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Abstract 11 

The bird’s oomorphology has far escaped mathematical formulation universally applicable. All 12 

bird egg shapes can be laid in four basic geometric figures: sphere, ellipsoid, ovoid, and pyriform 13 

(conical/pear-shaped). The first three have a clear mathematical definition, each derived from 14 

expression of the previous, but a formula for the pyriform profile has yet to be inferred. To rectify 15 

this, we introduced an additional function into the ovoid formula. The subsequent mathematical 16 

model fits a completely novel geometric shape that can be characterized as the last stage in the 17 

evolution of the sphere—ellipsoid—Hügelschäffer's ovoid transformation applicable to any avian 18 

egg shape geometry. Required measurements are the egg length, maximum breadth, and 19 

diameter at the terminus from the pointed end. This mathematical description is invariably a 20 

significant step in understanding not only the egg shape itself, but how and why it evolved, thus 21 

making widespread biological and technological applications theoretically possible. 22 

23 
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Introduction 24 

Described as “the most perfect thing” (Birkhead, 2016), the avian egg is one of the most 25 

recognizable shapes in nature. Despite this, an expression of “oviform” or “egg-shaped” (a term 26 

used in common parlance) that is universally applicable to all birds has belied accurate 27 

description by mathematicians, engineers and biologists (Narushin et al., 2020a). Various 28 

attempts to derive such a standard geometric figure in this context that, like many other geometric 29 

figures, can be clearly described by a mathematical formula are nonetheless over 65 years old 30 

(Preston, 1953). Such a universal formula potentially has applications in disciplines such as 31 

evolution, genetics, ornithology, species adaptation, systematics, poultry breeding and farming, 32 

food quality, engineering, architecture and artwork where oomorphology (Mänd et al., 1986) is an 33 

important aspect of research and development. 34 

According to Nishiyama (2012), all profiles of avian eggs can be described in four main shape 35 

categories (1 ) circular, elliptical, oval and pyriform (conical/pear-shaped). A circular profile 36 

indicates a spherical egg; elliptical an ellipsoid; oval an ovoid and so on. 37 

Many researchers have identified to which shape group a particular egg can be assigned, and 38 

thus developed various indices to help make this definition more accurate. Historically, the first of 39 

these indices was the shape index (SI) Romanoff and Romanoff (1949), which is a ratio of 40 

maximum egg breadth (B) to its length (L). SI has been mainly employed in the poultry breeding 41 

industry to evaluate the shape of chicken eggs and sort them thereafter. Its disadvantage is that, 42 

according to this index, one can only judge whether or not an egg falls into the group of circular 43 

shape. With each subsequent study, there have been more and more other devised indices. That 44 

is, while the early studies (Preston, 1968) limited themselves to the usefulness of such egg 45 

characteristics as asymmetry, bicone and elongation, the later ones increased the number of 46 

indices to seven (Mänd et al., 1986), and even to ten (Mytiai and Matsyura, 2017). The purpose 47 

of the current study was to take this research to its ultimate conclusion to present a universal 48 
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formula for calculating the shape of any avian egg based on revising and re-analysis of the main 49 

findings in this area. 50 

In parallel to the process of developing various egg shape indices, a broader mathematical insight 51 

into comprehensive and optimal description of the natural diversity of oviform warrants further 52 

study. The definition of the groups of circular and elliptical egg shapes (Figure 1A–B) is relatively 53 

straightforward since there are clear mathematical formulae for the circle and ellipse. To describe 54 

mathematically oval and pyriform shapes (Figure 1C–D) however, new theoretical approaches 55 

are necessary. 56 

 57 

 58 

A   B   C   D 59 

Figure 1. Basic egg shape outlines based on Nishiyama (2012): (A) circular, (B) elliptical, (C) 60 

oval, and (D) pyriform. 61 

 62 

Preston (1953) proposed the ellipse formula as a basis for all egg shape calculations. Multiplying 63 

the length of its vertical axis by a certain function f(x) (which he suggested to express as a 64 

polynomial) Preston showed that most of the eggs studied could be described by a cubic 65 

polynomial, although for some avian species, a square or even linear polynomial would suffice. 66 

