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Abstract  

The precise control of bite force and gape is vital for effective breakdown and manipulation of 

food inside the oral cavity during feeding. Yet the role of the orofacial sensorimotor cortex 

(OSMcx) in the control of bite force and gape is still largely unknown. The aim of this study was 

to elucidate how individual neurons and populations of neurons in multiple regions of OSMcx 

differentially encode bite force and gape when subjects (Macaca mulatta) generated different 

levels of bite force at varying gapes. We examined neuronal activity recorded simultaneously 

from three microelectrode arrays implanted chronically in the primary motor (MIo), primary 

somatosensory (SIo), and cortical masticatory (CMA) areas of OSMcx. We used generalized linear 

models to evaluate encoding properties of individual neurons and utilized dimensionality 

reduction techniques to decompose population activity into components related to specific task 

parameters. Individual neurons encoded bite force more strongly than gape in all three OSMCx 

areas although bite force was a better predictor of spiking activity in MIo versus SIo. Population 

activity differentiated between levels of bite force and gape while preserving task-independent 

temporal modulation across the behavioral trial. While activation patterns of neuronal 

populations were comparable across OSMCx areas, the total variance explained by task 

parameters was context-dependent and differed across areas. These findings suggest that the 

cortical control of gape may rely on computations at the population level whereas the strong 

encoding of bite force at the individual neuron level allows for the precise and rapid control of 

bite force.  
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Significance Statement 

Biting a piece off an apple requires precise sensorimotor control and coordination of bite force 

and gape by multiple brain regions. The cortical representations of bite force and gape by 

individual neurons and large populations of neurons across connected motor and somatosensory 

areas in orofacial cortex is unknown. Here we showed that bite force was more strongly encoded 

than gape by individual neurons in primary motor, somatosensory, and cortical masticatory 

areas. Moreover, bite force was more effectively represented in motor versus somatosensory 

cortices.  At the population level, bite force and gape were distinguishable particularly when gape 

was randomized from trial-to-trial. The results are important for understanding 

neurophysiological processes underlying masticatory dysfunctions that may occur in aging, 

stroke, and Alzheimer’s disease.  
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Introduction 

Primate feeding relies on the coordination of tongue and jaw movements and the precise control 

of the generation of tongue and bite forces at varying distances of jaw depression, i.e., gape, 

during chewing and swallowing. Bite force control is important for intra-oral breakdown of food 

into a bolus that is safe to swallow and easy to digest while minimizing the probability of tooth 

breakage and excessive tooth wear. Likewise, gape has to be controlled to accommodate 

ingestion and manipulation of food by the lips, tongue, and teeth during ingestion, chewing, 

bolus transport and swallowing. Indeed, the wide range of disorders and dysfunctions affecting 

the feeding system pose significant challenges for human health and enjoyment of life, including 

tooth loss, masticatory dysfunctions, dysphagia, neuralgia, and pain states such as 

temporomandibular disorders (1–7). A part of the cerebral cortex termed the orofacial 

sensorimotor cortex (OSMcx) is crucial for controlling orofacial sensorimotor functions, yet 

despite the importance of feeding behavior for human health and well-being, little is known 

about the role of the OSMcx in the control of bite force and gape. This limited knowledge 

hampers our ability to leverage the full potential of OSMcx for the development of therapies and 

treatments and also constrains our understanding of the role of OSMcx in feeding system 

evolution. 

The OSMcx, which includes the primary motor (MIo), primary somatosensory (SIo), and cortical 

masticatory (CMA) areas, plays a crucial role in the control of complex oral sensorimotor 

behaviors so as to effect functionally critical, coordinated movements such as those associated 

with feeding and speech (7–9). Several decades of research using intracortical microstimulation 

(ICMS), receptive field (RF) mapping, multi-electrode array recordings, and ablative procedures 

suggest that these three areas play important roles in these behaviors. For example, ICMS in MIo, 

SIo, or CMA can evoke relatively simple movements of orofacial muscles (e.g., jaw opening, 

tongue protrusion) as well as more complex movements such as chewing and swallowing (10–

15). Neurons in MIo and SIo have been shown to modulate their activity during feeding and 

performance of orofacial tasks such as the generation of tongue-protrusive force or bite force, to 

encode the direction and magnitude of tongue-protrusive force, to form coherent networks 
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within and across these areas in a reciprocal manner, and to undergo learning-induced plasticity 

(16–22). Many of these neurons have orofacial mechanosensitive RFs and the sensory inputs 

from their RFs are used to modulate bite and tongue forces (10, 11, 23–26). In addition, a role 

for OSMcx in orofacial motor control is indicated by studies showing that reversible cold-block or 

ablation of OSMcx disrupts various elements of feeding performance (27–33).  

While these findings in animals indicate an important role for OSMcx in the control of biting and 

related orofacial motor behaviors, it is unknown how functionally diverse neuronal populations 

in three different cortical areas (i.e., MIo, SIo, and CMA) might encode gape and bite force 

because activity from these areas has not been recorded simultaneously when both bite force 

and gape parameters are controlled. Here we present new data on the role of OSMcx of macaque 

monkeys in the control of two critically important behavioral variables in the mammalian 

orofacial feeding system: bite force and gape. The aim of this study was to elucidate how 

individual neurons and population of neurons in multiple regions of OSMcx differentially encode 

bite force and gape when subjects (Macaca mulatta) generated different levels of bite force at 

varying gapes.  

