An early Sox2-dependent gene expression program required for hippocampal 1 2 dentate gyrus development 3 4 Sara Mercurio, Chiara Alberti, Linda Serra, Simone Meneghini, Jessica Bertolini, Pietro Berico, 5 Andrea Becchetti and Silvia K. Nicolis 6 7 Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 8 2, 20126 Milano, Italy 9 Correspondence: silvia.nicolis@unimib.it, sara.mercurio@unimib.it 10 11 12 13 Abstract 14 15 The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription 16 factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together 17 with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) 18 19 affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus, and the earliest deletion (from E9.5, FoxG1-Cre) causes 20 21 drastic abnormalities, with almost complete absence of the dentate gyrus. We identify a set of 22 functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential 23 roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 24 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1Cre mouse model 25 26 reveal altered excitatory transmission in CA1 and CA3 regions. 27

- 28
- ~ ~
- 29

2	2
. 1	U
-	-

31 Introduction

32

33 The hippocampus is a brain region important for cognition, playing essential roles in learning and

- 34 in spatial and episodic memory formation. Hippocampus defects (of genetic origin, or acquired) can
- lead to intellectual disability (ID), deficits of memory formation, and epilepsy (Kandel, Schwartz,
- 36 & Jessell, 2000).
- 37 Within the hippocampus, the dentate gyrus (DG) represents the primary input site for excitatory
- neuronal projections; the major type of DG neurons (granule neurons) are generated by neural stem
- 39 cells (NSC) that are defined early in development, and continue neurogenesis during embryogenesis
- 40 and also in postnatal stages, in mice as well as in humans (Berg et al., 2019; Zhong et al., 2020).
- 41

42 Patients carrying heterozygous loss-of-function mutations in the gene encoding the SOX2

43 transcription factor show a characteristic spectrum of central nervous system (CNS) defects,

44 including hippocampal defects (involving the dentate gyrus), ID, and epilepsy (Fantes et al., 2003;

- 45 Kondoh H, 2016; Ragge et al., 2005; Sisodiya et al., 2006). Understanding the developmental
- 46 events and the genetic program controlled by SOX2 during hippocampal embryogenesis therefore

47 provides a key to understand how their perturbation can lead to hippocampal disease (in SOX2-

- 48 mutant patients and, more in general, in hippocampal defects of genetic origin).
- 49

In mouse, Sox2-dependent hippocampal disease has been previously modelled by conditional
mutagenesis (Favaro et al., 2009). Sox2 pan-neural deletion at mid-embryogenesis, via a Nestin-Cre
transgene, led to a relatively normal hippocampal development up to birth; at early postnatal stages,
however, the hippocampus failed to complete its development, and remained hypoplastic, due to a

54 failure of postnatal DG NSC. The study of SOX2 binding to DNA in NSC proved instrumental in

- the identification of various Sox2 target genes, playing important roles in the development of
- 56 different brain regions in vivo, such as the basal ganglia (A. Ferri et al., 2013), the cerebellum
- 57 (Cerrato et al., 2018), and the visual thalamus (Mercurio et al., 2019).
- 58

While postnatal hippocampal development was perturbed following Nestin-Cre-mediated Sox2
deletion, embryonic hippocampal development was, quite surprisingly, very little, if at all, affected
in these mutants (Favaro et al., 2009). In principle, this could be due to redundant functions played
by other homologous genes of the SoxB family, such as Sox1 and Sox3, coexpressed with Sox2 in

63 the developing neural tube, and reported to function in hippocampal neural stem/progenitor cells

64 (Rogers et al., 2013); alternatively, we reasoned that Sox2 may play non-redundant, very early

65 functions in hippocampal development, that might not be revealed by Nestin-Cre-mediated

- 66 deletion.
- 67

Here, we generated an allelic series of Sox2 conditional mutations, using Cre transgenes deleting 68 Sox2 at stages earlier than Nestin-Cre: FoxG1-Cre, active from embryonic day (E) 8.5 (Hébert & 69 70 McConnell, 2000), and Emx1-Cre (Gorski et al., 2002), active from E10.5. We report that early 71 Sox2 deletion leads to drastic defects of hippocampal development, the earlier the deletion, the 72 stronger the phenotype: in Emx1-Cre mutants, hippocampal development is perturbed, but still 73 present, but in FoxG1-Cre mutants, hippocampal development is severely impaired, and the DG 74 essentially fails to develop. We propose that Sox2 sets in motion a very early gene expression 75 program in the hippocampal primordium, required for all of its subsequent development. Indeed, 76 we show that early (but not late) Sox2 deletion reduces the expression of several genes (some of 77 which SOX2-bound), individually characterized by previous studies as master regulators of 78 hippocampal development (and human neurodevelopmental disease), including Gli3, Wnt3a, 79 Cxcr4, Tbr2 and p73, some of which are known to cross-regulate each other.

- 80
- 81
- 82 **Results**
- 83

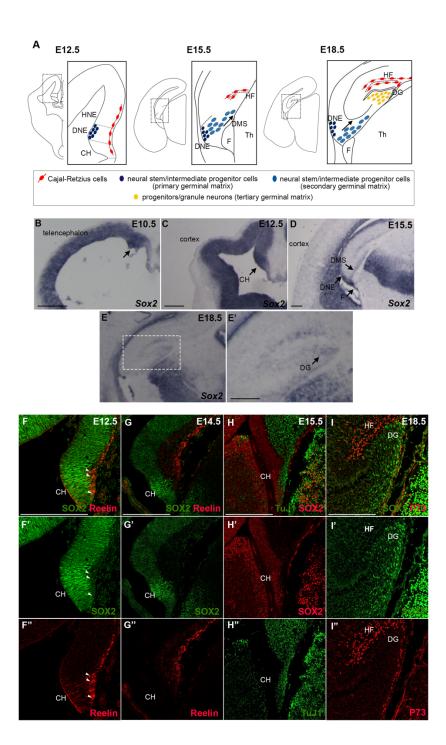
Sox2 is expressed in the primordium of the developing hippocampus and in the adjacent cortical hem

86 The transcription factor Sox2 is expressed throughout the neural tube from the beginning of its

development (Avilion et al., 2003; Favaro et al., 2009; A. L. Ferri et al., 2004; Mariani et al., 2012).

88 The hippocampus starts to develop around embryonic day (E) 12.5, in the medial wall of the

telencephalon, and becomes morphologically recognizable in the following days (Fig. 1A) (Berg et

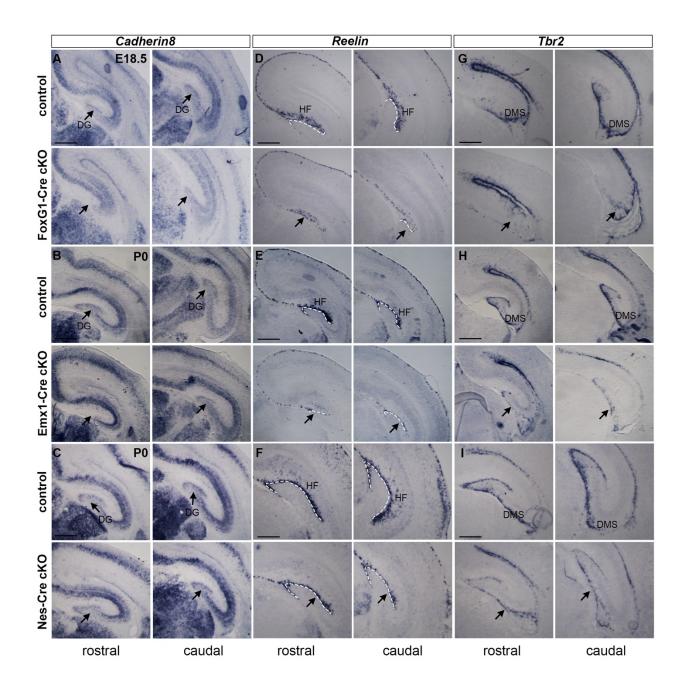

al., 2019; Hodge et al, 2012). A region essential for the formation of the hippocampus is the cortical

- 91 hem (CH), also known as the hippocampal organizer, identified in mice at E12.5; signaling from
- 92 the CH is able to organize the surrounding tissue into a hippocampus (Grove, 2008; Mangale et al.,
- 93 2008). The dentate neural epithelium (DNE), adjacent to the cortical hem (Fig. 1A), contains neural
- stem cells (NSC), that will generate granule neurons in the hippocampus dentate gyrus (DG)
- 95 throughout development and, subsequently, in postnatal life (Berg et al., 2019). On the outer side

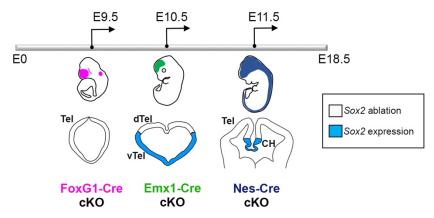
- 96 of the neuroepithelium, towards the pia, a population of neurons, called Cajal-Retzius cells (CRC)
- 97 (Fig. 1A) develops, that will have a key role in the morphogenesis of the hippocampus. NSC and
- 98 intermediate neural progenitors (INP) will migrate from the DNE, along the dorsal migratory
- 99 stream (DMS), towards the forming hippocampal fissure (HF), a folding of the meninges that will
- 100 be invaded by CRC (Fig. 1A).
- 101 We examined Sox2 expression by *in situ* hybridization (ISH) and immunofluorescence (IF), in the
- medial telencephalon, from which the hippocampus develops, between E12.5 and E18.5 (Fig. 1B-
- 103 I). At E10.5 *Sox2* is expressed in the whole telencephalon including the dorso-medial region that
- 104 will give rise to the hippocampus (Fig. 1B). At E12.5, Sox2 is expressed throughout the
- neuroepithelium in the medial telencephalic wall and it is enriched in the CH region (Fig. 1C); at
- 106 E15.5, expression persists in the neuroepithelium, and is detected in the DMS and in the fimbria (a
- 107 CH derivative) (Fig. 1D). Just before birth, at E18.5, Sox2 expression is detected in the developing
- 108 DG (Fig. 1E,E').
- 109 We then performed co-immunohistochemistry experiments with antibodies against SOX2, and
- 110 markers of more differentiated cell types: CR cells markers Reelin and P73 (Fig. 1F,G,I) and the
- 111 pan-neuronal marker TuJ1 (Fig. 1H). While SOX2 was detected in all cells within the
- neuroepithelium, as expected, we detected no or very little (Fig. 1F arrowheads) overlap with TuJ1,
- 113 Reelin, or p73 (Fig.1 F-I). Moreover, to test if Sox2 is expressed in the progenitors of CRC, we
- turned on EYFP in Sox2-expressing cells of the early telencephalon before CRC differentiation
- started, at E9.5 (via a Sox2-CreERT2 transgene and a lox-stop-lox reporter of Cre activity, Fig. S1),
- and found that these cells differentiated into Reelin-expressing CRC in the hippocampal fissure and
- the cortex (Fig. S1).
- 118 Thus, Sox2 expression in the developing hippocampus and CH is present mainly in undifferentiated
- neuroepithelial cells (including CRC precursors), and becomes extinguished in differentiation.
- 120

Sox2 early ablation (FoxG1-Cre) prevents the development of the hippocampal dentate gyrus, and severely compromises hippocampal embryogenesis

Sox2 is required for postnatal development of the hippocampus, in particular to maintain NSC in
the DG (Favaro et al., 2009); however, whether Sox2 has a role in hippocampus embryogenesis was
not known. To address this question, we generated three different conditional knock-outs, to ablate
Sox2 at different time points of telencephalon development. Specifically, we crossed a Sox2 floxed
allele (Favaro et al., 2009) with the following Cre lines: FoxG1-Cre, deleting between E8.5 and


129 Figure 1

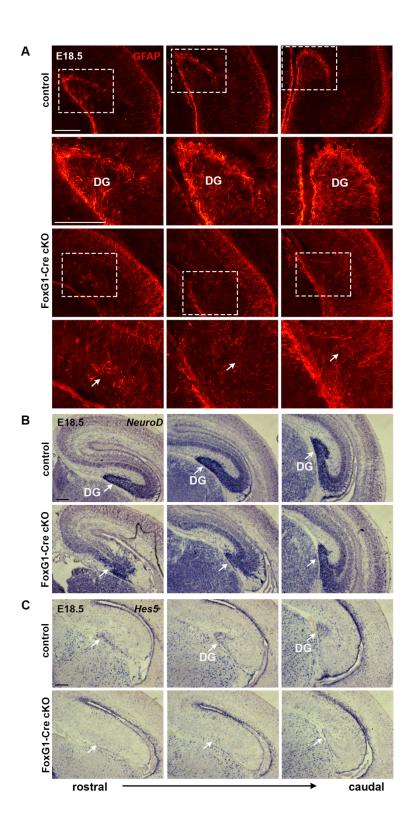

130 Sox2 expression in the dorsal telencephalon.


- 131 (A) Schematic representation of the development of the hippocampus in the dorsal telencephalon. (B-E) In
- 132 *situ* hybridization for *Sox2* on coronal section of mouse brains at E10.5 (B) E12.5 (C), E15.5 (D), E18.5 (E).
- 133 Arrows indicate Sox2 expression in the developing hippocampus in particular in the dorsal telencephalon in
- (B), in the cortical hem (CH) in (C), in the dorsal migratory stream (DMS) in (D) and in the dentate gyrus
- 135 (DG) in (E'). (F-I) Immunofluorescence of Sox2 (F-I), of markers of CRC, Reelin (F,G) and P73 (I), and of
- a marker of differentiating neurons TuJ1 (H). Representative single optical confocal sections are shown.
- **137** Scale bars 200 μm.
- 138 CH, cortical hem; DNE, dentate neuroepithelium; HNE, hippocampal neuroepithelium; DMS, dentate
- 139 migratory stream; HF, hippocampal fissure; DG, dentate gyrus; F, fimbria; Th, thalamus.