This mathematical hypothesis turned out to be so effective that most of the further research in this 67 

area was aimed solely at a more accurate description of the function f(x). Most often, this function 68 

was determined by directly measuring the tested eggs, after which the data was subjected to a 69 
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mathematical processing using the least squares method. As a result, a function could be 70 

deduced that, unfortunately, would be adequate only to those eggs that were involved in an 71 

experiment (Baker, 2002; Troscianko, 2014; Pike, 2019). Some authors (Todd and Smart, 72 

1984; Biggins et al., 2018) applied the circle equation instead of ellipse as the basic formula, but 73 

the principle of empirical determination of the function f(x) remained unchanged. Several attempts 74 

were made to describe the function f(x) theoretically in the basic ellipse formula (Carter, 1968; 75 

Smart, 1991); however, for universal and practical applicability to all avian eggs (rather than just 76 

theoretical systems), it is necessary to increase the number of measurements and the obtained 77 

coefficients. 78 

The main problem of finding the most convenient and accurate formula to define the function f(x) 79 

is the difficulty in constructing graphically the natural contours corresponding to the classical 80 

shape of a bird's egg (Köller, 2000; Landa, 2013; Cook, 2018). Indeed, all the reported formulae 81 

have a common flaw; that is, although these models may help define egg-like shapes in works of 82 

architecture and art, they do not accurately portray “real life” eggs for practical and research 83 

purposes. This drawback can be explained by the fact that the maximum breadth of the resulting 84 

geometric figure is always greater than the breadth (B) of an actual egg, as the B value is 85 

measured as the egg breadth at the point corresponding to the egg half length. This drawback 86 

has been reviewed in more detail in our previous work (Narushin et al., 2020b). In order, 87 

therefore, for the mathematical estimation of the egg contours not to be limited by a particular 88 

sample used for computational purposes, but to apply to all avian egg shapes present in nature, 89 

further theoretical considerations are essential. One such tested and promising approach is 90 

Hügelschäffer's model (Petrovic and Obradovic, 2010; Petrovic et al., 2011; Obradovic et al., 91 

2013). 92 

The German engineer Fritz Hügelschäffer first proposed an oviform curve, shaped like an egg, by 93 

moving one of concentric circles along its x-axis constructing an asymmetric ellipse as reviewed 94 

elsewhere (Schmidbauer, 1948; Ferréol, 2017). A theoretical mathematical dependence for this 95 

curve was deduced elsewhere (Petrovic and Obradovic, 2010; Petrovic et al., 2011), which 96 
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was later adapted by us in relation to the main measurements of the egg (i.e., its length, L, and 97 

maximum breadth, B) and carefully reviewed as applied to chicken eggs (Narushin et al., 98 

2020b): 99 

 100 

,        (Eqn1) 101 

 102 

where B is the egg maximum breadth, L is the egg length, and w is the parameter that shows the 103 

distance between two vertical lines corresponding to the maximum breadth and the half length of 104 

the egg. 105 

Hügelschäffer’s model works very well for three classical egg shapes, i.e., circular, elliptical and 106 

oval (Figure 2A–D). Indeed, when L = B, the shape becomes a circle and when w = 0 it becomes 107 

an ellipse. Therefore, the majority of avian egg shapes can be defined by the formula above 108 

(Eqn1). Unfortunately, Hügelschäffer’s model is not applicable in estimating the contours of 109 

pyriform eggs (Figure 2E). For instance, it is obvious even from visual inspection that the 110 

theoretical profile of the guillemot egg does not resemble its actual “real world” counterpart. Thus, 111 

Hügelschäffer’s model has some limitations in the description of the avian eggs, and one of those 112 

is a limited range of possible variations of the w value (Narushin et al., 2020b). 113 

 114 
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  B 

  C 

  D 

 
 E 

Figure 2. The images of eggs of the four main shapes from the following avian species:(A) 115 

ostrich, circular; (B) emu, elliptical; (C) song thrush, oval; (D) osprey, oval; and (E) guillemot 116 

pyriform; with their theoretical contours (on the right graphs) plotted using the Hügelschäffer’s 117 

model (Eqn1). The egg images were taken from Wikimedia Commons (Category: Eggs of the 118 