Results 

Two naïve monkeys were trained to perform a behavioral task that approximates a natural 

feeding behavior of generating different levels of bite force at varying gapes (Fig. 1). The bite 

force plate was computer-controlled to open at one of three gapes prior to the start of a 

behavioral trial. The bite plates remained in that configuration for the entire length of the trial 

and returned to their initial closed configuration by the end of the trial. Strain gauges glued to 

the bite plates recorded the bite force. For each trial, the required bite force level was cued by 

the position of a target shown on a computer screen placed in front of the monkey (Fig. 1b). We 

used nine combinations of required bite force (3 levels) and gape (3 distances) as trial types. With 

training, monkeys successfully generated the required bite force levels for each of the three 

gapes (Fig. 1c). We recorded the bite force generated by the monkeys while simultaneously 

recording neuronal responses from the OSMcx areas (Fig. S1). Spiking activity of single neurons 
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in MIo, SIo, and CMA was dynamically modulated during task performance; neurons exhibited 

increases and decreases in firing rates relative to the onset of bite force. Activity of some task-

modulated neurons exhibited more robust tuning to gape than to bite force (compare Fig. 2a-c, 

top vs. bottom row) while others showed activity that varied more with bite force than with gapes 

(Fig. 2d-f, bottom vs. top row).  

Encoding model. To determine the relative importance of bite force and gape in predicting the 

firing of neurons and to compare encoding properties among these three cortical areas, we used 

generalized linear models (GLM) to predict the time-varying spiking activity of each neuron. The 

GLM approach allows us to measure how well a model predicts the mean spike count in a small 

time-window based on a set of input features that included extrinsic covariates (i.e., bite force, 

gape, and their interaction) as well as intrinsic, spike history covariates (Fig. S2, see Methods). 

Predictive power was assessed by computing the area under the receiver operating characteristic 

curve (AUROC) on cross-validated test data (see Methods). Figure 3a-b provides an example 

illustrating the actual firing rates of a MIo neuron, its predicted rates based on a full encoding 

model that included all input features, and the AUROC for a specific cross-validation of test trials 

for this neuron. The encoding model predicted the spiking activity of this neuron with a mean 

AUROC value of 0.84 across all ten runs of cross-validated test trials.  

We then compared the predictive power (using AUROC) of a full GLM model having all covariates 

with reduced models having only a subset of covariates. On average, we found that all input 

features used in all encoding models, full or reduced, were able to predict spiking activity of most 

neurons in MIo, SIo, and CMA significantly better than chance (Wilcoxon signed-rank test, 

monkey H: MIo: all p<4x10-20; SIo: all p<1x10-11; CMA: all p=8x10-14; monkey M: MIo: all p=2x10-

12; SIo: all p=2x10-11; CMA: all p=5x10-8). However, the separate and combined ability of bite force, 

gape, and spike histories to predict the spiking of neurons differed; AUROCs were significantly 

different across the various encoding models, with the full encoding model showing the best 

performance and the gape-only model exhibiting the poorest performance (Fig. 3c-d, Kruskall-

Wallis test, monkey H: MIo: all p=4x10-44; SIo: all p<5x10-14; CMA: all p<4x10-25; monkey M: MIo: 

all p=2x10-8; SIo: all p=6x10-9; CMA: all p=0.003).  
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We then sought to determine the relative importance of an input feature by comparing the 

performance of encoding models with and without the input feature in question. If an input 

feature contributes significantly to an encoding model, we would expect a model not to perform 

as well when that feature was removed. Figure 4 illustrates the degree of degradation of the 

predictive ability of an encoding model when either force or gape was removed by plotting each 

neuron’s AUROC against the encoding model that included both gape and force (intrinsic 

covariates were not included in the model for this analysis). When removing the force feature, a 

majority of neurons clustered above the unity line due to higher AUROCs in the combined force 

and gape model, indicating that excluding force from the encoding model degraded the model’s 

predictive ability (Fig. 4a-c, Wilcoxon signed-rank test, monkey H: MIo: p<5x10-20; SIo: p=2x10-9; 

CMA: p=6x10-12; monkey M: MIo: p=1x10-8; SIo: p=1x10-6; CMA: p=0.002). This was not the case 

when gape was removed as shown in most neurons clustering along the unity line (Fig. 4d-f, 

Wilcoxon signed-rank test, both monkeys, all areas, p>0.10). Thus, bite force was a more accurate 

predictor of spiking activity than gape. We also considered the possibility that the interaction 

between gape and force might contribute significantly to model performance beyond the 

combined contribution of gape and bite force. However, our results did not show any evidence 

for this; the model that included force, gape, and their interaction performed similarly to a model 

that excluded their interaction (Fig.3c-d, compare 1 vs. 2, Wilcoxon signed-rank test, both 

monkeys, all areas, p>0.10). Lastly, the full encoding model, that included force, gape, their 

interaction, and spike history, outperformed encoding models that did not include spike histories 

(Wilcoxon Paired sign rank test, monkey H: MIo: p=5x10-22; SIo: p=8x10-12; CMA: p=2x10-14; 

monkey M: MIo: p=3x10-12; SIo: p=8x10-12; CMA: p=1x10-7).  