140 E9.5 (A. Ferri et al., 2013; Hébert & McConnell, 2000), Emx1-Cre, deleting after E10.5 (Gorski et

- al., 2002), and Nestin-Cre, deleting after E11.5 (Tronche et al., 1999). The resulting conditional
- 142 knock-outs (Sox2^{flox/flox};FoxG1-Cre; Sox2^{flox/flox};Emx1-Cre; Sox2^{flox/flox};Nestin-Cre) will be called
- 143 FoxG1-Cre cKO, Emx1-Cre cKO and Nestin-Cre cKO respectively, from now onwards. As
- 144 expected, complete Sox2 deletion is observed already at E9.5 in FoxG1-Cre cKO (in the whole
- telencephalon), and at E10.5 in Emx1-Cre cKO (in the dorsal telencephalon); in the Nestin-Cre
- 146 cKO, deletion occurs after E11.5 (Favaro et al., 2009, Ferri et al., 2013, and data not shown).
- 147
- 148 We initially explored hippocampus development in the different mutants at the end of gestation
- 149 (E18.5; P0), performing ISH with probes identifying hippocampal structures and cell types (Fig. 2).
- 150 ISH for a general marker of the developing hippocampus, Cadherin 8 (Korematsu & Redies, 1997),
- shows that, at the end of gestation (E18.5, P0) the DG appears little, if at all, affected in the Nestin-
- 152 Cre cKO (Fig. 2C), as expected (Favaro et al., 2009). However, in the Emx1-Cre cKO, the DG is
- greatly reduced, in particular anteriorly (Fig. 2B); remarkably, in the FoxG1-Cre cKO, the DG
- appears to be almost absent (Fig. 2A).
- 155 At the end of gestation, CRC, expressing Reelin (D'Arcangelo et al., 1995), and INP, expressing
- 156 Tbr2 (Hodge et al., 2013), have a characteristic organization in the hippocampus: CRC are localized
- around the HF, while INP have migrated from the DNE, by the ventricle, along the DMS, have
- reached the HF and are found below the CRC layer (see Fig. 1A). In the FoxG1-Cre cKO, Reelin
- expression (marking CRC) is greatly reduced, and a HF is not observed (Fig. 2D); in Emx1-Cre
- 160 cKO, Reelin is reduced, but the HF is visible (Fig. 2E), and in Nestin-Cre cKO Reelin appears
- slightly reduced, but with a normal-looking distribution around the HF (Fig. 2F). Similarly, Tbr2
- expression is greatly reduced in FoxG1-Cre cKO; an initial dorsal migratory stream is visible, but
- no DG is observed (Fig. 2G). Instead, in Emx1-Cre cKO, Tbr2-positive INP have reached the HF,
- but their abundance is greatly reduced (Fig. 2H). On the other hand, in Nestin-Cre cKO, Tbr2-
- positive INP appear to have completed their migration, and their abundance seems only slightly, ifat all, reduced (Fig. 2I).
- 167 To summarize, Sox2 ablation by E9.5 in the telencephalon in FoxG1-Cre cKO results, by the end of
- 168 gestation, in lack of DG formation, accompanied by a missing HF. Ablation just a day later, in
- 169 Emx1-Cre cKO, has much less dramatic effects: a hippocampal fissure forms, though CRC and INP
- are reduced and the DG is much smaller compared to controls. Nestin-Cre cKO appear much less, if
- at all, affected, as previously published (Favaro et al., 2009).

173 Figure 2


- Hippocampus development is affected by Sox2 loss, the early Sox2 is ablated the stronger the
 phenotype observed.
- 176 In situ hybridization for Cadherin8 (A-C), Reelin (D-F) and Tbr2 (G-I) on coronal sections of control and
- 177 Sox2 FoxG1-Cre cKO brains at E18.5 (A,D,G), control and Emx1-Cre cKO brains at P0 (B,E,H) and control
- and Nes-Cre cKO brains at P0 (C,F,I). At least 3 controls and 3 mutants were analyzed for each probe. A
- schematic representation of the timing of Sox2 ablation with the different Cre lines is at the bottom. Scalebars 200 µm.
- 181 DG, dentate gyrus; HF, hippocampal fissure; DMS, dentate migratory stream; Tel, telencephalon; dTel,
- dorsal telencephalon; vTel, ventral telencephalon; CH, cortical hem.
- 183

184 Neural progenitors, differentiated neurons and radial glia are affected by Sox2 loss

- 185 We then characterized the development of specific hippocampal cell types in the most affected
- 186 (FoxG1-Cre) mutants. Key for the morphogenesis of the hippocampus is the radial glia (RG)
- 187 scaffold known to be required for the DMS to reach its final destination in the forming DG (Li,
- 188 Kataoka, Coughlin, & Pleasure, 2009). By immunohistochemistry for GFAP, recognizing RG, at
- 189 E18.5, we find that the RG scaffold in FoxG1-Cre cKO is completely disorganized (Fig. 3A). No
- 190 morphologically identifiable DG is present, and the few RG found have random organization (Fig.
- 191 3A, arrows). At this same stage, different neuronal populations are normally found in the
- 192 hippocampus: granule neurons in the DG, and pyramidal neurons forming the CA1, CA2 and CA3
- 193 regions. We performed ISH for NeuroD1, a marker of differentiated neurons; in FoxG1-Cre cKO,
- 194 while NeuroD1-positive cells in the CA regions are present, NeuroD1-positive cells in the DG,
- abundant in controls, are almost absent in the mutant (Fig. 3B).
- 196 In the DG, at this stage, neural stem/progenitor cells, marked by the expression of the Hes5 gene
- 197 (Basak & Taylor, 2007), are normally present (see Fig. 3C, controls); in FoxG1-Cre cKO, however,
- 198 very few Hes5-positive cells are found (Fig. 3C).
- 199 In conclusion, early Sox2 loss in the telencephalon (FoxG1-Cre cKO) appears to lead to later
- reduction of both differentiated neurons and proliferating neural progenitors; in addition, the radialglia scaffold is completely disorganized.
- 202

The formation of the hippocampal fissure and the dentate migration require Sox2 expression from early developmental stages

- After having identified the hippocampal defects present, in our mutants, at the end of gestation, we
 examined earlier developmental stages, to define the developmental history of the defects. We
- 207 focused in particular on the FoxG1-Cre mutant, showing the most pronounced abnormalities (see
- 208 Fig. 2).
- 209

- 210 211
- 212 Figure 3
- Radial glia formation, neuronal differentiation and neural stem cells formation is severely affected in
 FoxG1-Cre cKO.
- 215 (A) GFAP immunofluorescence at E18.5 on coronal sections of control and FoxG1-Cre cKO hippocampi
- 216 (controls n=6, mutants n=4). (B,C) In situ hybridization at E18.5 for NeuroD (B) (controls n=4, mutants
- 217 n=3) and *Hes5* (C) (controls n=2, mutants n=2) on coronal sections of control and FoxG1-Cre cKO
- hippocampi. Arrows indicate the underdeveloped dentate gyrus (DG) in cKO. Scale bars 200 μm.

A defect in distribution of CRC (marked by Reelin) and INP (marked by Tbr2) is apparent, at the 219 220 end of gestation, in Sox2 FoxG1-Cre and Emx1-Cre cKO (Fig. 2D,E,G,H). What happens in the first steps of the development of the hippocampus to CRC and INP in these mutants? We addressed 221 this question by ISH with markers for these cell types at early developmental stages, in FoxG1-Cre 222 (Early) cKO embryos (Fig. 4). We also examined the expression of Cxcr4, a chemokine receptor 223 224 expressed in INP and neuroblasts in the DMS and in CRC, and its ligand Cxcl12, expressed by the 225 meninges, and required for the migration of INP and CRC (Berger, Li, Han, Paredes, & Pleasure, 226 2007; Borrell & Marin, 2006; Hodge et al., 2013; Li et al., 2009); we also examined P73, a P53 227 homolog, expressed by CRC and important for hippocampal fissure and DG formation (Meyer et 228 al., 2004; Meyer et al., 2019).

229

At E12.5, Tbr2 is expressed, in controls, by INP in the DNE and in CR cells towards the pia (Fig. 4A); in the FoxG1-Cre cKO mutant, whereas Tbr2 expression in CRC (towards the pia, arrow) appears present, expression in the DNE is not detected (Fig. 4A). This might reflect a loss of Tbr2expressing INP; however, we do not observe changes in the number of proliferating cells in this region at E12.5 by EdU labelling (Fig. S2), suggesting that at least some INP remain, but express less Tbr2 or are mislocalized. P73, Reelin and Cxcr4 expression appears unaltered in mutants compared to controls at this stage (Fig. 4B-D).

237

At E14.5, P73 and Reelin expression marks, in controls, CRC in the medial telencephalic wall
region where hippocampal morphogenesis will soon begin (Fig. 4E,F, arrow); in the mutant, a
strong reduction of P73 and Reelin expression is observed (Fig. 4E,F, arrow). Of note, this
reduction is detected specifically in the CH of FoxG1-Cre cKO (Fig. 4E,F), even though Sox2 is
ablated in the whole telencephalon. At this stage, also Cxcr4 expression in CRC appears reduced in
the CH of FoxG1-Cre cKO (Fig. 4G).

244

At E16.5, in controls, strong P73 and Reelin expression marks the hippocampal fissure (HF),

246 defining the beginning of overt hippocampal morphogenesis (Fig. 4H,I); in sharp contrast, this

expression is not seen or greatly reduced in the mutant (Fig. 4H,I). Cxcl12 is also expressed, in the

control, in the developing HF, and its expression is also lost in the mutant (Fig. 4K).

249 Concomitantly, Cxcr4 expression in the hippocampus primordium (HP) is also reduced (Fig. 4J).

250 These data point to a failure to initiate proper HF development in the mutant.

Interestingly, at 16.5, P73, Reelin and Cxcr4 expression is reduced throughout the telencephalon in
FoxG1-Cre cKO (Fig. 4).

253

At E18.5, P73 marks the HF in controls, but its expression is completely absent in the FoxG1-Cre cKO brain, indicating a complete depletion of P73-positive CH-derived CRC (Fig. 4L). Cxcr4

expression in the DG and Cxcl12 expression in the HF is also greatly reduced in the mutant,

confirming a severe abnormality of the mutant hippocampus at the end of gestation (Fig. 4M,N).

258 In conclusion, the defects detected, at the end of gestation, in FoxG1-Cre mutants originate early in

development, with a failure, at early stages, to develop a HF and migrating DNE cells in thesemutants.

261

Genes essential for hippocampal development are downregulated following early (FoxG1-Cre cKO), but not late (Emx1-Cre cKO, Nestin-Cre cKO), Sox2 deletion

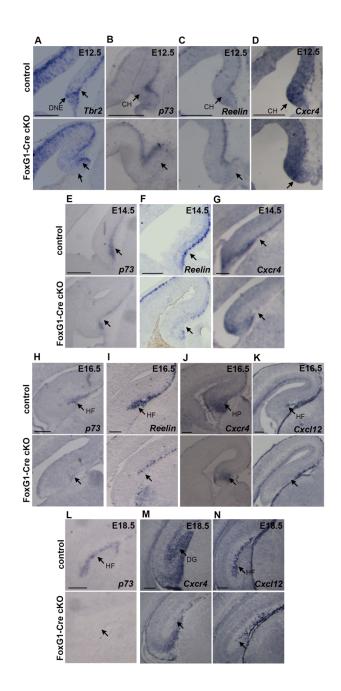
Having observed that early Sox2 mutants (in particular FoxG1-Cre cKO) show severely defective
hippocampal development, we searched for Sox2-regulated downstream genes, whose deregulation
in mutants could explain the observed defects. We compared the expression of several candidate
genes in mutants and controls, at E12,5, a stage preceding the observed abnormalities (clearly
observed, in mutants, from E14.5, when hippocampal morphogenesis begins). Having observed that

the defects in early Sox2 mutants (FoxG1-Cre cKO) are much more severe than those arising in

- 270 later (Emx1-Cre and Nestin-Cre cKO) mutants, we reasoned that genes downstream to Sox2, that
- are functionally relevant for these early defects, should show altered expression in early (FoxG1-

272 Cre) mutants, but not, or less, in later mutants (Emx1-Cre; Nestin-Cre).

- We thus investigated the expression of genes, representing candidate mediators of Sox2 function, inearly and late mutants, by ISH.
- 275


276 Prime candidate genes to mediate defective hippocampal development in early Sox2 mutants

277 include genes encoding signalling molecules, expressed in the CH.