Natural History Collections of the Museum Wiesbaden), and their dimensions do not correspond 119 

to actual size due to scaling. 120 
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Based on the analysis of various formulae accumulated and available in the arsenal of egg 122 

geometry researchers (Biggins et al., 2018), one can admit a problem of a mathematical 123 

definition of pyriform (or conical) eggs to be the most difficult in comparison with all other egg 124 

shapes. With this in mind, the goal of this work was research aimed at developing a mathematical 125 

expression that would be able to accurately describe pyriform eggs and at devising a universal 126 

formula for avian eggs of any shape. 127 

 128 

 129 

Results 130 

 131 

As a first step, we employed the data of numerous egg measurements represented by Romanoff 132 

and Romanoff (1949) for a standard hen’s egg, and produced the following formula for 133 

recalculation of w (see details in S1 Appendix): 134 

 135 

          (Eqn2) 136 

in which n is a positive number. 137 

Inputting different numbers in Eqn2 and substituting the value of w into Eqn1, we can design 138 

different geometrical curves that resemble egg contours of other avian species (Figure 3). 139 

 140 
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A    B    C 142 

Figure 3. The egg contours plotted using Eqn1 and Eqn2 if: (A) n = 2, (B) n = 1.3, and (C) n = 1. 143 

 144 

Thus, the principal limitation for Hügelschäffer’s model is the fact that n cannot be less than 1, 145 

which means that the maximum value of w is (L–B)/2. Otherwise, the obtained contour does not 146 

resemble the shape of any avian egg (Figure 4). This fact was investigated and well explained 147 

elsewhere (Obradovic et al., 2013). 148 

 149 

 150 

A    B    C 151 

Figure 4. The egg contours plotted using Eqn1 and Eqn2 if: (A) n = 0.8, (B) n = 0.5, and (C) n = 152 

0.3. 153 

 154 

Such limitations explain why Hügelschäffer’s model cannot be used to describe the contours of 155 

pyriform eggs. The only way to make the shape of the pointed end of such eggs more conical is 156 

to use the n values less than 1, but in this case the obtained contours do not resemble any egg 157 

currently appearing in nature. In a series of mathematical computations, we deduced a formula 158 

for the pyriform egg shape (see details in S2 Appendix): 159 
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   (Eqn3) 161 

 162 

If we place the both contours, the pyriform Eqn3 and Hügelschäffer’s Eqn1 ones, together onto 163 

the same diagram (Figure 5), the presence of white area between them allows to arise a peculiar 164 

question: what to do with those eggs whose contours are tracing within this zone? 165 

 166 

167 
Figure 5. The contours of the egg plotted using the pyriform model according to Eqn3 (inner line) 168 

and the Hügelschäffer’s model according to Eqn1 (outer line). 169 

 170 

If we choose any point on the x-axis within the interval [–w…L/2] corresponding to the white area 171 

between two models, there is obviously some difference, Δy, between the values of the functions 172 

recalculated according to Hügelschäffer’s model, yH (Eqn1), and the pyriform one, yc (Eqn3), that 173 

tells how conical the egg is: 174 
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           (Eqn4) 176 

 177 

The subscript index ‘c’ was added only to designate that this function is related to its classic 178 

pyriform (conic) profile according to Eqn3 (yc does not differ from y in Eqn3). Maximum values of 179 

Δy mean that the egg contour is related to its classic pyriform profile and can be expressed with 180 

Eqn3. When Δy = 0, the egg shape has a classic ovoid profile (Hügelschäffer’s model) and is 181 

defined mathematically with Eqn1. 182 

To fill this gap (Δy) between the egg profiles according Eqn1 and Eqn3, the mathematical 183 

calculations were undertaken (S3 Appendix) being resulted in the final universal formula 184 

applicable for any avian egg: 185 

 186 

(Eqn5187 

) 188 

 189 

where  is egg diameter at the point of L/4 from the pointed end (Figure 5). 190 

Both Eqn3 and Eqn5 were tested using pyriform eggs of different shape index (SI) and w to L 191 

ratio, and their validity were explicitly verified (Figure 6). 192 
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  A 