While bite force accounted for most of the information that reduced encoding models used to 

predict spiking of individual neurons, the full encoding model that includes all input features (i.e., 

spike history, bite force, gape, and the interaction between them) outperformed all other 

reduced encoding models. Notwithstanding, each input feature carried distinct information 

capable of predicting spiking activity of neurons in OSMcx as shown by reduced encoding models 

performing above chance level. 
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Distribution of neurons encoding bite force or gape. We then evaluated whether there was any 

difference in the proportion of neurons encoding bite force compared with neurons encoding 

gape in the three studied areas of OSMcx. We identified ‘force-‘ or ‘gape-related’ neurons as 

neurons whose AUROCs in the force or gape only encoding model, respectively, were significantly 

higher than chance level (Wilcoxon signed-rank test, p<0.05). Force-related neurons, comprising 

a mean of 91% (SE 4%) of the recorded neuronal population across all areas and animals, were 

predominant over gape-related neurons (58%, SE 4%) (Fig. 5, X2 test, monkey H: MIo: p=1x10-16; 

SIo: p=5x10-6; CMA: p=6x10-11; monkey M: MIo: p<5x10-8; SIo: p<2x10-8; CMA: p<0.09). There 

were no significant differences in the proportion of either force- or gape-related neurons 

between any two cortical areas (X2 test, p<0.017 after correction for multiple comparisons, 

monkey H: all p>0.10; monkey M: all p>0.04). 

Comparison of encoding model performance between cortical areas. To determine whether 

MIo, SIo, and CMA differ in the encoding of bite force and gape, we evaluated differences in the 

predictive ability of encoding models that included force only, or gape only, or both force and 

gape across the three areas. Using models with bite force and gape, we found a main effect of 

cortical area, where the activity of MIo was predicted better than the activity in SIo in both 

animals (Fig. 6a, Kruskall-Wallis test, monkey H: p=6x10-9; monkey M: p=0.0007, post-hoc paired 

comparison with Bonferroni correction MIo vs. SIo, H: p<0.0001, M: p<0.001) but not any better 

than activity in CMA (Fig. 6a, post-hoc MIo vs. CMA, p>0.10). When comparing encoding models 

that had bite force as the only predictor for spiking, the predictive ability of force in MIo was 

better than SIo but not any better than CMA (Fig. 6b, Kruskall-Wallis test, monkey H: p=5x10-10 

post-hoc MIo vs. SIo, CMA vs. SIo, p<0.0001; monkey M: p=0.017, post-hoc MIo vs. SIo, p<0.05, 

CMA vs. SIo, p>0.10; both monkeys: post-hoc MIo vs. CMA, p>0.10). When encoding models had 

gape as the only predictor, a main effect of cortical area was observed in monkey H where the 

model’s predictive performance was best in CMA (Fig. 6c, Kruskall-Wallis test, monkey H: 

p=0.0016, post-hoc CMA vs MIo, p<0.01, CMA vs SIo, p<0.05). No significant differences between 

cortical areas were found in monkey M (Kruskall-Wallis test, p=0.055).  
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Relative importance of temporal lags of bite force. Since we found that bite force is more 

strongly encoded than gape in all three cortical areas, we next evaluated the impact of temporal 

lags in bite force (from -156 ms to 208 ms relative to spiking) on predicting spiking of neurons in 

relation to bite force. For this analysis, we used the absolute values of the β coefficients of the 

temporal lags of bite force from the encoding model with force as the only predictor. Only β 

coefficients that were significantly different from zero were included (t-Test, p<0.05). For each 

neuron, we found the time lag that was associated with the largest β coefficient and computed 

the distribution of time lags across neurons for each cortical area (Fig. 7). Although the 

distributions of time lags were quite broad, there were important differences across cortical 

areas. The median time lags for MIo were 52 ms and 26 ms for monkeys H and M, respectively, 

indicating that force lagged spiking and consistent with the view that MIo drives force generation. 

In contrast, the median time lags for SIo were 0 ms for both monkeys. In CMA, the results were 

inconsistent across animals suggesting a more heterogeneous temporal relationship between 

force generation and neural responses (H:104 ms, M: 0 ms). 

Relative importance of spike history timescale to spiking activity. The β coefficients for the most 

immediate spike history (16 ms) were higher than β coefficients for spikes that occurred further 

in the past (44 or 108 ms) for all areas in both animals (Fig. S3a-b, Kruskal Wallis, H: all p<2x10-5, 

M: all p<3x10-5, Post-hoc multiple comparison with Bonferroni correction, p<0.05). This indicates 

that immediate past history outweighs the other timescales in the ability to predict spiking of 

neurons in OSMcx. 

