, or the multi-step 7α-dehydroxylation 215 

reactions (Figure 4A). Protein sequences of target enzymes were collected from 216 

Integrated Microbioal Genomes(IMG) database (Figure 4A).[18] High quality protein 217 

sequences were selected to construct hidden Markov models(HMMs), in order to 218 
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identify potential BA metabolizing enzymes.  219 

The data (Figure 4B) showed that genes encoding 7-alpha-hydroxysteroid 220 

dehydrogenase(7α-HSDH), BSH and bile acid inducible operon (bai)A, baiB, baiCD, 221 

baiH were reletively more abundant than baiE, baiF and baiI. Importantly, 222 

significantly increased abundance of 7α-HSDH, baiA and baiB were observed in 223 

NAFLD compared to controls. These data were consistent with the pathway analysis 224 

results, and confirmed the increased secondary BA production in NAFLD.[12]  225 

Novel identification of microbial genomes related to secondary BA synthesis 226 

using advanced bioinformatics  227 

To identify the BA metabolizing microbial genomes, the metagenomic-assembled 228 

species(MAG) analysis was performed. Prevalent genes in the non-redundant gene 229 

catalog that presented in more than 5 samples were binned into 252 MAGs, which 230 

were considered to represent distinct microbial genomes. Among these, 50 MAGs that 231 

contain at least one gene encoding BSH, HSDH or bile acid inducible operons (Table 232 

S4) were defined as BA-metabolizing MAG. To obtain relatively complete microbial 233 

genomes, we re-assembled these 50 MAGs using high quality reads mapped to genes 234 

in each MAG.  235 

Among these, 10 MAGs exhibited significantly increased abundance in NAFLD, 236 

while 18 MAGs were reduced in NAFLD (Figure 5A). Among the 10 MAGs elevated 237 

in NAFLD, 6 MAGs belong to Bacteroides (order Bacteroidales), including 238 
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B.vulgatus, B.ovatus, and B.stercoris. Other MAG genomes were assigned as 239 

E.rectale and E.biforme (order Clostridiales). BA-metabolizing MAGs with reduced 240 

abundance in NAFLD are mainly from R.bromii, D.longicatena and B. dorei. 241 

Furthermore, we explored the species’ contributions of pathways in via HUMAnN2, 242 

and found that the pathway secondary bile acids biosynthesis were mainly encoded by 243 

E.eligens (48.3%) and B.vulgatus (26.2%)( Figure S5). This is consistent with the 244 

increased BA-metablizing MAGs belonging to species Bacteroides vulgatus and 245 

Eubacterium eligens. 246 

For a better understanding of the BA metabolizing microbial community, microbial 247 

interactions analysis was performed with BA-metabolizing MAGs. In contrast to the 248 

situation where more interactions existed in healthy group on whole-community level, 249 

we found that the sub-network of BA-metabolizing MAG was more complex with 250 

considerable interactions in NAFLD than in controls (164 and 100 edges, 251 

respectively) (Figure 5B &C). In addition, most MAGs with higher proportions in 252 

NAFLD patients were hub nodes in both healthy and NAFLD BA-metabolizing 253 

communities and were positively interacted, such as Bacteroides sp. MAG001, 254 

B.vulgatus MAG007, B.ovatus MAG026, B.vulgatus MAG030 and B.xylanisolvens 255 

MAG117. These are likely "house-keeping" species for BA metabolism. In contrast, 256 

Bacteroides stercoris MAG003, an MAG not included in the healthy network, was 257 

highly elevated in NAFLD, ranked high in the NAFLD network, and positively 258 

interacted with the "house-keeping" BA metabolizing species.  Similarly, E.biforme 259 
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MAG036 and MAG089, which exhibited the lowest hub score in healthy network, 260 

ranked the highest in NAFLD network.  261 

In general, the observed species were represented by multiple MAGs. Here, 262 

R.bromii was represented by 7 MAGs, and E.eligens by 5 MAGs. However, only one 263 

of the 7 R.bromii MAG was significantly increased in NAFLD group, while 4 others 264 

showed decreased abundance (Table S5). Situations were similar in B.vulgatus (two 265 