278 Key signaling molecules secreted by the CH and required for hippocampus formation are

279 components of the Wnt pathway; in fact, Wnt3a knock-out results in a complete loss of the

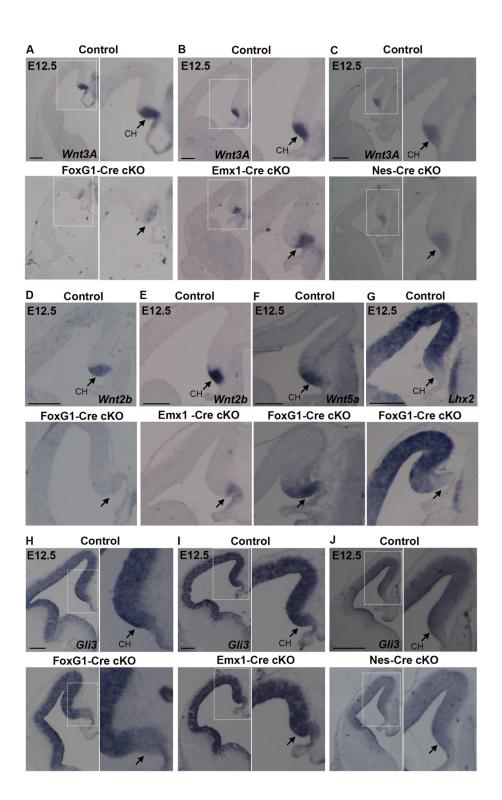
- hippocampus (Lee, Tole, Grove, & McMahon, 2000). We analyzed what happens, at E12.5, to the
- expression of Wnt3A in the three Sox2 cKO. We found that Wnt3A is severely downregulated
- specifically in the CH of FoxG1-Cre cKO (Fig. 5A), but only slightly downregulated in Emx1-Cre
- 283 cKO (Fig. 5B), while it is only very mildly, if at all, reduced at this stage in the Nestin-Cre cKO

285 Figure 4

Expression of genes important for the development of the hippocampus is affected by Sox2 loss in FoxG1-Cre cKO.

- 288 (A-D) In situ hybridization at E12.5 on coronal sections of control and FoxG1-Cre cKO dorsal
- telencephalons for *Tbr2* (controls n=10, mutants n=10) (A), *P73* (controls n=3, mutants n=3) (B), *Reelin*
- 290 (controls n=7, mutants n=6) (C) and *Cxcr4* (controls n=7, mutants n=7) (D). (E-G) *In situ* hybridization at
- E14.5 on coronal sections of control and FoxG1-Cre cKO brains for P73 (controls n=3, mutants n=3) (E),
- 292 Reelin (controls n=7, mutants n=5) (F) and Cxcr4 (controls n=3, mutants n=3) (G). (H-K) In situ
- 293 hybridization at E16.5 on coronal sections of control and FoxG1-Cre cKO hippocampi for *P73* (controls
- 294 n=2, mutants n=2) (H), Reelin (controls n=6, mutants n=5) (I), Cxcr4 (controls n=5, mutants n=4) (J) and
- 295 *Cxcl12* (controls n=4, mutants n=3) (K). (L-N)) *In situ* hybridization at E18.5 on coronal sections of control
- and FoxG1-Cre cKO hippocampi for *P73* (controls n=3, mutants n=3) (L), *Cxcr4* (controls n=5, mutants
- n=4) (M) and *Cxcl12* (controls n=5, mutants n=4) (N). Arrows indicate the downregulation of expression in
- the mutant cortical hem (CH), dentate neuroepithelium (DNE), hippocampal primordium (HP), dentate gyrus
- 299 (DG) and hippocampal fissure (HF). Scale bars 200 μ m.

300 (Fig. 5C). We analyzed the expression of another Wnt family member, Wnt2b in FoxG1-Cre cKO


- and Emx1-Cre cKO. While Wnt2b was strongly downregulated in the CH of FoxG1-Cre cKO (Fig.
- 302 5D), it was only slightly downregulated in the CH of Emx1-Cre cKO compared to controls (Fig.
- 303 5E). Wnt5A, another Wnt family member normally expressed in the CH, was instead expressed in
- the CH of FoxG1-Cre cKO (Fig. 5F), indicating that the CH, as a structure, is present in these
- 305 mutants, though it fails to express Wnt3a and Wnt2b. Interestingly, expression of the transcription
- 306 factor Lhx2, a marker of the cortex which is not expressed in the cortical hem, has a normal
- 307 expression pattern in FoxG1-Cre cKO, including an Lhx2-non-expressing neuroepithelial region,
- 308 suggesting that a CH is present in these mutants (Fig. 5G).
- 309 In conclusion, expression of components of the Wnt pathway known to be involved in the
- development of the hippocampus is strongly downregulated in the CH of FoxG1-Cre cKO, but not
- 311 of Emx1-Cre cKO and Nestin-Cre cKO.
- 312

Other key genes for hippocampus formation include Gli3, encoding a transcription factor acting as a nuclear effector in the Shh signaling pathway. The knockout of Gli3 impairs the development of the hippocampus, where DG development is as severely affected as in our Sox2 early (FoxG1-Cre cKO) mutants. Of note, Gli3 acts, in hippocampal development, by regulating expression of components of the Wnt pathway (Grove, Tole, Limon, Yip, & Ragsdale, 1998). We found that Gli3 expression is specifically downregulated in the CH (though not in the cortex) of FoxG1-Cre cKO, but not of Emx1-Cre cKO and Nestin-Cre cKO (Fig. 5H-J).

320

Recent work from our laboratory identified SOX2 binding sites in an intron of the Gli3 gene in
NSC cultured from the mouse forebrain; further, this intronic region is connected to the Gli3

- promoter by a long-range interaction mediated by RNApolII ((Bertolini et al., 2019) and Fig. 6A).
- A DNA segment, overlapping the SOX2 peak, drives expression of a lacZ transgene to the
- embryonic mouse forebrain ((Visel et al., 2009) and <u>https://enhancer.lbl.gov) (Fig. 6A).</u> We found
- that this Sox2-bound region, when connected to a minimal promoter and a luciferase reporter gene,
- 327 and transfected in Neuro2a cells, is activated by increasing doses of a cotransfected Sox2-
- 328 expressing vector in a dose-dependent way (Fig. 6B).
- 329
- 330 Cxcr4, downregulated in early (FoxG1Cre) Sox2 mutants at E14.5 (Fig. 4G), is also functionally
- involved in the development of the hippocampus (Discussion). Of note, an enhancer active in the
- developing brain, located within an intron of the Dars gene, but connected to the Cxcr4 gene

- 333
- 334
- 335 Figure 5
- Expression of key molecules for hippocampal development is downregulated in the cortical hem of
 FoxG1-Cre cKO but mildly or not affected in Emx1- Cre or Nes-Cre cKO.
- 338 In situ hybridization at E12.5 for Wnt3A (A-C), Wnt2b (D,E), Wnt5A (F), Lhx2 (G), Gli3 (H-J) on control
- and FoxG1-Cre cKO (A,D,F,G,H), Emx1-Cre cKO (B,E,I) and Nes-Cre cKO (C,J) coronal brain sections.
- 340 Arrows indicate the cortical hem (CH). At least 3 controls and 3 mutants were analyzed for each probe.
- **341** Scale bars 200 μm.

promoter by a long-range interaction in brain-derived NSC chromatin, is bound by SOX2 in these
cells (Bertolini et al., 2019) (Fig. 6C).

345

346 In conclusion, Sox2 early ablation leads to reduced expression, particularly in early (FoxG1-Cre)

347 mutants, of several genes key to hippocampal development, some of which are directly bound and

regulated by SOX2; some of these genes (Gli3, Wnt3a) are also known to functionally regulate each

other (see Discussion). These genes may thus be considered as part of a Sox2-dependent gene

350 regulatory network, controlling hippocampal development (Fig. 6D; see Discussion).

351

352 *Emx1-Cre mediated Sox2 ablation alters the excitatory input in CA3 and CA1 pyramidal neurons*

We also wished to ask about the consequences of Sox2 early loss on the physiological functioning of the postnatal hippocampus.

As illustrated earlier (Fig. 2A, 2B), early Sox2 loss causes DG hypoplasia, most severe in FoxG1-

356 cKO mutants, but clearly present also in Emx1-Cre cKO mice. Since FoxG1-cKO are perinatally

lethal (A. Ferri et al., 2013), we performed physiology studies on Emx1-cKO mutants. We

addressed, in particular, the function of CA3 and CA1 pyramidal neurons, central to hippocampal

circuitry and relatively spared, morphologically at least, in our mutants (in comparison to the

severely hypoplastic DG).

361 The DG receives its main extrinsic input from the entorhinal cortex and is the first hippocampal

station of the classical trisynaptic pathway: entorhinal cortex \rightarrow DG granule cells \rightarrow CA3

363 pyramidal neurons \rightarrow CA1 pyramidal neurons. The DG projects exclusively to CA3 through mossy

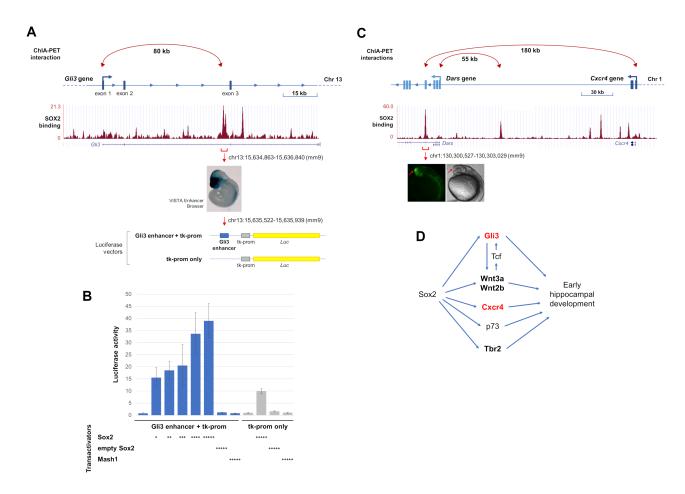
fibers. In turn, CA3 projects to CA1 through Schaffer collaterals (Witter & Amaral, 2004). Hence,

365 we investigated whether the hypoplastic DG in our Emx1-Cre mutants could alter signal transfer to

366 CA3 and CA1. This hypothesis was tested by studying intrinsic excitability and excitatory

transmission in CA3/CA1 pyramidal neurons. These were first identified by their typically large

368 pyramidally-shaped soma (~20 μm diameter, in CA3), and then further distinguished by their action

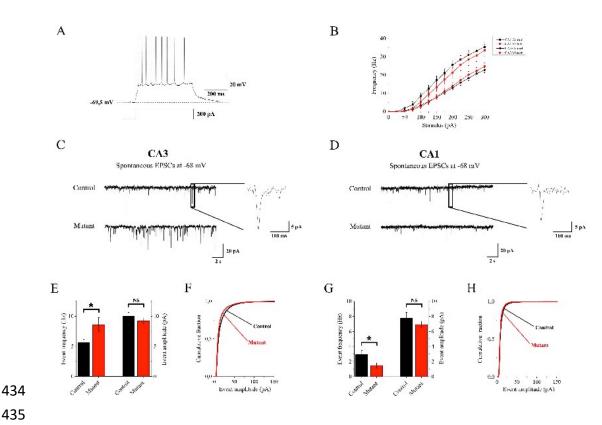

369 potential firing. We focused on regular-spiking pyramidal neurons, the widest population,

370 characterized by slow firing with modest adaptation and excitability properties consistent with

371 literature on CA1-CA3 neurons in mice (e.g., (Hunt, Linaro, Si, Romani, & Spruston, 2018;

372 Venkatesan, Liu, & Goldfarb, 2014)). A typical example is shown in Fig. 7A. The excitability

features of pyramidal neurons from control and mutant mice are shown in Supplementary Table 1,


376

377 Figure 6

378 SOX2 acts on distal enhancers and on long-range enhancer-promoter interactions of several genes key

- to hippocampal development, and activates a Gli3 intronic enhancer in a dose-dependent way
- 380 (A) Diagram of the Gli3 gene, and SOX2-binding profile across the Gli3 locus in NSC (ChIPseq data from
- (Bertolini et al., 2019). A Sox2-dependent 80kb long-range interaction connects the Gli3 promoter with a
 SOX2-bound region, in the second intron (ChIA-PET data from (Bertolini et al., 2019). This region acts as a
- 383 brain-specific enhancer in E10.5 mouse embryo (image from https://enhancer.lbl.gov/); it was cloned into
- the depicted luciferase vector, upstream to a minimal tk promoter, to address its responsivity to Sox2.
- 385 (B) Enhancer activation assay in Neuro2a cells transfected with the constructs in (Å): Gli3 enhancer + tk-
- promoter (blue histograms), or tk-promoter only (grey histograms). Cotransfection of these constructs with
- increasing amounts of a Sox2-expressing vector (Sox2, X axis), but not of a control "empty" vector (empty
 Sox2), or a Mash1-expressing vector (Mash1), resulted in dose-dependent increase of luciferase activity (Y
- 300 3002), or a Masn1-expressing vector (Masn1), resulted in dose-dependent increase of luciferase activity axis) driven by the Gli3 enhancer + tk-prom vector, but not the tk-prom only vector. The molar ratios,
- 390 compared with the luciferase vector (set at 1) were: +, 1:0.050; ++, 1:0.075; +++, 1:0.125; ++++, 1:0.25;
- +++++, 1:0.5. Results are represented as fold-change increase in activity compared with the tk-prom only
 vector, which is set at 1. Values are the mean of two (for Sox2+ and Sox2++) or three (other samples)
- independent experiments carried out in triplicate. Error bars represent standard deviation.
- 394 (C) Diagram of the Cxcr4 gene, reporting SOX2 binding and Sox2-dependent long-range interactions in
- 395 NSC (as in A for Gli3; data from (Bertolini et al., 2019)). Note that the Cxcr4 promoter is connected to a 396 SOX2-bound region within the intron of a different gene, Dars; this region acts as a brain-specific enhancer
- in transgenic zebrafish embryos (picture from (Bertolini et al., 2019)).
- 398 (D) A model depicting the activation, by Sox2, of different genes key to hippocampal development (present
- paper), some of which cross-regulate each other; in red, direct SOX2 targets; in bold, early expressed
- 400 hippocampal regulators, downregulated already at early stages in Sox2 mutants (see Discussion).