Population encoding of behavioral parameters. While encoding models using GLMs showed that 

bite force more accurately predicted the individual neuron’s spiking than did gape, our 

simultaneous, multi-site recordings allowed us to examine how activity at the population level in 

MIo, SIo, and CMA represents bite force and gape. Thus, we investigated how activity of neuronal 

populations in MIo, SIo, and CMA might distinguish between these behavioral parameters. Here, 

we used demixed principal components analysis (dPCA) (34) to decompose the dependencies of 

the population activity into a task-independent parameter of time (for activity related to the 

progression through the behavioral trial), and task-dependent parameters of bite force and gape, 
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and the interaction between them. Figure 8 illustrates the cumulative variance in the population 

signal accounted for by demixed principal components (dPCs), i.e., neural modes, and the 

variance accounted for by individual task parameters for each cortical area. Over 70% of the 

variance was accounted for by 7-13 dPCs in monkey H (Fig. 8a) and 6-20 dPCs in monkey M. The 

first 5 dPCs showed very good demixing of task parameters as most of the component variance 

was explained by a single task parameter, such as the time-related activity for the first dPC or 

bite force for the second dPC in SIo (Fig. 8b center). While population activity could be 

decomposed into individual task parameters, the task parameters that explained most of the 

variance differed across cortical areas and as a function of the design of trial presentation (blocks 

of single gape in monkey H vs. gapes randomized trial-to-trial in monkey M, see Methods). First, 

time-related activity in all three areas was very prominent in monkey H. This accounted for most 

of the variance across cortical areas (45-60%). In contrast, time-related activity accounted for 

only a meager 8-27% in monkey M (pie charts in Fig. 8b-c, Fig. 8d). Second, variances accounted 

for by gape in all three areas were substantially higher when gapes were randomized trial to trial 

(20-57% in monkey M vs. 7-10% in monkey H, Fig. 8d). Moreover, explained variances of gape 

when trials were blocked were comparable across all cortical areas but differed substantially in 

the randomized design, with the explained variance in CMA being nearly triple that of MIo (MIo: 

20%, SIo: 36%, CMA: 57%). Third, total variance explained by bite force was 2-3 times higher than 

variance explained by gape in monkey H (Fig. 8d). The opposite was found in monkey M; total 

variance explained by gape was 2-3 times higher than the variance explained by bite force in SIo 

and CMA, respectively (Fig. 8d). Lastly, the variance explained by interaction between gape and 

force in all cortical areas were substantial in both monkeys, suggesting a relative importance of 

the coordinated control of these two parameters (Fig. 8d). Bite force and the interaction were 

also modulated by task context, with substantial changes noted in MIo and SIo. Similar results 

were also found when dPCA was performed on a subset of trials and on two other datasets (Fig. 

S4). 

Figure 9 illustrates the linear projections of population activity (i.e., latent activity) in MIo, SIo, 

and CMA corresponding to dPCs with the highest explained variance for each of the task 

parameters. Across cortical areas and animals, the task-independent, time-related activity, which 
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captured the temporal progression of the population activity across the trial, was nearly identical 

across all trial types (i.e., combination of 3 levels of force and gape, Fig. 9a-b). The temporal 

evolution of the time-related activity exhibited maximal modulation around force onset.  

The degree of separation of latent activity across gape distances differed between areas and 

subjects (Fig. 9c-d). In monkey H, gape-related latent activity in all cortical areas separated 

minimal gape from medium/wide gape (Fig. 9c). In monkey M, latent activity at all gapes was 

well-separated in SIo and CMA while activity of the lead dPC in MIo separated only between 

minimal gape and medium/wide gape (Fig. 9d). Across areas and animals, latent activities 

corresponding to different bite force levels were also separated, although tuning to bite force 

levels was observed at varying strength and times relative to force onset (Fig. 9e-f). Latent activity 

of all force levels was well-separated in MIo, with maximal separation occurring at force onset in 

both subjects. Both SIo and CMA exhibited distinct activities between two force levels only. 

Lastly, activity of dPCs corresponding to the interaction between gape and bite force showed 

varying degrees of separation at different times relative to force onset (Fig. 9g-h). For example, 

trial types were more separated around 0.3 s prior to force onset but became more overlapping 

after force onset (Fig. 9g inset). The activity of interaction components appeared complex, having 

distinct and overlapping activity patterns for certain gape-force combinations; low bite force 

generated at gape distances 1 and 2 had activity patterns opposite to high bite force applied at 

these gape distances (Fig. 9h inset). A subset of neurons that carry both gape and bite force 

information may underlie the coordination between these features. 

The latent activity patterns of dPCs provided useful information about the modulation of 

population activity relative to behavioral events and task parameters, motivating us to evaluate 

the performance of dPCs in decoding gape and force at a single-trial level. Using the first dPC for 

each task parameter as  a fixed linear classifier, we evaluated the accuracy of classifying gape and 

force levels. Classification of gapes was significant in monkey M only. Figure 10a shows significant 

classification of gapes ±1 s relative to force onset in SIo and CMA and in shorter periods in MIo. 

In the case of bite force, classification accuracy was significant in all areas for monkey H for most 
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periods and in MIo and SIo for shorter periods in monkey M (Fig. 10b-c). Classification accuracy 

using interaction components did not show any time period with significant performance. 

Discussion  

In this study, we investigated how individual neurons and neuronal population in MIo, SIo, and 

CMA encode varying levels of bite force generated at varying gapes. To our knowledge, our study 

is the first to (i) investigate simultaneous encoding of bite force and gape, (ii) evaluated in three 

different areas of OSMcx, and (iii) at both the individual neuron and population levels. The activity 

of individual neurons in all three areas was strongly tuned to bite force albeit stronger in MIo 

than SIo. Population activity revealed robust tuning to gape when gape was randomized from 

trial-to-trial. 