of three increased) and E.rectale (one increased and two decreased). Unexpectedly, 266 

multiple MAGs of the same species were distributed in different modules both in 267 

healthy and NAFLD communities(Table S6). Apparently, these observations indicate 268 

that strains within the same species may function differently.  269 

Different BA metabolizing potentials among NAFLD microbiota and 270 

emergence of two subtypes of NAFLD: High BA versus normal BA subtype 271 

Although the average abundances of the secondary BA metabolism pathway and 272 

related genes were increased in NAFLD, we noticed that the abundances exhibited a 273 

broad distribution among NAFLD patients (Figure 3C and 4B). Many of the NAFLD 274 

microbiota exhibited BA metabolizing potentials similar to those of healthy controls. 275 

Based on the abundance of 3 differential BA-metabolizing genes (7α-HSDH, baiA 276 

and baiB), NAFLD patients were clustered into two subtypes: normal-BA subtype 277 

comprising 45 patients and high-BA subtype comprising 37 patients (Figure 6A), 278 

which was not related to the disease severity (p=0.7). The abundances of the 3 marker 279 

genes were all significantly higher in high-BA subtype, but were similarly represented 280 
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between normal-BA subtype and healthy control group (Figure 6B). In addition, we 281 

performed the PCA analysis based on the entire differential microbial enzymes and 282 

found that the normal-BA subtype and the healthy control group exhibited closer 283 

distance, as compared to the high-BA group (Figure 6C). In further characterization of 284 

the microbial profiles of the patterns of the normal-BA and high-BA groups, we 285 

identified 3 species (Table S7), 68 enzymes (Table S8) and 16 pathways (Table S9) 286 

that could distinguish the normal-BA subtype from the high-BA subtype, and, at the 287 

same time, could distinguish NAFLD from the healthy group. Based on the relative 288 

abundance of these differential features, the study subjects were clustered into three 289 

groups consistent with their BA metabolizing potentials. Features were also clustered 290 

into two groups (Figure S6). One group (including species Flavonifractor plautii, 291 

enzymes 2-dehydropantoate 2-reductase and glutamate 5-kinase and pathway 292 

glycosaminoglycan degradation etc.) exhibited elevated abundance in normal-BA 293 

subtype and reduced abundance in high-BA subtype. The other group (including 294 

species Escherichia coli and Ruminococcus bromii, enzymes glycerol dehydrogenase, 295 

agmatinase and pathway citrate cycle, phosphotransferase system etc.) exhibited an 296 

opposite distribution among the study groups.  297 

Elevated secondary BA synthesis capability in the validation cohort of 298 

NAFLD 299 

Similar analyses were performed with the validation dataset. The secondary BA 300 

synthesis genes 7α-HSDH, BSH,baiA, baiB, baiCD, baiF, and baiH were reletively 301 
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more abundant than baiE and baiI. Importantly, significantly increased abundance of 302 

most secondary BA synthesis genes were observed in NAFLD compared to controls 303 

(Figure S7).  304 

As for BA metabolizing microbial genomes, we identified 13 MAGs, each carrying 305 

at least one gene encoding BSH, HSDH or bai operon. Among these, 9 MAGs 306 

exhibited a trend of increased abundance in NAFLD. Consistent with the discovery 307 

cohort, these 9 MAGs belonged to B.vulgatus, and R. bromii(Table S10). Statistical 308 

significance was not achieved for the increased abundances of the MAGs, likely due 309 

to the small sample size.  310 

Discussion 311 

In this study, we defined the structural and functional differences in gut microbiota 312 

between NAFLD and healthy subjects, at the resolutions of gene, species and strain. 313 

The current study is novel in using WGS data to compare the gut microbiota between 314 