- while the stimulus/frequency relations are shown in Fig. 7B. Overall, little difference was observedin intrinsic excitability between mutant and control mice, in both CA1 and CA3.
- 404 In these neurons, we recorded the spontaneous excitatory post-synaptic currents (EPSCs) for 10
- 405 min after reaching the whole-cell configuration, at -68 mV. Spontaneous EPSCs reflect the overall
- 406 excitatory input impinging on a given pyramidal neuron. Typical EPSC traces from CA3 pyramidal
- 407 neurons are shown in Fig. 7C, for controls and mutants. Somewhat surprisingly, EPSC frequencies
- 408 in CA3 displayed a ~30% increase in mutant animals compared to the controls (Fig. 7E). On the
- 409 contrary, the average EPSC median amplitudes were not different between control and mutant mice
- 410 (Fig. 7E). Moreover, the EPSC amplitudes obtained from all control and mutant cells were pooled
- 411 in Fig. 7F. The amplitude distributions of the two genotypes were compared with KS test, which
- 412 revealed no significant difference.
- 413 Next, we studied the excitatory input onto CA1, which is the last station of the hippocampal serial
- 414 pathway of information transfer. Typical EPSC traces are shown in Fig. 7D for control and mutant.
- 415 As expected (Traub, Jefferys, & Whittington, 1999), the overall EPSC frequency and amplitude
- 416 tended to be smaller in CA1, compared to CA3. The average EPSC frequencies in CA1 are reported
- 417 for control and mutant mice in Fig. 7G. Data reveal an approximately 50% reduction in mutant
- 418 animals compared to the controls. Once again, little difference between genotypes was observed in
- 419 the EPSC amplitudes (Fig. 7G, H).
- 420 In conclusion, CA3/CA1 pyramidal neuron firing or EPSC amplitudes were not altered in Emx1-
- 421 Cre cKO mice, arguing against a direct effect of the mutation on the synaptic machinery or intrinsic
- 422 excitability, which is consistent with the lack of expression of Sox2 in these neurons (data not
- 423 shown). However, EPSC frequency increased in CA3 and was approximately halved in CA1 of
- mutant mice, suggesting that excitatory signal transfer along the canonical trisynaptic pathway was
 unbalanced as a consequence of the major impairment of DG development produced by early Sox2
- 426 ablation.
- 427 Overall, our data indicate significant functional alterations of the hippocampal circuitry in early
 428 Sox2 mutants, which might plausibly contribute to the epileptic and cognitive defects in human
 429 patients (see Discussion).
- 430
- 431
- 432
- 433

⁴³⁵

436 Figure 7

437 In Emx1-Cre cKO mice, excitatory transmission is altered in CA3 and CA1 hippocampal regions. 438 Early Sox2 ablation leads to alterations in the excitatory input onto both CA3 and CA1 pyramidal neurons. 439 (A) Typical firing response to a 200 pA stimulus of injected current in a CA3 pyramidal neuron. (B) Average 440 stimulus/frequency relation for hippocampal pyramidal neurons recorded in CA3 (Circles) and CA1 441 (Squares). No major differences were observed between control (Black) and mutant animals (Red). (C and 442 D) EPSCs traces, at -68 mV, recorded in simulated physiologic conditions onto pyramidal neurons in CA3 443 and CA1 region respectively. Insets. Magnification of a representative EPSC event. (E) Average EPSCs 444 frequencies and median amplitudes observed in CA3 pyramidal neurons recorded from 15 animals between 445 p19 and p31. In mutant animals, Sox2 ablation induced a significant increase in EPSCs frequency compared 446 to controls $(8.60 \pm 1.15 \text{ Hz}, n = 20 \text{ and } 5.59 \pm 0.57 \text{ Hz}, n = 28 \text{ respectively; } p = 0.03941$, with Mann-447 Whitney test), whereas, no significant effect was produced on event amplitudes $(9.21 \pm 0.47 \text{ pA}, \text{n} = 20 \text{ and}$ 448 10.01 ± 0.61 pA, n = 28 respectively). (F) Amplitude distribution of the total amount of collected EPSCs 449 showing no major differences between control and mutant mice. (G) In CA1, EPSCs frequency significantly 450 decreased in mutant animals compared to controls $(1.46 \pm 0.35 \text{ Hz}, n = 13 \text{ and } 2.91 \pm 0.52 \text{ Hz}, n = 13$ 451 respectively; p = 0.02745, with Mann-Whitney test). No difference in the average median amplitude was 452 observed (controls: 7.75 ± 0.69 pA, n = 20 and mutants: 6.92 ± 0.44 pA, n = 28). (H) The amplitude 453 distribution of the total pool of events recorded from 13 animals between p19 and p31 showed no major 454 alterations between control and mutant mice.

455

Discussion 456

458	In this work,	, we highlighted an	n early time w	vindow in hippocampal	development, where the Sox2

- 459 transcription factor is necessary to initiate the embryogenesis of the hippocampus. In fact, following
- Sox2 mutation with FoxG1-Cre, active from E8.5 (A. Ferri et al., 2013; Hébert & McConnell, 460

461 2000), hippocampal development is drastically defective, with a nearly complete absence of the

462 DG; DG development is also defective, but present, following mutation with Emx1-Cre, active

463 from E10.5; Sox2 mutation with Nestin-Cre has very little effect on hippocampal embryogenesis

464 (Fig. 2).

These observations point to gene regulatory events, orchestrated by Sox2, that are required to initiate hippocampal development; at least some of these events are likely to be direct effects of SOX2 (Fig. 6). What is the nature of these events?

468

469 Gene regulatory events mediating early Sox2 function in hippocampal development

470 A severe reduction in the early expression of key regulators of hippocampal development (Wnt3a;

471 Gli3; Cxcr4; Tbr2; p73) is observed in early Sox2 mutants (FoxG1-Cre cKO), already at early

472 stages of hippocampal embryogenesis (E12.5, E14.5), preceding the overt phenotypic manifestation

473 of the defect (hippocampal morphogenesis begins at about E14.5) (Figs. 4,5). Of note, reduced

expression in the mutant CH at E12.5 is seen for some genes (e.g. Wnt3a, Gli3) but not others

475 (Wnt5a; Fig. 5), suggesting that the CH is present, but misfunctional in directing hippocampal

476 formation. Importantly, a reduction in expression of these master genes is also observed in Emx1-

477 Cre mutants, but to a lesser extent than in FoxG1-Cre mutants (Fig. 5). These observations suggest

that the differential reduction in the expression of these key regulators accounts, at least in part, for

the differences in the severity of the hippocampal embryogenesis defects between the three mutants.

480

What molecular mechanisms cause the differential expression of master hippocampal regulatorgenes between different mutants?

483 SOX2 is able to directly bind to at least some of these target genes (Gli3, Cxcr4, Fig. 6A,C) in

484 neural cells chromatin, and to act as a transcriptional activator on some SOX2-bound enhancers

(Gli3) within these loci (Fig. 6B), suggesting that it is directly involved in the transcriptional

486 activation of at least some of these genes during hippocampal development. Further, SOX2-bound

distant enhancers within the Gli3 and Cxcr4 loci are connected to the gene promoter in a Sox2-

dependent way, at least in NSC (Fig. 6A,C), indicating that SOX2 may contribute to their

regulation also through this "architectural" function (Bertolini et al., 2019; Wei, Nicolis, Zhu, &
Pagin, 2019).

491 At E12.5 and afterwards, Sox2 is ablated in both FoxG1-Cre and Emx1-Cre mutants, yet critical

492 genes are much more downregulated in FoxG1-Cre mutants, in agreement with a requirement for

493 Sox2 to properly initiate the expression of these genes at early stages. We speculate that SOX2 may

494	act at early stages to initiate the organization of a 3D interaction network connecting gene
495	promoters to enhancers (Fig. 6A,C), as a prerequisite for gene expression, in agreement with
496	previous findings in NSC (Bertolini et al., 2019; Wei et al., 2019).

Altered regulation of a gene regulatory network of hippocampal master genes leads to defective cell development and cell-cell signaling in early Sox2 mutants, and eventually to defective

500 hippocampal structure and function

The failure to properly activate early-acting hippocampal master genes may provide a molecular
explanation to the failure to develop, in early Sox2 mutants, cell types essential in hippocampal
development, or to prevent their proper behavior, as observed in Figs. 2,3.

504

In FoxG1-Cre, but not in Emx1-Cre Sox2 mutants, the Gli3 gene is downregulated at early stages 505 506 (E12.5) in the segment of medial telencephalic wall required for hippocampal development, the CH (Fig. 5H,I). Gli3 encodes a transcription factor, and its homozygous mutation (as in the extra-toes 507 508 Gli3^{Xt/Xt} mouse mutant) leads to absence of the hippocampus (Li & Pleasure, 2014; Theil, Alvarez-509 Bolado, Walter, & Ruther, 1999). In Gli3 mutant embryos, the medial wall of the telencephalon 510 fails to invaginate to initiate hippocampal development, pointing to an early defect of the proliferating neuroepithelial cells of the prospective hippocampus (Li & Pleasure, 2014; Theil et al., 511 1999). Mutations of human GLI3 cause Pallister-Hall syndrome and Greig cephalopolysyndactyly 512 syndrome, a complex defect that can involve seizures and intellectual disability, though 513 hippocampal abnormalities were not specifically investigated (Naruse, Ueta, Sumino, Ogawa, & 514 515 Ishikiriyama, 2010). In mouse Gli3 mutants, the expression of Wnt signaling molecules, normally expressed in the CH, including Wnt3a and Wnt2b, is lost, and Wnt signaling is impaired at early 516 stages of hippocampal development (Fotaki, Price, & Mason, 2011; Grove et al., 1998; Theil, 517 518 Avdin, Koch, Grotewold, & Ruther, 2002).

519

The expression of Wnt3a and Wnt2b, encoding secreted signaling molecules produced by the CH
signaling center, is also defective in early Sox2 mutants (Fig. 5); their downregulation is most
pronounced in FoxG1-Cre mutants, less so in Emx1-Cre mutants (see above and Fig. 5A,B,D,E).
The downregulation of Gli3 may contribute to this (see above).

524

Wnt signaling exerts its effects on target cells by inducing nuclear translocation of beta-catenin, that
acts as a transcriptional regulator associating with TCF transcription factors; mutation of TCF

527 factors, e.g. Lef1, leads to failure of hippocampal development (Galceran, Miyashita-Lin, Devaney,

528Rubenstein, & Grosschedl, 2000; Li & Pleasure, 2014; Roelink, 2000). Of note, TCF binding

regulates (Hasenpusch-Theil et al., 2012) the same intronic Gli3 enhancer, that we found to be

530 bound and activated by Sox2 (Fig. 6A,B), suggesting that this element may integrate the effects of

531 What signaling and SOX2 activity in controlling Gli3 expression. Interestingly, Sox2/TCF binding

- 532 sites were also described to act on other genes in the context of a transcriptional switch
- accompanying chromatin remodeling during neuronal differentiation (Muotri et al., 2010).
- 534

535 We attempted to reactivate the Wnt pathway in the FoxG1-Cre cKO, by LiCl injection, to see if we

536 could rescue any of the observed defects. We found some amelioration of the organization and

537 number of CRC in the cortex (Fig. S3B,C), although the overall hippocampus development

remained defective (Fig. S3A,C). We also tried to reactivate the Wnt pathway by a Wnt agonist

539 (AZD 1080); a partial rescue of Reelin retention in the CH, usually observed in mutants, was

observed at E14.5 in the FoxG1-Cre cKO (Fig. S3D). We hypothesized that earlier treatment might

have had more pronounced effects, however this resulted in high embryonic lethality, preventing usto observe the effects.