Spiking activity of individual neurons in OSMcx is better predicted by bite force than by gape. 

Past studies demonstrated that MIo and SIo neurons modulate their activity to changes in bite 

force, jaw position, and movement (16, 35–37). In the current study, simultaneous recording in 

MIo, SIo, and CMA while subjects performed a biting task at varied combinations of gape and bite 

force levels allowed us to determine the relative importance of these task parameters in 

predicting the firing of neurons and to explore how these cortical areas might assume diverse 

roles in the control of a functionally important oromotor behavior. We demonstrated that when 

subjects performed a biting task, neurons in each of the three areas encoded bite force more 

strongly than gape (see Fig. 4) and that the force-related neurons were more predominant than 

the gape-related neurons. This was true regardless of the sequence used in presenting trials (i.e., 

blocked vs. randomized gapes). A possible explanation is that the task involved dynamic control 

of bite force whereas gape remained constant during a trial. The different control requirements 

for bite force and gape influence how muscles are activated, and which sensory information is 

more relevant. Because the task does not require voluntary control of jaw depression, activation 

of jaw depressors (anterior digastric, mylohyoid, and inferior head of the lateral pterygoid) is not 

expected because the lower jaw is passively depressed to a predetermined gape prior to the 

generation of the required bite force. Instead, jaw elevators (masseter, temporalis, medial 
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pterygoid, and superior head of the lateral pterygoid) are expected to be activated to produce 

the required force level that varies during the trial. In this scenario, OSMcx neurons may be 

involved in the selective excitation of jaw elevators and inhibition of jaw depressors for the 

generation of varying bite forces (35, 38). The OSMcx receives information about the changing 

magnitudes of bite force and gape, in part via thalamus. This information is derived from neurons 

in the trigeminal mesencephalic nucleus and trigeminal ganglion that innervate muscle spindles 

of masticatory muscles or the mechanoreceptors of the periodontal ligaments of the teeth (11, 

39–43). As sensory information on the position of the lower jaw remains unchanged during bite 

force generation, the most critical sensory information for successful task performance is the 

magnitude of applied bite force. 

Gape-related activity is better represented at the population level. Linear projections of 

population activity (i.e., latent activity) using dPCA in MIo, SIo, and CMA revealed robust tuning 

to gape that was not apparent at the level of individual neurons. Indeed, in monkey M where 

gape varied randomly trial-to-trial, the neural variance accounted for by gape was double to triple 

that of bite force (see Fig. 8d) and single-trial decoding of gape distances was significantly higher 

than chance (see Fig. 10a) notwithstanding the poor predictive ability (see Fig. 3d) of single 

neuron encoding models with only gape as the input feature. It is of interest that the temporal 

dynamics of the gape-related population activity revealed a cyclic or oscillatory pattern (Fig. 9c-

d). These oscillations may be related to cyclic, short-range jaw depression-elevation, and thus, 

bite force generation, throughout the trial exhibited by monkey M. Alternatively, the cyclic 

pattern may be related to non-movement related factors such as posture maintenance involving 

coactivation or reciprocal inhibition of jaw-closing and jaw-opening muscles, similar to postural 

control processes during limb movements (44–47). In this context, the gape-related activity of 

OSMcx neurons may set the postural state of the jaw to the appropriate postural background for 

movement based on the expected sensory and motor consequences of the interaction of jaw 

dynamics and environmental factors on which bite force is generated and fine-tuned to meet 

task demands. Thus, sensory and motor systems are prepared for upcoming information from 

the external environment as well as from internal biomechanical changes. Similarly, 

randomization of gape on a trial-to-trial basis may have increased the demand for attention and 
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reduced the predictability of task parameters, thus, diminished the ability to anticipate the 

appropriate sensorimotor response.  

Neuronal population encoding of task parameters reveals context-dependent modulation. 

Here we showed that the latent activity of populations of neurons in MIo, SIo, and CMA 

discriminated between task parameters, consistent with previous findings in other brain regions 

(34, 48). Our dPCA analysis also allowed us to capture features of population activity that were 

common or diverse. All three OSMCx areas shared neural modes (dPCs) with comparable task-

independent, time-varying activation patterns while accounting for population variance in 

varying proportions. The differing population covariances across three OSMCx areas may reflect 

differences related to motor or sensory signals while the comparable temporal structure of 

activation patterns across areas may reflect shared network dynamics and/or inter-areal 

connectivity. We also found that population activity in all three areas varied with the context of 

task execution (i.e., blocked vs. randomized) wherein the topology of the motor behavior was 

preserved (i.e., generating bite force at varying gapes). When gape was randomized on a trial-to-

trial basis, the explained variance for time decreased as the explained variance for gape more 

than doubled, and single-trial decoding of gape distances became significant. These results were 

not observed in monkey H who was presented with blocked trials of single gapes. While slight 

variations in the implantation sites of the multielectrode arrays may be a contributing factor (Fig. 