NAFLD and healthy controls and underpinning the role of BA metabolizing 315 

microbiome in NAFLD, and potentially identifying two microbiota-derived subtypes 316 

of NAFLD that may have clinical implications for both biomarker as well as 317 

therapeutic development. Compared with the approach of 16S rRNA sequencing, 318 

WMS data allow direct function quantification and accurate taxa assignment of the 319 

entire gut microbiome, at the levels of species and strain. Out of the many differential 320 

representations of genes and species between NAFLD and healthy controls, one 321 

outstanding observation is the increased abundance of secondary BA metabolizing 322 
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genes and microbes in NAFLD and that BA metabolizing bacteria were dominant taxa 323 

in the gut of NAFLD. For the first time, we identified the genes and bacterial strains 324 

responsible for elevated secondary BA synthesis in NAFLD. Similarly, increased 325 

abundances of the BA metabolizing genes and bacterial species were observed in an 326 

independent validation cohort. Considering the profound impact of BA signaling on 327 

lipid and carbohydrate metabolism[19], the differential BA metabolizing genes and 328 

bacterial strains we identified may serve as novel therapeutic targets for NAFLD 329 

management. 330 

We and others have reported elevated secondary BA production in NAFLD. [12, 331 

20] In our previous study[12], we observed much increased secondary BAs in 332 

NAFLD serum and consistently, an elevated taurine metabolizing microbiota, an 333 

indication of increased BA metabolism in the gut. However, we did not observe any 334 

significant change in the abundance of those microbes that directly metabolize BA 335 

(that is, microbes encoding BSH, 7-alpha-HSDH and 7-alpha-dehydroxylase), likely 336 

because the 16S rRNA sequencing approach was not able to provide a sufficient 337 

resolution for functional analysis. With the advantage WGS data, the current study 338 

was able to provide convincing evidence at a satisfactory resolution, that secondary 339 

BA synthesis enzymes and microbes with secondary BA metabolizing potentials were 340 

indeed elevated in NAFLD gut microbiota. As secondary BAs are potent antagonistic 341 

ligands for FXR, data presented here is a strong support for the hypothesis that 342 
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elevated secondary BA synthesis by the microbiota contributes to NAFLD 343 

etiology.[12, 21] 344 

Although on average NAFLD patients exhibited elevated BA metabolizing 345 

microbiota, and higher serum DCA (secondary BA) when compared to healthy 346 

controls, our data showed that elevated BA metabolizing microbiota was not a 347 

unanimous phenomenon in NAFLD. More than half of the NAFLD patients (45 out of 348 

82) had a microbiota with normal BA metabolizing potential. Based on BA 349 

metabolizing potentials, our NAFLD patients can be clustered into two subtypes. This 350 

indicates that BA related pathomechanism does not apply to many NAFLD patients, 351 

in line with the current multi-hit hypothesis.[3] Besides the difference in BA 352 

metabolizing potentials, these two subtypes of the gut microbiota also exhibit 353 

different abundances in other genes, pathways, and bacterial species. It is interesting 354 

to note that NAFLD microbiota with higher BA metabolizing potentials also exhibited 355 

elevated representation of E.coli, a potent alcohol producer[6, 22], suggesting that the 356 

gut microbiota may impact NAFLD pathogenesis through multiple mechanisms in the 357 

same patient. 358 

BA based therapies such as obeticholic acid has been shown to improve NASH. 359 

[23] However, the response rates to OCA in improvement of one-stage of fibrosis in 360 

the FLINT trial was 35% versus 19% in placebo.[24] It is plausible that NAFLD 361 

patients with altered BA subtype may be more likely to respond to BA based therapies 362 
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and those with a normal BA subtype should receive an alternate strategy paving the 363 

pay for a microbiome based precision medicine tool in NASH therapeutics. 364 

Another outstanding observation in this study is that many strains of the same 365 

species are functionally different. Specifically, different strains of Bacteroides ovatus 366 

were clustered into different functional modules (modules 0, 2, 4 in healthy 367 

communities and modules 3, 4, 6 in NAFLD communities). It is also interesting to 368 

note that only one of the four observed strains of Bacteroides ovatus was significantly 369 

increased in NAFLD group. Similar observations were reported for F. prausnitzii[25, 370 

26] and E.coli[27, 28], suggesting the genomic variability within a microbial 371 

species.[29] Some of the microbiome studies based on 16S rRNA platforms may need 372 

a re-evaluation because of this genomic variability. 373 

It was interesting to note that 10 BA-metabolizing bacterial strains, including 374 

B.stercoris, E.biforme, and R.bromii, were elevated and were dominant strains in 375 