543 In conclusion, we propose that loss of Wnt signaling from the CH represents one mechanism

544 whereby Sox2 early loss causes defective hippocampal embryogenesis likely by regulating the

production of CRC. Assessing the relative contribution of this mechanism will be postponed tofuture studies.

547

548 We detected, in our early mutants, reduced expression of Tbr2, Cxcr4, Cxcl12 and p73, marking

549 specific cell types in hippocampal embryogenesis (Fig. 4). However, knock-out experiments

previously demonstrated that these genes, further to marking specific cell types (see Fig. 2), also

play functional roles in hippocampal (as well as neocortical) development (Bagri et al., 2002;

Hodge et al., 2013; Lu, Grove, & Miller, 2002; Meyer et al., 2004; Mimura-Yamamoto et al.,

553 2017). This suggests that their reduced expression in Sox2 mutants may also functionally contribute554 to the hippocampal defects.

555 Cxcr4, whose expression is downregulated at early stages in Sox2 early mutants (Fig. 4G), is

essential in particular for the development of the DG (Lu et al., 2002; Mimura-Yamamoto et al.,

557 2017). Cxcr4 encodes a cell surface receptor, expressed in Granule Cell Progenitors (GCP) of the

- developing hippocampus, that also express GFAP (Mimura-Yamamoto et al., 2017). In
- 559 hippocampal development, GCP, arising in the ventricular zone (DNE), migrate (dentate migratory

stream) to the subpial region, to form the granule cell layer (GCL) of the DG (Fig. 1A). The

- production and migration of GCP is regulated by various signaling molecules, including CXCL12
- 562 (the CXCR4 ligand), Reelin, Wnt, and BMP proteins, secreted by regions surrounding the
- 563 developing DG. In the absence of Cxcr4, the numbers of dividing cells in the migratory stream and
- the prospective DG is dramatically reduced (Lu et al., 2002). It thus seems plausible that Cxcr4
- deficiency importantly contributes to the impaired development of GFAP-positive GCP, and the
- 566 consequent failure to develop a DG, seen in our early Sox2 mutants.
- 567 P73 encodes a transcription factor expressed in differentiating CRC (Fig. 4), the choroid plexus and
- the ependyma (Meyer, Schaaps, Moreau, & Goffinet, 2000; Yang et al., 2000) and its knock-out in
- 569 mice results in a phenotype very similar to the early loss of Sox2 in FoxG1-Cre cKO, with a lack of
- 570 HF and almost absent DG (Meyer et al., 2019). P73 has a similar expression pattern in the fetal
- 571 human brain suggesting a role in hippocampus development also in humans (Meyer et al., 2019).
- 572 Interestingly, Reelin-expressing CRC in Sox2 mutants are similarly reduced in number and they
- 573 may be retained in the cortical hem instead of moving towards the pia. P73 has a very restricted
- expression pattern, but its knock-out has a broad effect on cortical patterning suggesting it could beinvolved in the signaling activities of the CH (Meyer et al., 2004).
- 576

577 Radial scaffold, Cajal-retzius cells and lack of hippocampal fissure and dentate gyrus

- 578 One of the key outcomes of early ablation of Sox2 in the developing telencephalon, via FoxG1-Cre, 579 is the lack of the hippocampal fissure followed by an extreme reduction of the DG. Radial glia 580 scaffold disorganization due to knock-out of the transcription factor Nf1b leads to lack of a specific 581 hippocampal GFAP-positive glial population, lack of hippocampal fissure and DG without 582 affecting cell proliferation, CRC differentiation or Wnt signalling (Barry et al., 2008); this suggests 583 that the loss and disorganization of GFAP-positive cells, seen in our mutants specifically in the 584 developing hippocampus (Fig. 3), might constitute a cellular mechanism contributing to the
- 585 defective DG development in early Sox2 mutants.
- 586 Knock-out of P73 in CH-derived CRC cells leads to lack of hippocampal fissure and DG, as
- 587 previously mentioned (Meyer et al., 2004). CRC are known to regulate RG formation both in the
- 588 cortex and in the developing hippocampus (Forster et al., 2002; Frotscher, Haas, & Forster, 2003);
- 589 conversely, RG has been shown to be important for the correct positioning of CRC cells (Kwon,
- 590 Ma, & Huang, 2011). Our data suggests that Sox2 does not regulate proliferation in the medial
- telencephalon at E12.5 (Fig. S2); it is possible that it regulates aspects of differentation of RG and
- 592 CRC.

594 Functional alteration of hippocampal circuitry in Sox2-ablated mice

595 In Emx1-Cre Sox2-deleted mice, we observed functional alterations in the excitatory transmission 596 along the serial transmission pathway of the hippocampal formation, and particularly an inbalance in the excitatory input onto CA3 and CA1 pyramidal neurons (Fig. 7). Considering that i) the main 597 effects of Sox2 ablation are produced during hippocampal embryogenesis, ii) Sox2 is not expressed 598 599 in CA3/CA1 neurons, iii) Sox2 deletion caused negligible alterations in pyramidal neuron 600 excitability and excitatory synaptic efficacy, we attribute most of the observed functional effects to 601 altered maturation of the connectivity pattern of hippocampal formation. Neural circuits in the 602 hippocampal formation comprise both serial and parallel pathways. DG is regulated by cortical 603 input from entorhinal layer III, and projects to CA3. However, entorhinal layer III also projects to CA3. Moreover, CA3 displays profuse recurrent reciprocal connections between pyramidal neurons 604 605 (Witter & Amaral, 2004). Therefore, the higher EPSC frequency we observed in CA3 pyramidal neurons of Sox2-deleted mice could be caused by: i) a denser innervation from entorhinal layer III, 606 607 permitted by the lower entorhinal input to the hypoplastic DG; ii) an increased recurrent collateral 608 connectivity between CA3 cells, fostered by the absence of the physiological stimulus from DG; iii) 609 a decreased recurrent inhibition on CA3 pyramidal cells, as mossy fibers from DG also regulate GABAergic interneurons in CA3 (Acsady, Kamondi, Sik, Freund, & Buzsaki, 1998). We cannot 610 presently distinguish between these mechanisms, which are not mutually exclusive. Nonetheless, 611 the increased excitatory input we observed in CA3 pyramidal cells is consistent with the epileptic 612 phenotype frequently associated with the brain malformations caused by Sox2 mutations (Sisodiya 613 614 et al., 2006). Considering the peculiar propensity of CA3 region to develop seizure-like activity (de la Prida, Huberfeld, Cohen, & Miles, 2006; Miles & Wong, 1983), we hypothesize that increased 615 excitatory activity in CA3 of Sox2-deleted mice could facilitate seizure onset, perhaps through CA3 616 617 projection to septal areas (Colom, 2006; Swanson & Cowan, 1977). By contrast, the excitatory input on CA1 pyramidal neurons was lower in Emx1-Cre cKO mice. 618 This could be caused by increased local feed-back inhibition by GABAergic neurons, because of 619 620 overstimulation by the overactive CA3 fibers. Alternatively, in the absence of proper DG input, the partial disorganization of CA3 connectivity could favor recurrent collaterals at the expense of 621 622 Schaffer collaterals. Regardless of the specific mechanism, our results demonstrate that Sox2 ablation at early developmental stages unbalances the normal CA3 to CA1 excitatory input, which 623 624 could contribute to explain some of the cognitive alterations observed in Sox2 mutants. Although

625 early Sox2 ablation leads to severe DG hypoplasia, many cognitive functions can be carried out

even when hippocampal volume is strongly reduced (Moser & Moser, 1998; Sisodiya et al., 2006). 626 627 It is therefore not surprising that the effects of Sox2 ablation on cognition of viable animals are subtle. Nonetheless, evidence is available in humans about a variety of cognitive alterations 628 associated with Sox2 mutations (Ragge et al., 2005; Sisodiya et al., 2006). In general, CA1 is the 629 main output channel of the hippocampal formation, and is thought to compare the entorhinal cortex 630 input (conveying the present state of the environment) with the CA3 input (conveying mnemonic 631 632 representations of expected events based on external signals; (Knierim & Neunuebel, 2016). Our 633 results suggest that Sox2 malfunction may cause cognitive damage by altering such comparative 634 function of CA1.

635

636 *Conclusion and perspective*

637 Overall, our work shows that Sox2 controls (directly, or indirectly) the activity of multiple,

638 functionally interconnected genes, forming a gene regulatory program active and required at very

639 early stages of hippocampal development. Reduced activity of this program leads to essentially

absent (FoxG1-Cre mutants) or reduced (Emx1-Cre mutants) development of the hippocampus, in
particular the DG. In the Emx1 mutants, which are viable, hippocampal physiology is importantly
perturbed. These findings may provide novel perspectives for therapy approaches of genetic brain
disease rooted in defective hippocampal development.

- 644
- 645

646 Materials and methods

- 647
- 648 *Mouse strains*
- 649 Mutant mice were obtained by crossing the Sox2Flox (Favaro et al., 2009) line with the following
- 650 lines: FoxG1-Cre (Hébert & McConnell, 2000), Emx1-Cre (Gorski et al., 2002) and Nestin-Cre;
- 651 Sox2ßGeo (Tronche et al., 1999);Medina, 2004 #506;Favaro, 2009 #3}. The mouse line Sox2-
- 652 CreERT2 (Favaro et al., 2009), was crossed to a transgenic mouse line with a *loxP-EYFP* reporter
- of Cre activity (Rosa26R-EYFP) (Srinivas et al., 2001) to determine the progeny of Sox2
- expressing cells following tamoxifen injection (as described below).
- The day of vaginal plug was defined as embryonic day 0 (E0) and the day of birth as postnatal day0 (P0).
- 657 Genotyping of adult mice or embryos was performed with the following primers:
- 658 Sox2 Flox Forward: 5'AAGGTACTGGGAAGGGACATTT 3'

- 659 Sox2 Flox Reverse: 5'AGGCTGAGTCGGGTCAATTA 3'
- 660 FoxG1-Cre Forward: 5' AGTATTGTTTTGCCAAGTTCTAAT 3'
- 661 FoxG1-Cre Reverse: 5'AGTATTGTTTTGCCAAGTTCTAAT 3'
- 662 Emx1-Cre IRES Forward: 5'AGGAATGCAAGGTCTGTTGAAT 3'
- 663 Emx1-Cre IRES Reverse: 5' TTTTTCAAAGGAAAACCACGTC 3'
- 664 Nestin-Cre Forward: 5' CGCTTCCGCTGGGTCACTGTCG 3'
- 665 Nestin-Cre Reverse: 5' TCGTTGCATCGACCGGTAATGCAGGC 3'
- 666 R26R-EYFP Forward: 5' TTCCCGCACTAACCTAATGG 3'
- 667 R26R-EYFP Reverse: 5' GAACTTCAGGGTCAGCTTGC 3'
- 668 Sox2-CreERT2 Forward: 5' TGATCCTACCAGACCCTTCAGT 3'
- 669 Sox2-CreERT2 Reverse: 5' TCTACACATTTTCCCTGGTTCC 3'
- 670 The FoxG1-Cre mouse line was maintained in 129 background as recommended in (Hébert &
- 671 McConnell, 2000). The other mouse lines were maintained in a mixed background enriched in
- **672** C57BL/6 and DBA.
- All procedures were in accordance with the European Communities Council Directive (2010/63/EU
- and 86/609/EEC), the National Institutes of Health guidelines, and the Italian Law for Care and Use
- of Experimental Animals (DL26/14). They were approved by the Italian Ministry of Health and the
- 676 Bioethical Committees of the University of Milan-Bicocca.
- 677
- 678

679 In situ hybridization

- 680 *In situ* hybridization was performed essentially as in (Mercurio et al., 2019). Briefly, embryonic
- brains and P0 brains were dissected and fixed overnight (O/N) in paraformaldehyde 4% in PBS
- 682 (Phosphate Buffered Saline; PFA 4%) at 4°C. The fixed tissue was cryoprotected in a series of
- 683 sucrose solutions in PBS (15%, 30%) and then embedded in OCT (Killik, Bio-Optica) and stored at
- -80° C. Brains were sectioned (20 μ m) with a cryostat, placed on a slide (Super Frost Plus 09-
- 685 OPLUS, Menzel) and stored at -80°C. Slides were then defrosted, fixed in formaldehyde 4% in
- PBS for 10 minutes (min), washed 3 times for 5 min in PBS, incubated for 10 min in acetylation
- solution (for 200 ml: 2.66 ml triethanolamine, 0.32 ml HCl 37%, 0.5 ml acetic anhydride 98%) with
- 688 constant stirring and then washed 3 times for 5 min in PBS. Slides were placed in a humid chamber
- and covered with prehybridization solution (50% formamide, 5X SSC, 0.25 mg/ml tRNA, 5X
- 690 Denhardt's, $0.5 \mu g/ml$ salmon sperm) for at least 2 hours (h) and then incubated in hybridization
- 691 solution (fresh prehybridization solution containing the digoxygenin (DIG)-labelled RNA probe of