S1), we speculate that this effect is minor as the proportions of force- and gape-related neurons 

were comparable between subjects. Alternatively, the trial-to-trial randomization of gapes may 

have a stronger contribution because there is an increase in the demand to regulate changes in 

gape from trial-to-trial. This suggests that task context may adjust the contribution of relevant 

task parameters in determining the population activity, thus serving as a population encoding of 

differing contextual information for similar movement topologies. The results are consistent with 

previous findings showing context-dependent modulation of cortical encoding during texture 

discrimination in task vs. no-task conditions and grasping behavior with regular vs. irregular 

ladder wheels (49, 50). 
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Diverse functions of orofacial cortical regions. Neuronal activity patterns, RF features, properties 

of evoked rhythmic jaw movements, and behavioral and cortical effects of ablations or reversible 

cold blocks of OSMcx differ across these three OSMcx areas (10, 13, 32, 33, 51, 52, 14, 19, 20, 

27–31). Our results also demonstrate that MIo, SIo and CMA are all involved in the control of bite 

force and gape but differ quantitatively in their representation of these two parameters. While 

individual neurons in all three cortical areas encoded bite force more strongly than gape, MIo 

and CMA were better than SIo in predicting spiking activity based on bite force. The similarity 

between MIo and CMA may be related to anatomical overlap between borders of lateral MIo and 

CMA. The differences between cortical areas are unlikely to come from differences in RF 

properties as the RFs of neurons in all three areas are similar in having bilateral representations, 

though they are predominantly contralateral in SIo (7, 10, 11, 14). Thus, their difference may 

reflect differing functions with regards to motor- vs. sensory-related signals as well as density of 

network connections with other brain regions. For example, in addition to inputs from SIo, 

relevant sensory inputs also reach MIo and CMA via thalamo-cortical or cortico-cortical 

pathways. These findings point more to the role of SIo in modulating these types of behavior 

rather than generating them. The better representation of gape in CMA at the population level 

may be related to the involvement of CMA, which includes the lateral zone of MIo (11, 13, 14), 

in both rhythmic jaw movements as well as more elemental jaw-opening movements, all of which 

involve changes in gape. Moreover, the distinctive patterns of evoked rhythmic jaw movements 

described in previous studies suggest a role for distinctive masticatory patterns that can be 

attributed to input-output organization in these three OSMcx areas. Cortico-striatal and cortico-

tegmental projections differ between MIo and CMA but have similar thalamo-cortical 

connections (14). Further studies are required to determine whether the diverse functions of 

these three areas could be more pronounced during the different stages of feeding behavior 

wherein distinctive masticatory, tongue, and swallowing patterns are naturally generated.  
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Methods 

Subjects: Data were collected from two adult female rhesus macaques (Macaca mulatta), 

monkey H (7.5 kg) and monkey M (5.8 kg). All protocols were approved by the University of 

Chicago Animal Care and Use Committee and complied with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals. 

Behavioral task. Two naïve monkeys were trained to perform a behavioral task that 

approximates natural incisor biting behaviors requiring the generation of different levels of bite 

force at varying gapes (i.e., jaw depression distances) (Fig. 1a). The bite force plates were 

computer-controlled to open at one of three gapes prior to the start of a behavioral trial (Fig. 1b). 

The bite plates remained in that configuration for the entire length of the trial. Strain gauges 

bonded to the bite plates recorded the bite force produced by the teeth engaging the bite force 

plate. Nine combinations of required bite force (3 levels) and gape (3 distances) composed the 

nine different trial types. The presentation order of gapes was randomized in monkey M and 

blocked in monkey H. In blocked presentation, three force levels were randomly paired with a 

single gape before moving on to another gape. With training, both monkeys successfully 

generated the required bite forces at each of the three gapes (Fig. 1c). Detailed description of 

the task can be found in Supporting Information, Methods.  

Electrophysiology. Under general anesthesia, each monkey was chronically implanted with 

silicon-based arrays of 64 or 100 microelectrodes (BlackRock Microsystems, Salt Lake City, UT) in 

MIo,  SIo and CMA of the left hemisphere (Fig. S1). The microelectrodes on the array were 

separated from their immediate neighbors by 400 μm and their length was 1.5 mm for arrays 

implanted in MIo and 1.0 mm for SIo and CMA. Implantation sites were verified based on surface 

landmarks and exhibited movements of the tongue or fingers evoked by monopolar surface 

stimulation of MIo (50 Hz, 200 µs pulse duration, 2-5 mA) during the surgical procedure. Signals 

from both arrays were amplified with a gain of 5000, simultaneously recorded digitally (16-bit) 

with a sampling rate of 30 kHz and hardware-filtered using a high-pass filter fixed at 1 Hz first, 

followed by a low-pass filter with 7.5 kHz cut-off (Grapevine, Ripple LLC, Salt Lake City, UT). Spike 

data streams were digitally filtered with a high-pass filter at 250 Hz. Spike waveforms were stored 
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and sorted offline using Offline Sorter (Plexon, Dallas, TX). Data from array channels with no 

signal or with large amounts of 60 Hz line noise were excluded.  