   B 

   C 

Figure 6. The images and their theoretical profiles of pyriform eggs of different shape index (SI) 194 

and w to L ratio: (A) a guillemot’s egg, SI = 0.58, w/L = 0.17; (B) a great snipe’s egg, SI = 0.69, 195 

w/L = 0.10; and (C) a king penguin’s egg, SI = 0.07, w/L = 1.8. The egg dimensions do not 196 

correspond to actual size due to scaling. The egg images were taken from Wikimedia Commons: 197 

(A) and (B) Category: Eggs of the Natural History Collections of the Museum Wiesbaden; and (C) 198 

Category: Bird eggs of the Muséum de Toulouse. 199 

 200 

 201 

Discussion  202 

 203 

The common perception of “egg-shaped” is an oval, with a pointed end and a blunt end and the 204 

widest point nearest the blunt end, somewhat like a chicken’s egg. As we have demonstrated 205 

however, things can be far simpler (as in the case of the spherical eggs seen in owls, tinamous 206 

and bustards) or far more complicated (as in the case of pyriform eggs, e.g., seen in guillemots, 207 
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waders and the two largest species of penguin). Evidence suggests (Bradfield, 1951) that egg 208 

shape is determined before the shell forms and by the underlying membranes. Why, in 209 

evolutionary terms, an egg is the shape that it is, is surprisingly under-studied. That is, although 210 

there are some previous investigations in the field of egg shape evolution (Andersson, 1978; 211 

Stoddard et al., 2017, 2019; Birkhead et al., 2019), we do not know how exactly this process 212 

occurred. In this context, it is the pyriform eggs (the ones that, in this study, we have incorporated 213 

in order to make the formula universal) that have attracted the most attention. In common 214 

sandpipers (and other waders) the pyriform shape is an adaptive trait ensuring that the 215 

(invariably) four eggs “fit together” in a nest (pointed ends innermost) to ensure maximum 216 

incubation surface against the mother’s brood patch (Hewitson, 1831–1838). In guillemots, the 217 

relative benefits of the pyriform shape to prevent eggs rolling off cliff edges have been much 218 

debated, however, to the best of our knowledge, this is far from certain (Birkhead, 2016). The 219 

selective advantage to being “oviform” rather than spherical is, according to Birkhead (2016), 220 

three-fold: First, given that a sphere has the smallest surface area to volume ratio of any 221 

geometric shape, there is a selective advantage to being roughly spherical as any deviation could 222 

lead to greater heat loss. Equally, non-spherical shapes are warmed more quickly and thus an 223 

egg may represent compromise morphology for most birds. A second consideration may well be, 224 

as in common sandpipers, related to “packaging” of the eggs in the brood, and the third could be 225 

related to the strength of the shell. In this final case, the considerations are that the egg needs to 226 

be strong enough so as not to rupture when sat on by the mother (a sphere is the best bet here), 227 

but weak enough to allow the chick to break out. As a compromise between to two, a somewhat 228 

elongated shape (be in elliptical, oval or pyriform) may represent a selective advantage. 229 

In this study, we observed that applications of a mathematical apparatus in the area of 230 

oomorphology (Mänd et al., 1986) and egg shape geometry have developed from more simple 231 

formulae to more complex ones. In particular, the equation for the sphere would come first, being, 232 

then, modified into the equation for the ellipse by transforming the circle diameter into two 233 

unequal dimensions. Hügelschäffer’s model represented a mathematical approach to shift a 234 
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vertical axis along the horizontal one. Finally, through the universal formula (Eqn5) we have 235 

provided here would allow to consider all possible egg profiles including the pyriform ones. For 236 

this, we would need only to measure the egg length, L, the maximum breadth, B, the distance w 237 

between the two vertical lines, corresponding to the maximum breadth and the half length of the 238 

egg, and the diameter, DL/4, at the point of L/4 from the pointed end. 239 

While we have provided evidence that our formula is universal for the overall shape of an avian 240 

egg, not every last contour of an avian egg may fit into the strict geometric framework of Eqn5. 241 