NAFLD microbiota. These BA-metabolizing strains belong to two different phylum. 376 

Zhao et al. proposed a concept in gut microbiota that a group of species that “exploit 377 

the same class of environmental resources in a similar way” may be considered as a 378 

“guild” in ecology[30] and members of a guild do not necessarily share taxonomic 379 

similarity, but they co-occur when adapting to the changing environment.[25] 380 

Similarly, the 10 BA-metabolizing strains may act as a synergetic guild to promote 381 

the secondary BA production in the NAFLD microbial community. There were more 382 

positive interactions among these 10 strains in NAFLD community than in healthy 383 
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community, indicating elevated capabilities of secondary BA production and 384 

intensified competition among these secondary BA producers within the microbial 385 

guild of NAFLD. It is likely that these strains are responsible for elevated secondary 386 

BA production in NAFLD, contributing to NAFLD pathogenesis.[12] Among these 387 

10 strains, MAG036，MAG089，and MAG003 with increased abundance and the 388 

highest network importance in NAFLD may act as the “keystone” species[53], and 389 

therefore, represent potential targets for intervention.  390 

At the whole community level, the NAFLD gut microbiota exhibited significantly 391 

reduced diversity compared to the healthy controls. In addition, much reduced 392 

interactions among the members of the NAFLD gut microbiota were observed. With 393 

less strains and sparse interactions, the gut microbial community in NAFLD is 394 

relatively weak and unstable. Similarly, reduced biodiversity were reported in the gut 395 

of obesity.[31] It is postulated that long-term dietary habit is the major cause for the 396 

altered gut microbiota.[32] The biodiversity disaster in the gut of humans demands 397 

immediate attention. The restoration of the gut microbial diversity may, at the same 398 

time, prevent or cure many of the microbiota related diseases including NAFLD. 399 

In summary, we identified specific genes and bacterial strains responsible for 400 

elevated secondary BA production in NAFLD. These genes and strains may serve as 401 

novel therapeutic targets for microbiome-based high-BA subtype of NAFLD. These 402 

findings strongly support our hypothesis that elevated secondary BA synthesis 403 

contributes to the development of NAFLD. In addition, our WGS study revealed the 404 
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heterogeneity of the gut microbiota among NAFLD patients highlighting the 405 

importance of personalized treatment for NAFLD. Our study also revealed many 406 

other microbial characteristics of the NAFLD that demands attention such as the 407 

much reduced diversity and the ecological guild in the gut of NAFLD. 408 

Materials and Methods 409 

Data information and preprocessing 410 

Discovery dataset: The NAFLD datasets and relevant meta data(Sequence Read 411 

Archive, PRJNA373901) were described previously[9] comprising 86 biopsy-proven 412 

NAFLD patients. The healthy control dataset was from PRJEB6070[33], with 38 413 

healthy individuals with BMI < 25. These subjects were chosen because of similar 414 

age and gender ratio compared to NAFLD patients to effectively reduce bias[34] 415 

(Table 1 & Table S1).  416 

Validation dataset: 10 middle-aged NAFLD subjects [35] (PRJNA420817) were 417 

recruited to a diet trial and the initial baseline data before diet interventionwere used 418 

for this study. 11 healthy subjects from MetaHit Project[36](Sequence Read Archive, 419 

PRJEB1220) with similar age and gender ratio were chosen as controls (Table 1& 420 

Table S1). 421 

All subjects provided a written informed consent and the study protocol was 422 

approved by Institutional Review Board (approval number:UCSD IRB11298) or 423 

registered at ClinicalTrials.gov with identifier: NCT02558530. 424 
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The KneadData(http://huttenhower.sph.harvard.edu/kneaddata) tool was used to 425 

ensure the data consisted of high quality microbial reads free from contaminants. The 426 

low quality reads were removed using Trimmomatic(SLIDINGWINDOW:4:15 427 

MINLEN:75 LEADING:10 TRAILING:10). The remaining reads were mapped to the 428 

human genome(hg38) by bowtie2[37], and the matching reads were removed as 429 

contaminant reads from the host.  430 

Gene-based taxonomic and functional profiling of gut microbiota 431 

MetaPhlAn2[38] was used to identify the composition of gut microbial community 432 

and to assess the abundance of the prokaryotes within each sample. Species that failed 433 

to exceed 0.01% relative abundance in at least 20% samples were excluded. 434 

The functional profiling of gut microbiome was determined by the HMP Unifiled 435 