Data analysis. Spiking activity of individual neurons recorded from MIo, SIo, and CMA was used 

in all neural analysis (Table 1). Generalized linear model (GLM). To determine the relative 

importance of bite force and gape in predicting the firing of neurons and to compare encoding 

properties among OSMCx areas, we used GLM to predict the time-varying spiking activity of each 

neuron. The GLM approach allows us to measure how well a model predicts the probability that 

a neuron fires a spike in a small sampling window (4 ms) based on different combinations of 

extrinsic covariates (i.e., bite force and gape) and intrinsic covariates (i.e., spike history). Extrinsic 

covariates. For gape, we used the gape distances which were adapted to the subject’s mandibular 

length (monkey H: 11, 14, 17 mm; M: 8, 11, 14 mm). For bite force, we included bite force 

magnitude at 8 different time lags from -156 ms (i.e., force leads spikes by 156 ms) to 208 ms 

(i.e., force lags spikes by 208 ms) in 52 ms steps relative to the spike sampling window. We used 

multiple time lags because multi-lag GLM models using kinematic features have been shown to 

provide higher predictive power than models that include only a single, optimal lag (53–55). We 

also included an interaction term for gape and bite force to evaluate whether encoding of the 

interaction between these two features was better than encoding of each feature separately. 

Thus, we used a total of 17 input features (1 gape, 8 forces, 8 interactions between gape and 

force) as extrinsic covariates. Spike history. The current spiking activity of a neuron might also be 

affected by its own spiking activity in the past due to intrinsic physiological properties such as 

absolute and relative refractory periods. Thus, we included the neuron’s spike history as an 

intrinsic covariate. To account for short (16 ms), medium (44 ms), and long (108 ms) time scale 

effects of the neuron’s own spike history, we filtered binary spike trains with raised cosine basis 

functions (Fig. S2). A log link function was used to relate the logarithm of the firing intensity 

(which is approximately equivalent to the spiking probability given the small 4 ms spike-sampling 

window) to a linear combination of covariates, expressed as: 

𝑙𝑜𝑔 $
𝑝!(𝑡)

1 − 𝑝!(𝑡)
+ = 	𝛽" +0𝛽#$𝐻#(𝑡)

%

#&'

+0𝛽(𝐺 (𝑡) +0𝛽)*𝐹)(𝑡 − t))
+

)&'
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+
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where 𝑝!(𝑡)	is the probability that neuron n fires a spike at time t, 𝛽" represents the baseline 

probability that the neuron will spike, 𝐻#(𝑡)	is the value of the jth (of J) spike history timescale at 

time t, G is the gape distance at time t, 𝐹$(𝑡 − t$)	is the bite force at time 𝑡 − t$, where t$ is the 

kth (of K) lead or lag time against the spike time at t, and 𝐺𝐹$(𝑡 − t$) is the interaction covariate 

at time 𝑡 − t$, and each covariate’s weight 𝛽#$, 𝛽( , 𝛽)* 	and 𝛽)(*, respectively. Assessing the 

relative importance of each covariate. We used different models based on the combination of 

input features used to predict a neuron’s firing. The full model includes all input features (bite 

force, gape, interaction, and the spike history of the neuron) while the reduced models have up 

to three of the input features removed (i.e. gape removed, bite force removed, and both force 

and gape removed, only force, only gape, only interaction, only spike history). To measure the 

goodness of fit of the encoding model, we compared the area under the receiver operating 

characteristic curve (AUROC) for 10 folds of cross-validated test data (i.e., 10 distinct sets of test 

trials that were not used to build the model) against chance level (53–57). Demixed Principal 

Components Analysis (dPCA). To investigate how activity of neuronal populations in MIo, SIo, 

and CMA might distinguish between behavioral parameters, we used dPCA (34) to decompose 

the dependencies of the population activity, X, into components of time-dependent and task-

dependent parameters: the task-independent parameter of time, 𝑋𝑇 (for activity related to the 

progression through the behavioral trial), the task-dependent parameters of bite force, 𝑋𝐹, and 

gape, 𝑋𝐺, and the interaction between them, 𝑋𝐼:  

𝑿 =	𝑋0 +	𝑋( +	𝑋* +	𝑋1	 +	𝑋!3456 

where X is the full data matrix with N rows of neurons which contain smoothed spike train of the 

nth neuron for all task conditions and all trials. 𝑋% , 𝑋& , 𝑋' , 𝑋(		are the linear decompositions of X 

into parameter-specific averages. dPCA then finds separate decoder (D)  and encoder (F) matrices 

for each of these terms, f , by minimizing the loss function: 	𝐿𝑑𝑃𝐶𝐴 = 	∑ .𝑋f − 𝐹f	𝐷f𝑋.f
2. To 

assess whether the condition tuning of individual dPCA components was statistically significant, 

we implemented the decoding method provided in the dPCA Toolbox (34) where classification 

accuracy was measured for each time point of a behavioral trial using the decoding axes of the 

first components of each marginalization, i.e., the first component of bite force was used to 
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classify force levels, the first component of gape to classify gapes, and the first interaction 

component to classify all 9 trial types. The dPCA Toolbox uses cross-validation to measure time-

dependent classification accuracy and a shuffling procedure to assess classification accuracy that 

is significantly above chance. We used 1000 iterations of stratified Monte Carlo leave-group-out 

cross-validation wherein on each iteration, one trial for each neuron in each condition was held 

out to form the test set and the remaining trials to form a training set. We used 500 iterations 

for the shuffling procedure. 