- interest) O/N at 65°C. Slides were washed 5 min in 5X SSC, incubated 2 times in 0.2X SSC for 30
- 693 min at 65°C, washed 5 min in 0.2X SSC at room temperature (RT) and then 5 min in Maleic Acid
- Buffer (MAB, 100 mM maleic acid, 150 mM NaCl pH 7.5). The slides were incubated in blocking
- solution (10% sheep serum, 2% blocking reagent (Roche), 0.3% Tween-20 in MAB) for at least 1 h
- at RT, then covered with fresh blocking solution containing anti-DIG antibody Roche © 1:2000 and
- 697 finally placed O/N at 4°C. Slides were washed in MAB 3 times for 5 min, in NTMT solution (100
- mM NaCl, 100 mM Tris-HCl pH 9.5, 50 mM MgCl2, 0.1% Tween-20) 2 times for 10 min and then
- 699 placed in a humid chamber, covered with BM Purple (Roche), incubated at 37°C until desired
- staining was obtained (1-6 h), washed in water for 5 min, air dried and mounted with Eukitt
- 701 (Sigma).
- The following DIG-labelled probes were used: *Sox2* (Avilion et al., 2003), *Cadherin8* (Korematsu
- 8 Redies, 1997), Tbr2 (Bulfone et al., 1999), Reelin (a gift from Luca Muzio, HSR Milan), Cxcr4
- 704 (Lu et al., 2002), *Cxcl12* (Lu et al., 2002), *Wnt3A* (Grove et al., 1998), *Wnt2b* (Grove et al., 1998),
- 705 Wnt5a (Grove et al., 1998), Gli3 (a gift from Luca Muzio, HSR Milan), Lhx2 (a gift from Shubha
- Tole, Tata Institute Mumbai), *P73* (a gift from Olivia Hanley, UZH). The *P73* probe was
- transcribed directly from a PCR product, obtained from E12.5 cDNA, with the following primers:
- **708** Forward 5' AGCAGCAGCTCCTACAGAGG 5' and Reverse 5'
- 709 <u>TAATACGACTCACTATAGGG</u>CCTTGGGAAGTGAAGCACTC 3' (which includes the T7
- 710 promoter underlined).
- 711

712 Immunohistochemistry

- 713 Immunohistochemistry was performed essentially as in (Cerrato et al., 2018). Brains were
- dissected, fixed, embedded and sectioned as for *in situ* hybridization, except for fixation in PFA4%
- that was often 3-4h at 4°C. Sections were washed in PBS 5 min, unmasked in citrate buffer (Na
- 716 Citrate 0.01M, Citric acid 0.01M pH6) by boiling in a microwave 3 min and then washed in PBS 10
- min at RT. Sections were blocked with blocking solution (FBS 10%, Triton 0.3%, PBS1X) for 1h at
- 718 RT, then incubated O/N in blocking solution with primary antibodies: anti-mSOX2 (R&D Systems
- 719 MA2018, 1:50), anti-P73 (Neomarkers, 1:150), anti-Reelin (Millipore MAB5364, 1:500), anti-Tuj1
- 720 (Covance, 1:400), anti-GFP (Invitrogen A10262, 1:500, used to detect EYFP expressing cells), anti-
- GFAP (Dako, 1:500). Slides were then washed in PBS 2 times, 10 min each, and incubated in
- blocking solution containing the secondary fluorescent antibody (1:1000, Alexa Fluor Invitrogen)
- for 1h 30 minutes at RT. Slides were then washed in PBS twice, 10 minutes each, and then mounted
- with Fluormount (F4680, Sigma) with 4',6-diamidino-2-phenylindole (DAPI) and imaged with a

confocal microscope (Nikon A1R) and with a Zeiss Axioplan 2 Fluorescent microscope for anti-

726 GFAP immunostainings.

727

- 728 Lineage tracing of progeny of Sox2 expressing progenitors
- R26R-EYFP females were crossed with Sox2-CreERT2 males. E9.5 pregnant females were injected
- intraperitoneally with tamoxifen (20 mg ml⁻¹ in ethanol/corn oil 1:10, 0.1 mg per g of body weight)
- that induces Cre recombinase activity in the Sox2 telencephalic expression domain (Favaro et al.,
- 732 2009) and therefore turns on EYFP in this expression domain. Embryos were collected at E15.5,
- fixed in 4% PFA O/N, embedded in OCT and sectioned at the cryostat (20-μm sections) as for *in*
- *situ* hybridization (see above).

735 *EdU tracing*

- 736 Ethynyldeoxyuridine (EdU, Molecular Probes) was injected in E12.5 pregnant females at 50 μg/g
- body weight. Embryos were collected 30 min after injection, fixed O/N in PFA 4% and embedded
- for cryostat sectioning as above. Edu incorporation was detected on sections (20 μ m) with the
- 739 Click-iT EdU Kit Alexa Fluor 594 (C10354, Thermo Fisher) following manufacturer's instructions.
- 740 Briefly, slides were washed twice in PBS 2 min each and incubated for 20 min at RT in Triton 0.5%
- in PBS. Slides were then washed in Triton 0.1% in PBS 3 times, 3 min each. Sections were
- incubated 30 min in the dark with EdU Click reaction according to manufacturer's instructions.
- 743 Slides were then washed in PBS 3 times 5 min, stained with DAPI, mounted with Fluoromount
- 744 (F4680, Sigma) and imaged with a confocal microscope (Nikon A1R). The number of EdU positive
- cells in the cortical hem and dentate neuroephitelium was counted on at least 3 consecutive coronal
- sections for each brain. Data are represented as mean ±standard deviation.
- 747

748 Brain slices

- For patch-clamp experiments, coronal sections (300 µm thick) containing the hippocampal region (-
- 1.22 mm to -2.70 mm from bregma) were prepared from mice of both sexes (6M and 10F) aged P19-
- 751 P31, by applying standard procedures (Aracri, Meneghini, Coatti, Amadeo, & Becchetti, 2017).
- 752
- 753 *Patch-clamp recording and data analysis*

Cells were examined with an Eclipse E600FN direct microscope, equipped with water immersion 754 DIC objective (Nikon Instruments, Milano, Italy), and digital CCD C8484-05G01 IR camera with 755 HCImage Live acquisition software (Hamamatsu Photonics Italia, Arese, Italy). Stimulation and 756 recording were carried out in whole-cell mode, by using a Multiclamp 700A amplifier (Molecular 757 Devices, Sunnyvale, CA), at 33-34°C. Borosilicate capillaries (OD 1.5 mm; Corning Inc., NY) were 758 759 pulled (2-3 MΩ) with a Flaming/Brown P-97 micropipette puller (Sutter Instruments, Novato, CA). 760 Series resistance after patch rupture was usually around 10-15 M Ω and was compensated up to at 761 least 70%. Cell capacitance was also compensated. Synaptic currents and action potentials were low-762 pass filtered a 2 kHz e digitized at 5 kHz with Digidata 1322A / pClamp 9.2 (Molecular Devices). 763 During recording, slices were perfused (~2 ml/min) with artificial cerebrospinal fluid, containing 764 (mM): 135 NaCl, 21 NaHCO₃, 0.6 CaCl₂, 3 KCl, 1.25 NaH₂PO₄, 1.8 MgSO₄, 10 D-glucose, aerated with 95% O₂ and 5% CO₂ (pH 7.4). Pipette contained (mM): 140 K-gluconate, 5 KCl, 1 MgCl₂, 0.5 765 766 BAPTA, 1 MgATP, 0.3 NaGTP, 10 HEPES (pH 7.26). Resting membrane potential (V_{rest}) was determined in open circuit mode (I=0), immediately after reaching the whole-cell configuration. No 767 768 correction was applied for liquid junction potentials. Series resistance was monitored throughout the 769 experiment by applying small stimuli around V_{rest}. Cells were discarded when Rs was higher than 15 770 MΩ.

Action potentials and EPSCs were analysed with Clampfit 9.2 (Molecular Devices), MiniAnalysis,

and OriginPro 9.1(OriginLab Corporation, Northampton, MA, USA), as previously reported

773 (Aracri, Amadeo, Pasini, Fascio, & Becchetti, 2013; Aracri et al., 2017).

774 775

776 *AZD and LiCl treatment*

AZD 1080 (Axon Medchem, Axon Catalog ID: 2171) diluted in ascorbic acid 0.5%/EDTA 0.01%,

was administered to pregnant females once a day by oral gavage from E9.5 to E12.5. We

administered 5 μ l AZD/g of body weight (AZD 0.375 μ g/ μ l at E9.5 and E10.5, AZD 0.75 μ g/ μ l at

E11.5 and E12.5). Embryos were then collected at E14.5. Ascorbic acid 0.5%/EDTA 0.01% was

781 administered as a control.

LiCl, or NaCl as a control, were injected intraperitoneally in pregnant female from E9.5 to E14.5 or

from E10.5 to E12.5 once a day at the same time. No difference was observed between the two

injection time windows. 10 μ l/ g of body weight of 600 mM LiCl or 600 mM NaCl were injected.

Embryos were collected at E18.5 and processed for *in situ* hybridization. Injection of AZD 1080 or

786 LiCl in pregnant females at E8.5 led to abortions.

787 The number of *Reelin*-positive cells at the hippocampal fissure and in the cortex was counted using

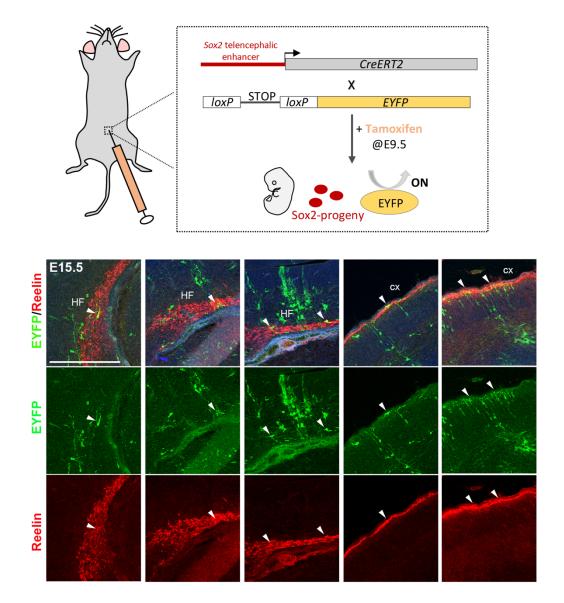
788 Photoshop CC 2015 on five consecutive coronal sections of each brain. Data are represented as

mean \pm standard deviation and were statistically analyzed using unpaired Student's T-test,

790 ***p<0.005.

791

792 *Luciferase constructs*

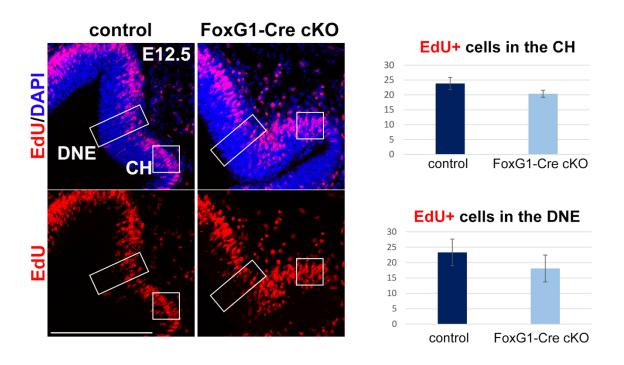

The DNA region in the Gli3 second intron overlapping the SOX2 peak, and corresponding to the VISTA enhancer (coordinates under the embryo in Fig. 6A) was PCR-amplified from the vector where it had been cloned upstream to the lacZ reporter (a gift from T. Theil; (Hasenpusch-Theil et al., 2012)), and cloned upstream to the tk promoter in the Tk-luc vector (Mariani et al., 2012), into the KpnI and NheI restriction sites.