Metabolic Analysis Network (HUMAnN2)[39]. In brief, high-quality metagenomic 436 

reads were mapped to the pangenomes of species identified with MetaPhlAn2 and 437 

these pangenomes have been pre-annotated by UniRef90 families. Reads failed to 438 

map to a pangenome were aligned to UniRef90 by translated search with 439 

DIAMOND[40]. Hits to UniRef90 are weighted according to alignment quality, 440 

sequence length and coverage. In this study, enzyme abundance was quantified by 441 

regrouping (summed) according to EC number and pathway abundance by regrouping 442 

(summed) genes in pathways against KEGG database.  443 
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Identification of genes required for secondary BA synthesis 444 

To identify genes that encode enzymes catalyzing secondary BA synthesis, hidden 445 

Markov models (HMMs) of BA-related genes were constructed. Secondary BA 446 

synthesis mainly involves (1) deconjugation, (2) oxidation and epimerization and (3) 447 

multi-step 7α-dehydroxylation. Enzymes participating in these processes are bile salt 448 

hydrolase (BSH), hydroxysteroid dehydrogenase (HSDH) and enzymes required in 449 

the multi-step 7α-dehydroxylation (including baiA, baiB, baiCD, baiE, baiF, baiH and 450 

baiI).[18] Representative protein sequences of target enzymes were obtained from 451 

Integrated Microbioal Genomes (IMG) database[41]. High quality sequences were 452 

selected and aligned in Clustal Omega[42] before they were used to construct HMMs 453 

on full-length proteins via hmmbuild in HMMER(3.1b2)[43]. Model seed sequences 454 

were realigned to the model using hmmalign (default mode) before rebuilding models 455 

based on the obtained alignments until both model length and relative entropy per 456 

position were constant. Subsequently, all protein sequences in non-redundant gene 457 

catalog were screened (hmmsearch) for candidate protein sequences and sequences 458 

with hmmscore > lower quartile score and e-value less than 10-5 were identified as 459 

potential secondary BA synthesis associated genes.  460 

Assembly-based microbial genomes 461 

For functional analysis of the microbial genomes, we performed bin-based microbial 462 

genome assembly with the WMS data, including de nove assembly and non-redundant 463 
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human gut gene catalog construction, co-abundance clustering and determination of 464 

metagenome-assembled genomes (MAG), MAG-augmented assembly and taxonomic 465 

annotation.  466 

De novo assembly and non-redundant human gut gene catalog construction 467 

High-quality paired-end reads from each sample were used for de novo assembly with 468 

Megahit[44] into contigs of at least 500-bp length. Genes were predicted on the 469 

contigs with MetaGeneMark[45]. A non-redundant gene catalog related to NAFLD 470 

was constructed with CD-HIT[46] using a sequence indentity cut-off of 0.95, with a 471 

minimum coverage cut-off of 0.9 for the shorter sequences and 11,348,567 microbial 472 

genes were contained.  473 

Co-abundance clustering and determination of MAG 474 

Bowtie2 was used to align high quality reads to the non-redundant gene catalog. 475 

Aligned results were random sampled and downsized to 15 million per sample 476 

(FR-173, FR-719, FR-730, SRR4275396, SRR4275459, SRR4275469, SRR4275470 477 

were excluded for not enough reads) to adjust for sequencing depth and technical 478 

variability. The soap.coverage script (available at: 479 

http://soap.genomics.org.cn/down/soap.coverage.tar.gz) was used to calculate 480 

gene-length normalized base counts and the gene abundance profiling was calculated 481 

as the average abundance of 30 times of repeated sampling. All the genes were 482 

clustered into MAG using MSPminer[47] based on their abundance with default 483 
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parameters.  484 