This is because natural objects are much more diverse and variable than mathematical objects. 242 

Nevertheless, generally speaking, we accept that the mountains are pyramidal, and the sun is 243 

round, although, in reality, their shapes only approximately resemble these geometric figures. In 244 

this regard, a methodological approach to assessing the shape of a particular bird egg would be 245 

to search for possible differences between the tested egg and its standard geometric shape 246 

(Eqn5). These distinctive criteria can (and should) be different for various purposes and specific 247 

research tasks. Perhaps, this would be the radius of the blunt and/or pointed end, or the 248 

skewness of one of the sections of the oval, or something else. The key message is that by 249 

introducing the universal egg shape formula we have expanded the arsenal of mathematics with 250 

another geometric figure that can safely be called a “real world” bird's egg. The mathematical 251 

modelling of the egg shape and other egg parameters that we have presented here will be useful 252 

and important modus operandi for further stimulating the relevant theoretical and applied 253 

research in the fields of mathematics, engineering and biology (Narushin et al., 2020a). 254 

In conclusion, a universal mathematical formula for egg shape has been proposed that is based 255 

on four parameters: egg length, maximum breadth, shift of the vertical axis and the diameter at 256 

one quarter of the egg length. This formula can theoretically describe any bird's egg that exists in 257 

nature. Mathematical description of the sphere, the ellipsoid and the ovoid (all basic egg shapes) 258 

have already found numerous applications in a variety of academic disciplines including the 259 

biosciences, agriculture, architecture, aeronautics and mechanical engineering. We propose that 260 

this new formula will, similarly, have widespread application. We suggest that biological 261 
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evolutionary processes such as egg formation are amenable to mathematical description, and 262 

may become the basis for the methodological concept of research in evolutionary biology. 263 

In the course of the present analysis and search for the optimal mathematical approximation of 264 

oomorphology, i.e. the egg contours, we showed that our approach is as accurate as possible for 265 

the egg shape prediction. Based on the results of exploring the egg shape geometry models, we 266 

postulate here for the first time the theoretical formula that we have found as a universal equation 267 

for determining the contours of avian eggs. Our findings can be applied in a variety of 268 

fundamental and applied disciplines and serve as an impetus for the further development of 269 

scientific investigations using eggs as a research object. 270 

 271 

 272 

Materials and methods 273 

 274 

To verify if the Hügelschäffer's model (Eqn1) previously applied by us to chicken eggs (Narushin 275 

et al., 2020b) is valid to all possible egg shapes of various birds, we tested it on the following 276 

avian species: Ural owl (Strix uralensis) as a representative of circular eggs (Figure 2A), emu 277 

(Dromaius novaehollandiae) representing elliptical eggs (Figure 2B), song thrush (Turdus 278 

philomelos) and osprey (Pandion haliaetus) for oval eggs (Figures 2C and 2D), and guillemot 279 

(Uria lomvia) for pyriform eggs (Figure 2E). 280 

In trying to establish if the novel formula of the pyriform contours (Eqn3) and the universal Eqn5 281 

we developed here are valid for describing a variety of pyriform shapes, we applied them to the 282 

following avian species: guillemot (Uria lomvia; Figure 6A), great snipe (Gallinago media; Figure 283 

6B), and king penguin (Aptenodytes patagonicus; Figure 6C). 284 

For mathematical and standard statistical calculations, MS Excel and StatSoft programmes were 285 

exploited. As a part of our broader research project to develop more theoretical approaches for 286 

non-destructive evaluation of various characteristics of avian eggs (Narushin et al., 2020a), we 287 
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did not handle eggs from wild birds or any valuable egg collection in this study. Where needed, 288 

we substituted actual eggs with their images and mathematical representational counterparts. To 289 

make it clear, we have considered a standard hen’s egg as represented by Romanoff and 290 

Romanoff (1949) and used their data of numerous egg measurements to deduce a formula for 291 

recalculation of w (S1 Appendix). 292 
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