798

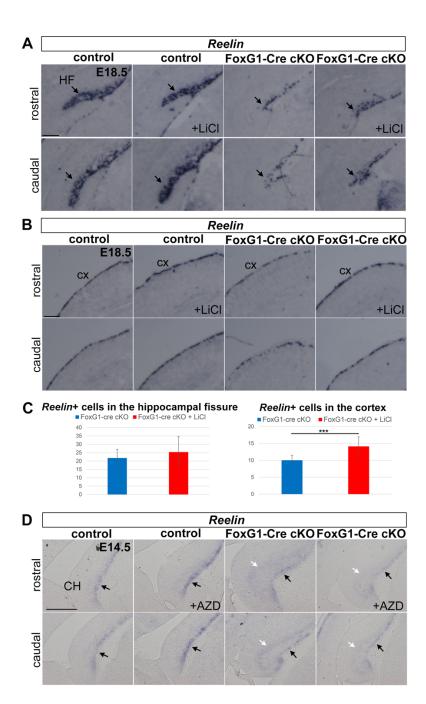
799 *Transfection experiments*

The transfection experiments were performed essentially as previously described (Mercurio et al., 800 801 2019; Panaliappan et al., 2018). In particular, Neuro-2a cells were plated in Minimal Essential 802 Medium Eagle (MEM; SIGMA), supplemented with 10% Foetal Bovine Serum, L-Glutamine, 803 penicillin and streptomycin. For transfection, cells were plated in 12-well plates at 1.5x10⁵ 804 cells/well, and transfected on the following day using Lipofectamine 2000 (Invitrogen). Briefly, medium in each well was replaced with 1 ml of MEM medium (with no addition) mixed with 2 µl 805 of Lipofectamine 2000, and DNA. After 4 hours from transfection, the medium was replaced with 806 complete medium. A fixed amount of 300 ng of luciferase reporter plasmid was used for each well, 807 808 with increasing amounts of Sox2 expressing vector (Favaro et al., 2009; Mariani et al., 2012), or the 809 corresponding control "empty" vector (not containing the transcription factor's cDNA), in the 810 following luciferase vector: expressing vector molar ratios (indicated in Fig.6): +, 1:0.050; ++, 1:0.075; +++, 1:0.125; ++++, 1:0.25; +++++, 1:0.5. The pBluescript vector was added to 811 812 transfection DNA to equalize the total amount of transfected DNA to a total of 800 ng for each reaction. After 24 hours, total cellular extracts were prepared, and Luciferase activity was measured 813 814 with a Promega Luciferase Assay System, according to the manufacturer's instructions.

817


818

819 Supplementary Figure 1


820 Lineage tracing of Sox2 expressing progeny in CR cells in the hippocampal fissure (HF) and the

821 cortex.

- 822 Top, scheme depicting the mouse crosses used to trace the progeny of Sox2 expressing cells. A mouse in
- 823 which expression of an inducible Cre recombinase (cre-ERT2) was under the control of a Sox2 telencephalic
- 824 enhancer was crossed to a mouse in which YFP expression would be turned on when Cre recombinase was825 expressed, following tamoxifen injection.
- 826 Bottom, immunofluorescence for GFP (green) and Reelin (red) on coronal sections of brains at E15.5 from
- 827 pregnant females injected with tamoxifen at E9.5. Arrows indicate cells that are positive for both GFP and
- 828 Reelin in the hippocampal fissure (HF) and the cortex (cx). Scale bar 200 μ m.
- 829

- 831 Supplementary Figure 2
- 832 Sox2 early ablation does not appear to affect cellular proliferation neither in the
- 833 cortical hem nor in the dentate neuroepithelium
- 834 EdU staining on coronal sections of control and FoxG1-Cre cKO mice at E12.5 injected with EdU
- and sacrificed 30 minutes later. The graphs on the right show no significant difference in the
- 836 number of proliferating cells in the cortical hem (CH) and in the dentate neuroephitelium (DNE) at
- the developmental stage analysed. Data are represented as mean \pm standard deviation (controls n=3,
- 838 mutants n=3). Scale bar 200 μ m.
- 839
- 840

842 Supplementary Figure 3

Administration of agonists of the Wnt pathway LiCl and AZD 1080 partially rescues the deficit of C-R cells in the cortex, but only slightly in the hippocampal fissure.

- 845 Reelin in situ hybridization on coronal sections of control or FoxG1-Cre cKO brains injected with Wnt
- agonists, at the times indicated, and analyzed at E18.5 in the case of LiCl injection (A,B) and at E14.5 for
- AZD 1080 injection (D). LiCl or NaCl were intraperitoneally injected once a day in pregnant females from
 E10.5 to E12.5. AZD 1080 was administered by oral gavage once a day in pregnant females from E9.5 to
- E10.5 to E12.5. AZD 1000 was administered by oral gavage once a day in pregnant remarks from E5.5 E12.5. At least 3 controls and 3 mutants, both treated and untreated, were analyzed. The graphs in (C)
- indicate a significant rescue in the number of C-R cells in the cortex following LiCl injection (*** p<0.005,
- unpaired Student's T-test. Mutants untreated n=5, mutants LiCl treated n=5). Error bars represent standard
- deviation. (D) Black arrows indicate Reelin expressing cells towards the pial side of the cortical hem, white
- arrows indicate Reelin expressing cells retained in the cortical hem that did not move towards the pia. AZD
- 854 1080 treatment rescued this retention. Scale bars 200 μm.

Excitability features of CA1/CA3 pyramidal neurons of Emx1-Cre cKO and control mice.

857

Genotype	V _{rest} (mV)	Rheobase (pA)	1 st spike width (ms)	2 nd spike width (ms)	AHP (mV)	1 st to 2 nd spike interval (ms)	4 th to 5 th spike interval (ms)
	CA1						
WT	-69.0	92.7	1.22	1.29	-4.16	25.2	42.8
	±0.47	±6.6	±0.04	±0.04	±0.6	±3.0	± 3.8
Emx1-Cre cKO	-69.1	100.0	1.26	1.32	-5.11	34.2	59.4
	±0.23	±5.7	±0.05	±0.05	±1.2	±3.9	±6.0

CA3

WT	-69.7	100.0	1.09	1.17	-5.7	39.4	73.9
	±0.23	±5.9	±0.02	±0.02	±0.4	±4.3	±6.7
Emx1-Cre KO	-69.8	110.0	1.16	1.24	-5.4	36.2	73.7
	±0.18	±6.4	±0.04	±0.04	±0.5	±1.9	± 5.8

858

859

860

861 Supplementary Table 1

862 Excitability features of CA1/CA3 pyramidal neurons of Emx1-Cre cKO and control mice.

For the WT and Emx1-Cre cKO mice, the main excitability features are given for CA3 and CA1 pyramidal neurons, as indicated. The table reports average V_{rest} , rheobase, spike widths (measured at half-amplitude) of the first and second action potential, and AHP amplitude (with respect to V_{rest}). As a measure of firing adaptation, the time intervals are reported between the first and second spike and the fourth and fifth spike.

869 **References**

- Acsady, L., Kamondi, A., Sik, A., Freund, T., & Buzsaki, G. (1998). GABAergic cells are the major
 postsynaptic targets of mossy fibers in the rat hippocampus. *The Journal of neuroscience : the official journal of the Society for Neuroscience, 18*(9), 3386-3403. Retrieved from
 https://www.ncbi.nlm.nih.gov/pubmed/9547246
- Aracri, P., Amadeo, A., Pasini, M. E., Fascio, U., & Becchetti, A. (2013). Regulation of glutamate
 release by heteromeric nicotinic receptors in layer V of the secondary motor region (Fr2) in
 the dorsomedial shoulder of prefrontal cortex in mouse. *Synapse, 67*(6), 338-357.
 doi:10.1002/syn.21655
- Aracri, P., Meneghini, S., Coatti, A., Amadeo, A., & Becchetti, A. (2017). alpha4beta2(*) nicotinic
 receptors stimulate GABA release onto fast-spiking cells in layer V of mouse prefrontal
 (Fr2) cortex. *Neuroscience, 340,* 48-61. doi:10.1016/j.neuroscience.2016.10.045
- Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., & Lovell-Badge, R. (2003). Multipotent
 cell lineages in early mouse development depend on SOX2 function. *Genes & development, 17*(1), 126-140. doi:10.1101/gad.224503
- Bagri, A., Gurney, T., He, X., Zou, Y. R., Littman, D. R., Tessier-Lavigne, M., & Pleasure, S. J. (2002).
 The chemokine SDF1 regulates migration of dentate granule cells. *Development*, *129*(18),
 4249-4260. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12183377
- Barry, G., Piper, M., Lindwall, C., Moldrich, R., Mason, S., Little, E., . . . Richards, L. J. (2008).
 Specific glial populations regulate hippocampal morphogenesis. *The Journal of neuroscience : the official journal of the Society for Neuroscience, 28*(47), 12328-12340.
 doi:10.1523/JNEUROSCI.4000-08.2008
- Basak, O., & Taylor, V. (2007). Identification of self-replicating multipotent progenitors in the
 embryonic nervous system by high Notch activity and Hes5 expression. *The European journal of neuroscience, 25*(4), 1006-1022. doi:10.1111/j.1460-9568.2007.05370.x
- Berg, D. A., Su, Y., Jimenez-Cyrus, D., Patel, A., Huang, N., Morizet, D., . . . Bond, A. M. (2019). A
 Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis.
 Cell, 177(3), 654-668 e615. doi:10.1016/j.cell.2019.02.010
- Berger, O., Li, G., Han, S. M., Paredes, M., & Pleasure, S. J. (2007). Expression of SDF-1 and CXCR4
 during reorganization of the postnatal dentate gyrus. *Developmental neuroscience*, 29(1-2),
 48-58. doi:10.1159/000096210
- Bertolini, J. A., Favaro, R., Zhu, Y., Pagin, M., Ngan, C. Y., Wong, C. H., . . . Wei, C. L. (2019).
 Mapping the Global Chromatin Connectivity Network for Sox2 Function in Neural Stem Cell
 Maintenance. *Cell stem cell*, 24(3), 462-476 e466. doi:10.1016/j.stem.2019.02.004
- Borrell, V., & Marin, O. (2006). Meninges control tangential migration of hem-derived Cajal Retzius cells via CXCL12/CXCR4 signaling. *Nature neuroscience*, 9(10), 1284-1293.
 doi:10.1038/nn1764
- Bulfone, A., Martinez, S., Marigo, V., Campanella, M., Basile, A., Quaderi, N., . . . Ballabio, A.
 (1999). Expression pattern of the Tbr2 (Eomesodermin) gene during mouse and chick brain
- 909 development. *Mechanisms of development, 84*(1-2), 133-138. doi:10.1016/s0925-
- 910 4773(99)00053-2

Cerrato, V., Mercurio, S., Leto, K., Fuca, E., Hoxha, E., Bottes, S., . . . Nicolis, S. K. (2018). Sox2

- 912 conditional mutation in mouse causes ataxic symptoms, cerebellar vermis hypoplasia, and 913 postnatal defects of Bergmann glia. Glia, 66(9), 1929-1946. doi:10.1002/glia.23448 914 Colom, L. V. (2006). Septal networks: relevance to theta rhythm, epilepsy and Alzheimer's disease. 915 J Neurochem, 96(3), 609-623. doi:10.1111/j.1471-4159.2005.03630.x 916 D'Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., & Curran, T. (1995). A protein 917 related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature, 374(6524), 719-723. doi:10.1038/374719a0 918 919 de la Prida, L. M., Huberfeld, G., Cohen, I., & Miles, R. (2006). Threshold behavior in the initiation 920 of hippocampal population bursts. Neuron, 49(1), 131-142. 921 doi:10.1016/j.neuron.2005.10.034 922 Fantes, J., Ragge, N. K., Lynch, S. A., McGill, N. I., Collin, J. R., Howard-Peebles, P. N., . . . FitzPatrick, 923 D. R. (2003). Mutations in SOX2 cause anophthalmia. *Nature genetics, 33*(4), 461-463. 924 doi:10.1038/ng1120 Favaro, R., Valotta, M., Ferri, A. L., Latorre, E., Mariani, J., Giachino, C., . . . Nicolis, S. K. (2009). 925 926 Hippocampal development and neural stem cell maintenance require Sox2-dependent 927 regulation of Shh. Nature neuroscience, 12(10), 1248-1256. doi:10.1038/nn.2397 928 Ferri, A., Favaro, R., Beccari, L., Bertolini, J., Mercurio, S., Nieto-Lopez, F., . . . Nicolis, S. K. (2013). 929 Sox2 is required for embryonic development of the ventral telencephalon through the 930 activation of the ventral determinants Nkx2.1 and Shh. Development, 140(6), 1250-1261. 931 doi:10.1242/dev.073411 932 Ferri, A. L., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., . . . Nicolis, S. K. 933 (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult 934 mouse brain. Development, 131(15), 3805-3819. doi:10.1242/dev.01204 935 Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., . . . Frotscher, M. 936 (2002). Reelin, Disabled 1, and beta 1 integrins are required for the formation of the radial 937 glial scaffold in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13178-13183. doi:10.1073/pnas.202035899 938 939 Fotaki, V., Price, D. J., & Mason, J. O. (2011). Wnt/beta-catenin signaling is disrupted in the extra-940 toes (Gli3(Xt/Xt)) mutant from early stages of forebrain development, concomitant with 941 anterior neural plate patterning defects. The Journal of comparative neurology, 519(9), 942 1640-1657. doi:10.1002/cne.22592 943 Frotscher, M., Haas, C. A., & Forster, E. (2003). Reelin controls granule cell migration in the 944 dentate gyrus by acting on the radial glial scaffold. Cerebral cortex, 13(6), 634-640. 945 doi:10.1093/cercor/13.6.634 946 Galceran, J., Miyashita-Lin, E. M., Devaney, E., Rubenstein, J. L., & Grosschedl, R. (2000). 947 Hippocampus development and generation of dentate gyrus granule cells is regulated by 948 LEF1. Development, 127(3), 469-482. Retrieved from 949 https://www.ncbi.nlm.nih.gov/pubmed/10631168 Gorski, J. A., Talley, T., Qiu, M., Puelles, L., Rubenstein, J. L., & Jones, K. R. (2002). Cortical 950 951 excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-952 expressing lineage. The Journal of neuroscience : the official journal of the Society for
- 953 *Neuroscience, 22*(15), 6309-6314. doi:20026564
- Grove, E. A. (2008). Neuroscience. Organizing the source of memory. *Science*, *319*(5861), 288-289.
 doi:10.1126/science.1153743