MAG-augmented assembly and taxonomic annotation 485 

We performed augmented assembly for target MAG. Briefly, the MAG- and 486 

sample-specific reads were derived by aligning all high-quality reads to the MAG 487 

gene contigs with Burrows-Wheeler Aligner (0.7.17)[48], followed by de novo 488 

assembly with SPAdes(3.13.0)[49] using k-mers from 21 to 55. CVtree3.0 web 489 

server[50] was used to identify the taxonomy of the MAGs, which applies a 490 

composition vector to perform phylogenetic analysis.  491 

Statistic analysis 492 

Differential features identification 493 

Compositional features and functional features that present in at least 20% of the 494 

samples and with average relative abundance over 0.01% in each group were selected 495 

for further differential analysis. Differential features were identified by two-tailed 496 

Mann-Whitney U-tests adjusted by Benjamini-Hochberg. Features with an FDR value 497 

< 0.05 (FDR values < 0.1 for species) were identified as differential features. Then 498 

differential compositional and functional feature profiles were used to build random 499 

forest(RF) model using RandomForest package in R. Feature importance were 500 

estimated via gini importance and then the best model were rebuilt by adding features 501 

according to their importance ranks. Area Under the Receiver-Operator Curve(AUC) 502 

was used to measure the accuracy of the models. 503 
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Microbial interaction analysis  504 

SparCC[51] was performed to construct compositionality-corrected microbial 505 

interactions network, which is capable of estimating correlation values from 506 

compositional data. Interactions were calculated with 100 refining interactions, after 507 

which statistical significance of each interaction was estimated with 1000 508 

permutations. Only interactions with p value < 0.05 were included in downstream 509 

analysis and those interactions with magnitudes > 0.4 were included in the “core 510 

community”. The importance of species in the community was calculated using 511 

Hyperlink-Induced Topic Search(HITS) algorithms in Python package ‘networkx’. 512 

The networks were then visualized with Cytoscape[52] and module analysis was 513 

performed with ModuLand in Cytoscape.  514 

Other statistics 515 

Analysis of similarities (ANOSIM) was performed based on distance matrix for 516 

statistical comparisons of samples between groups or subtypes. P value was calculated 517 

using 9999 permutations. p < 0.05 indicates significant difference. Hetamap was 518 

plotted via “pheatmap” package in R, and features were clustered based on euclidean 519 

distance by “ward.D”. Differential features among healthy, normal-BA and high-BA 520 

groups were identified with Dunn tests adjusted by Benjamini–Hochberg, and features 521 

with FDR values < 0.05 were determined as significant differential features. 522 
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Table1 Characteristics of the cohort included in this study 719 

 
Discovery cohort Validation cohort  

 
NAFLD Control  NAFLD Control  

Sample Size 86 38  10 11  

Age 51.56±12.67 55.71±12.75  53.7±3.65 56.18±6.65  

BMI 30.25±5.46 23.03±1.88  34.1±1.2 23.19±0.92  

Gender(F%/M%) 44.19/55.81 50.00/50.00  20.00/80.00 63.63/36.36  

AST(U/L) 32.5±29.96 NA$  30.8±2.4 NA  

LDL cholesterol(mg/dL) 116±37.12 NA  52.25±5.41# NA  

HDL cholesterol (mg/dL) 46±15.97 NA  20.36±1.26 NA  

Triglycerides(mg/dL) 129±95.70 NA  50.45±7.21 NA  

Total cholesterol(mg/dL) 191.5±43.39 NA  95.90±5.41 NA  

Data are presented as median±SD  720 
$ NA, not available. The control groups included healthy individuals (Ref 33 and 36)  721 
# The data are converted form mmol/L to mg/dL. 722 

 723 

 724 

Figure 1. The differential species distinguishing NAFLD patients from healthy 725 

controls. Differential species were selected by statistical tests (two-tailed 726 