We used the nonparametric Kruskal-Wallis one-way analysis of variance and the Bonferroni test 

for Post-hoc multiple paired comparison with significance level set at P<0.05, unless otherwise 

noted. All other analyses were performed using built-in and user-defined functions in Matlab 

(Mathworks, Inc.).  
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Figure Legends  

Figure 1. Behavioral task and performance. (a), Diagram of the bite force task apparatus. (b), 

Sequence of events in a trial of the bite force task. The light green square represents the force 

cursor while the brown and green boxes represent the base and force targets. The animals were 
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presented with one of three target positions at one of three gapes in each trial. (c), Example bite 

force profiles of each trial type based on gape and required bite force level. Shown for monkeys 

H as mean bite force, across all trials of a trial type, during ±1 s relative to force onset (FO). G1, 

G2, G3 correspond to increasing gape distances whereas F1, F2, F3 correspond to increasing 

levels of required bite force. 

Figure 2. Modulation of spiking activity of single units in MIo, SIo, and CMA during task 

performance. (a-c), Peri-event time histograms (PETHs and ± 1 SE, smoothed by a 50-ms Gaussian 

kernel) of individual gape-related neurons simultaneously recorded in MIo, SIo, and CMA, 

respectively. To illustrate whether a neuron is gape-related or force-related, trials used to plot 

the PETHs were grouped according to gape (top row) or required bite force levels (bottom row). 

For example in (a), MIo gape neuron shows modulation of peak activity with different gapes (top 

row) but not with different levels of force (bottom row). (d-f), As in a-c, but for neurons whose 

spiking activity varied more with the varying degrees of bite force than gape. 

Figure 3. Performance of encoding models.  (a), Actual firing rates of an example neuron vs. its 

predicted firing rates based on the full encoding model. (b), The full model’s goodness of fit was 

quantified using the AUROC on a cross-validated test data for the neuron shown in (a). Dashed 

line denotes chance level. (c-d), AUROC values from the population of neurons recorded from 

MIo, SIo and CMA are shown for each encoding model and animal. AUROC values are taken to 

be the mean across the 10-folds of cross-validation performed per neuron  

Figure 4. Comparison of model performance at an individual neuron level. (a-c), Relation 

between AUROCs of the joint force and gape model vs. the reduced model when force was 

removed. Each circle corresponds to a neuron’s AUROCs. Shown for each animal and for MIo, 

SIo, and CMA, respectively. AUROCs above the unity line (dashed line) denotes higher AUROCs in 

the joint vs. reduced model.  (d-f), As in (a-c), but comparing AUROCs of the reduced model of 

when gape was removed. 

Figure 5. Distribution of neurons encoding bite force or gape. Proportion of neurons with 

AUROCs that were significantly higher than chance level (Wilcoxon signed-rank test, p<0.05) in 
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the reduced force and gape models. Shown for each cortical area and subject. Error bars indicate 

±1 SEM (based on a binomial distribution assumption). 

Figure 6. Performance of encoding models differed across cortical areas. (a), Distribution of 

significant AUROCs for the joint force and gape encoding model in MIo, SIo, and CMA, shown 

separately for each animal. Solid and dashed lines denote median AUROCs for monkey H and M, 

respectively. (b-c) As in (a) for AUROCs for the reduced force and gape models. 

Figure 7. Preferred temporal lags of bite force differed across cortical areas. Distribution across 

neurons of time lags associated with maximum b coefficient for force in each cortical area and 

subject. Colored vertical lines indicate median values of each distribution. 

Figure 8. Neural variance accounted for by demixed principal components.  (a), Comparison of 

cumulative variance explained by PCA and dPCA. Shown for the first 15 components and for each 

cortical area separately. Data from monkey H. (b-c) Bar graphs illustrating the proportion of 

variance accounted for by each task parameter (color) corresponding to individual dPCs in 

monkeys H and M, respectively. Single-colored bars depict complete demixing. Pie chart 

illustrates the proportion of variance (%) explained by task parameters. Numbers in parenthesis 

denote total number of neurons used in the analyses. Shown for each cortical area. (d), Across-

area comparison of the proportion of variance (%) explained by each task parameter shown for 

both subjects. 

Figure 9. Latent activity of leading demixed principal components of task parameters.  (a-b), 

Projections of population activity onto the leading dPCs of condition-independent parameter of 

time in monkeys H and M, respectively. Each subplot shows 9 lines corresponding to 9 trial types, 

the component number and corresponding explained variance. Shown for each cortical area. (c-

h), As in a-b, for gape, bite force, and the interaction between gape and force.  

Figure 10. Classification performance of bite force and gape components. (a), Classification 

accuracies (blue line) of linear classifiers given by the first gape dPC in monkey M shown for each 

OSMCx area. Shaded gray area correspond to the distribution of classification accuracies 
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expected by chance (solid gray line) as estimated by 500 iterations of shuffling procedure. (b-c), 

As in a but using the first bite force dPC in monkeys M and H, respectively. 

Table 1. Number of neurons included in GLM and dPCA analyses. 

 Monkey M Monkey H 

MIo 70 123 

SIo 62 64 

CMA 41 78 
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