Grove, E. A., Tole, S., Limon, J., Yip, L., & Ragsdale, C. W. (1998). The hem of the embryonic
cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in
Gli3-deficient mice. *Development*, *125*(12), 2315-2325. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/9584130

Hasenpusch-Theil, K., Magnani, D., Amaniti, E. M., Han, L., Armstrong, D., & Theil, T. (2012).
 Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing
 hippocampus. *Cerebral cortex*, 22(12), 2878-2893. doi:10.1093/cercor/bhr365

- Hébert, J. M., & McConnell, S. K. (2000). Targeting of cre to the Foxg1 (BF-1) locus mediates loxP
 recombination in the telencephalon and other developing head structures. *Developmental biology, 222*(2), 296-306. doi:S0012-1606(00)99732-X [pii]
 10.1006/dbio.2000.9732
- Hodge, R. D., Garcia, A. J., 3rd, Elsen, G. E., Nelson, B. R., Mussar, K. E., Reiner, S. L., . . . Hevner, R.
 F. (2013). Tbr2 expression in Cajal-Retzius cells and intermediate neuronal progenitors is
 required for morphogenesis of the dentate gyrus. The Journal of neuroscience : the official
 journal of the Society for Neuroscience, 33(9), 4165-4180. doi:10.1523/JNEUROSCI.4185-
- 971 12.2013
- Hunt, D. L., Linaro, D., Si, B., Romani, S., & Spruston, N. (2018). A novel pyramidal cell type
 promotes sharp-wave synchronization in the hippocampus. Nature neuroscience, 21(7),
 985-995. doi:10.1038/s41593-018-0172-7
- Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (4th ed.). New
 York: McGraw-Hill, Health Professions Division.
- Knierim, J. J., & Neunuebel, J. P. (2016). Tracking the flow of hippocampal computation: Pattern
 separation, pattern completion, and attractor dynamics. Neurobiology of Learning and
 Memory, 129, 38-49. doi:10.1016/j.nlm.2015.10.008
- Kondoh H, L.-B. R. e. b. (2016). Sox2, Biology and Role in Development and Disease (Vol. ISBN: 978 0-12-800352-7): Elsevier, Associated Press.
- Korematsu, K., & Redies, C. (1997). Expression of cadherin-8 mRNA in the developing mouse
 central nervous system. The Journal of comparative neurology, 387(2), 291-306. Retrieved
 from https://www.ncbi.nlm.nih.gov/pubmed/9336230
- Kwon, H. J., Ma, S., & Huang, Z. (2011). Radial glia regulate Cajal-Retzius cell positioning in the
 early embryonic cerebral cortex. *Developmental biology*, 351(1), 25-34.
 doi:10.1016/j.ydbio.2010.12.026
- Lee, S. M., Tole, S., Grove, E., & McMahon, A. P. (2000). A local Wnt-3a signal is required for
 development of the mammalian hippocampus. *Development*, *127*(3), 457-467. Retrieved
 from https://www.ncbi.nlm.nih.gov/pubmed/10631167
- Li, G., Kataoka, H., Coughlin, S. R., & Pleasure, S. J. (2009). Identification of a transient subpial
 neurogenic zone in the developing dentate gyrus and its regulation by Cxcl12 and reelin
 signaling. Development, 136(2), 327-335. doi:10.1242/dev.025742
- Li, G., & Pleasure, S. J. (2014). The development of hippocampal cellular assemblies. Wiley
 Interdiscip Rev Dev Biol, 3(2), 165-177. doi:10.1002/wdev.127
- Lu, M., Grove, E. A., & Miller, R. J. (2002). Abnormal development of the hippocampal dentate
 gyrus in mice lacking the CXCR4 chemokine receptor. *Proceedings of the National Academy*
- 998 of Sciences of the United States of America, 99(10), 7090-7095.
- 999 doi:10.1073/pnas.092013799

Mangale, V. S., Hirokawa, K. E., Satyaki, P. R., Gokulchandran, N., Chikbire, S., Subramanian, L., . . .
 Monuki, E. S. (2008). Lhx2 selector activity specifies cortical identity and suppresses
 hippocampal organizer fate. Science, 319(5861), 304-309. doi:10.1126/science.1151695
 Mariani, J., Favaro, R., Lancini, C., Vaccari, G., Ferri, A. L., Bertolini, J., . . . Nicolis, S. K. (2012). Emx2
 is a dose-dependent negative regulator of Sox2 telencephalic enhancers. Nucleic acids
 research, 40(14), 6461-6476. doi:10.1093/nar/gks295

- Mercurio, S., Serra, L., Motta, A., Gesuita, L., Sanchez-Arrones, L., Inverardi, F., . . . Nicolis, S. K.
 (2019). Sox2 Acts in Thalamic Neurons to Control the Development of Retina-Thalamus Cortex Connectivity. i*Science, 15,* 257-273. doi:10.1016/j.isci.2019.04.030
- Meyer, G., Cabrera Socorro, A., Perez Garcia, C. G., Martinez Millan, L., Walker, N., & Caput, D.
 (2004). Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. *The Journal of neuroscience : the official journal of the Society for Neuroscience, 24*(44), 9878 9887. doi:10.1523/JNEUROSCI.3060-04.2004
- Meyer, G., Gonzalez-Arnay, E., Moll, U., Nemajerova, A., Tissir, F., & Gonzalez-Gomez, M. (2019).
 Cajal-Retzius neurons are required for the development of the human hippocampal fissure.
 J Anat, 235(3), 569-589. doi:10.1111/joa.12947
- Meyer, G., Schaaps, J. P., Moreau, L., & Goffinet, A. M. (2000). Embryonic and early fetal
 development of the human neocortex. *The Journal of neuroscience : the official journal of the Society for Neuroscience, 20*(5), 1858-1868. Retrieved from
 https://www.ncbi.nlm.nih.gov/pubmed/10684887
- 1020 Miles, R., & Wong, R. K. (1983). Single neurones can initiate synchronized population discharge in 1021 the hippocampus. Nature, 306(5941), 371-373. doi:10.1038/306371a0
- Mimura-Yamamoto, Y., Shinohara, H., Kashiwagi, T., Sato, T., Shioda, S., & Seki, T. (2017).
 Dynamics and function of CXCR4 in formation of the granule cell layer during hippocampal
 development. Sci Rep, 7(1), 5647. doi:10.1038/s41598-017-05738-7
- 1025
 Moser, M. B., & Moser, E. I. (1998). Functional differentiation in the hippocampus. Hippocampus,

 1026
 8(6), 608-619. doi:10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7
- Muotri, A. R., Marchetto, M. C., Coufal, N. G., Oefner, R., Yeo, G., Nakashima, K., & Gage, F. H.
 (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature, 468(7322), 443446. doi:10.1038/nature09544
- Naruse, I., Ueta, E., Sumino, Y., Ogawa, M., & Ishikiriyama, S. (2010). Birth defects caused by
 mutations in human GLI3 and mouse Gli3 genes. *Congenit Anom (Kyoto), 50*(1), 1-7.
 doi:10.1111/j.1741-4520.2009.00266.x
- Panaliappan, T. K., Wittmann, W., Jidigam, V. K., Mercurio, S., Bertolini, J. A., Sghari, S., . . .
 Gunhaga, L. (2018). Sox2 is required for olfactory pit formation and olfactory neurogenesis
 through BMP restriction and Hes5 upregulation. Development, 145(2).
 doi:10.1242/dev.153791
- 1037 Ragge, N. K., Lorenz, B., Schneider, A., Bushby, K., de Sanctis, L., de Sanctis, U., . . . Fitzpatrick, D. R.
 1038 (2005). SOX2 anophthalmia syndrome. Am J Med Genet A, 135(1), 1-7.
 1039 doi:10.1002/ajmg.a.30642
- Roelink, H. (2000). Hippocampus formation: an intriguing collaboration. *Current biology : CB,* 10(7), R279-281. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10753739
- Rogers, N., Cheah, P. S., Szarek, E., Banerjee, K., Schwartz, J., & Thomas, P. (2013). Expression of
 the murine transcription factor SOX3 during embryonic and adult neurogenesis. *Gene Expr Patterns*, 13(7), 240-248. doi:10.1016/j.gep.2013.04.004

1045	Sisodiya, S. M., Ragge, N. K., Cavalleri, G. L., Hever, A., Lorenz, B., Schneider, A., Fitzpatrick, D.
1046	R. (2006). Role of SOX2 mutations in human hippocampal malformations and epilepsy.
1047	E <i>pilepsia, 47</i> (3), 534-542. doi:10.1111/j.1528-1167.2006.00464.x
1048	Srinivas, S., Watanabe, T., Lin, C. S., William, C. M., Tanabe, Y., Jessell, T. M., & Costantini, F.
1049	(2001). Cre reporter strains produced by targeted insertion of EYFP and ECFP into the
1050	ROSA26 locus. BMC developmental biology, 1, 4. doi:10.1186/1471-213x-1-4
1051	Swanson, L. W., & Cowan, W. M. (1977). An autoradiographic study of the organization of the
1052	efferent connections of the hippocampal formation in the rat. The Journal of comparative
1053	neurology, 172(1), 49-84. doi:10.1002/cne.901720104
1054	Theil, T., Alvarez-Bolado, G., Walter, A., & Ruther, U. (1999). Gli3 is required for Emx gene
1055	expression during dorsal telencephalon development. Development, 126(16), 3561-3571.
1056	Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10409502
1057	Theil, T., Aydin, S., Koch, S., Grotewold, L., & Ruther, U. (2002). Wnt and Bmp signalling
1058	cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development,
1059	129(13), 3045-3054. Retrieved from <u>https://www.ncbi.nlm.nih.gov/pubmed/12070081</u>
1060	Traub, R. D., Jefferys, J. G. R., & Whittington, M. A. (1999). Fast oscillations in cortical circuits.
1061	Cambridge, Mass.: MIT Press.
1062	Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C., Schutz, G. (1999).
1063	Disruption of the glucocorticoid receptor gene in the nervous system results in reduced
1064	anxiety. Nature genetics, 23(1), 99-103. doi:10.1038/12703
1065	Venkatesan, K., Liu, Y., & Goldfarb, M. (2014). Fast-onset long-term open-state block of sodium
1066	channels by A-type FHFs mediates classical spike accommodation in hippocampal
1067	pyramidal neurons. The Journal of neuroscience : the official journal of the Society for
1068	Neuroscience, 34(48), 16126-16139. doi:10.1523/JNEUROSCI.1271-14.2014
1069	Visel, A., Blow, M. J., Li, Z., Zhang, T., Akiyama, J. A., Holt, A., Pennacchio, L. A. (2009). ChIP-seq
1070	accurately predicts tissue-specific activity of enhancers. Nature, 457(7231), 854-858.
1071	doi:10.1038/nature07730
1072	Wei, C. L., Nicolis, S. K., Zhu, Y., & Pagin, M. (2019). Sox2-Dependent 3D Chromatin Interactomes
1073	in Transcription, Neural Stem Cell Proliferation and Neurodevelopmental Diseases. J Exp
1074	Neurosci, 13, 1179069519868224. doi:10.1177/1179069519868224
1075	Witter, M. P., & Amaral, D. G. (2004). Hippocampal formation. In E. Paxinos (Ed.), The Rat Nervous
1076	System (third ed., pp. 635-704): Elsevier.
1077	Yang, A., Walker, N., Bronson, R., Kaghad, M., Oosterwegel, M., Bonnin, J., Caput, D. (2000).
1078	p73-deficient mice have neurological, pheromonal and inflammatory defects but lack
1079	spontaneous tumours. N <i>ature, 404</i> (6773), 99-103. doi:10.1038/35003607
1080	Zhong, S., Ding, W., Sun, L., Lu, Y., Dong, H., Fan, X., Wang, X. (2020). Decoding the
1081	development of the human hippocampus. N <i>ature, 577</i> (7791), 531-536.
1082	doi:10.1038/s41586-019-1917-5
1083	