Mann-Whitney U-tests adjusted by Benjamini–Hochberg). Furthermore, the 727 
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importance of the species that distinguish NAFLD patients from healthy controls was 728 

evaluated with random forest model. The heatmap shows the relative abundance 729 

(log-transformed) of the differential species in the NAFLD and the healthy groups, 730 

the size of the dots is proportional to the importance and the color shows the FDR 731 

value (-log-transformed). “+” indicates increased abundance while “-” indicates 732 

decreased abundance in NAFLD. 733 

734 

Figure 2. Microbiota “core community” in healthy controls (A&C) and NAFLD 735 

patients (B&D). The microbial interactions were calculated using SparCC with 100 736 

refining interactions, and p value of each interaction is approximated with 1000 737 
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permutations. Only interactions with p value < 0.05 and interactions with magnitudes 738 

> 0.4 were included in the “core community”. The species were colored according to 739 

the class they belong to and the node size indicates the hub score in their community. 740 

Sub-network of top 20 hub nodes in healthy community (C) and NAFLD community 741 

(D) was also plotted. The nodes indicated by species name were common species in 742 

both sub-networks. 743 

744 

Figure 3. The differential pathway markers distinguishing NAFLD patients from 745 

healthy controls. Differential pathways were selected by two-tailed Mann-Whitney U- 746 

tests adjusted by Benjamini–Hochberg. Pathways with FDR values < 0.05 were 747 

included. Important differential pathway markers were then identified with random 748 

forest model and with the top 8 important pathways, the model achieved the highest 749 

AUC value. (A). The importance of pathways evaluated in NAFLD with the random 750 

forest model. (B). The AUC curve of random forest model with the top 8 important 751 

pathways. (C). The abundance of secondary A biosynthesis pathway (ko00121) in the 752 

healthy and the NAFLD groups. Values are the mean±SD. * indicates FDR<0.05. 753 
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754 

Figure 4. The abundance of the bacterial genes related to secondary bile acid 755 

synthesis. (A) Genes responsible for secondary bile acid biosynthesis can be grouped 756 

into 3 categories: (1) deconjugation, (2) oxidation and epimerization and multi-step 757 

7α-dehydroxylation. (B) Gene abundance in health and NAFLD groups. Differences 758 

were identified by two-tailed Mann-Whitney U- tests adjusted by 759 

Benjamini–Hochberg. BSH: bile salt hydrolase; HSDH: hydroxysteroid 760 

dehydrogenase; baiA, 3α-hydroxysteroid dehydrogenase; baiB, bile acid-coenzyme A 761 

ligase; baiCD, 7α -hydroxy-3-oxo-D4-cholenoic acid oxidoreductase; baiE, bile acid 762 

7α- dehydratase; baiF, bile acid coenzyme A transferase/hydrolase; baiG, primary bile 763 
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acid transporter; baiH, 7beta-hydroxy-3-oxochol-24-oyl-CoA 4-desaturase; baiI, bile 764 

acid 7beta-dehydratase. *** indicates FDR<0.001. 765 

766 

Figure 5. BA metabolizing MAG in NAFLD and healthy subjects. (A) MAG 767 

exhibiting differential abundance between healthy controls and NAFLD patients. 768 

Differential MAG were selected by two-tailed Mann-Whitney U- tests adjusted by 769 

Benjamini–Hochberg. MAG with FDR values < 0.1 were included. Values are mean 770 

± SEM. Interaction network for BA metabolising MAG community in healthy 771 

controls (B) and NAFLD patients (C). Microbial interactions were calculated using 772 
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SparCC with 100 refining interactions, and p value of each interaction is 773 

approximated with 1000 permutations. Only interactions with p value < 0.05 were 774 

included. 775 

776 

Figure 6. Subgroups of NAFLD patients with different abundances of the secondary 777 

BA synthesis genes. (A) NAFLD patients were clustered into two subgroups: 778 

normal-BA subgroup and high-BA subgroup according to the abundances of 3 779 

differential secondary BA synthesis genes. (B) Comparison of the abundances of 3 780 

differential secondary BA synthesis genes among healthy control, normal-BA and 781 

high BA groups. They were all significantly increased in high-BA subgroup, but was 782 

not different between normal-BA subgroup and healthy group (Dunn tests adjusted by 783 

Benjamini–Hochberg). (C) PCA plot based on the differential enzymes. Subjects were 784 
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clustered according to the secondary BA metabolizing potentials (p <0.001 with 785 

ANOSIM analysis). Values are mean±SD. *** indicates FDR<0.001. 786 
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