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Abstract 
Several studies have investigated the association between microbial and colorectal cancer (CRC). 

However, the replicable markers for early stage adenoma diagnosis across multiple populations 

remain elusive. Here, a meta-analysis of six studies, comprising a total of 1057 fecal samples, was 

performed to identify candidate markers. By adjusting the potential confounders, 11 and 26 

markers (P<0.05) were identified and separately applied into constructing Random Forest 

classifier models to discriminate adenoma from control, and adenoma from CRC, achieving robust 

diagnostic accuracy with AUC = 0.80 and 0.89, respectively. Moreover, these markers 

demonstrated high diagnostic accuracy in independent validation cohorts. Pooled functional 

analysis and targeted qRT-PCR based genetic profiles reveal that the altered microbiome triggers 

different pathways of ADP-heptose and menaquinone biosynthesis (P<0.05) in adenoma vs. 

control and adenoma vs. CRC sequences respectively. The combined analysis of heterogeneous 

studies confirm adenoma-specific but universal markers across multi-populations, which improves 

early diagnosis and prompt treatment of CRC. 
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Introduction 
Colorectal cancer (CRC) is one of the most common cancer with an overall high mortality rate. 

According to the report of the International Agency for Research on Cancer (IARC), there were 

over 1,800,000 new CRC cases and over 860,000 deaths in 2018(1). And CRC accounted for 

approximately 10% of all new cancer cases globally(2). It is estimated that the national 

expenditures in the United States on cancer care, specifically colorectal cancer, were about 16.63 

billion dollars in 2018(3), and the CRC burden is continuously growing over years. Colorectal 

adenomas are recognized as precursors for the majority of CRC(2). The early detection of CRC at 

precancerous-stage adenoma has increased the 5-year relative survival rate to about 90%, 

significantly facilitating early decision making, alleviating the incidence of CRC and reducing 

economic burden(2, 4).  

Gut microbiome is a novel stool-based non-invasive biomarker for metabolic diseases and 

cancers(5, 6). Many studies have reported that the gut microbiome is an important aetiological 

element in the initiation and progression of CRC(4, 7) and identified some fecal microbial markers 

of CRC(8-10). However, there is limited knowledge on whether these biomarkers could more 

precisely detect early-stage of CRC, adenomas. And this cognitive gap needs to be filled with 

more intellectual efforts. Furthermore, current knowledge of the associations between microbiome 

and biomarkers for colorectal adenoma early-detection is poor as well. Only a few studies have 

investigated the microbial alterations in colorectal adenoma(4, 7, 11-13). However, a substantial 

variation exists among microbial makers in these studies, and its cause could be various biological 

factors influencing gut microbiome composition and inconsistent processing of microbial 

sequencing data.  

Meta-analysis offers a set of tools that is powerful, informative and unbiased to improve the 

robustness of microbiome alterations and reduce the noise of biological and technical confounders 

so that consistent alterations across multiple studies could be identified. Recently, several 

meta-analysis of multi-studies have identified universal microbial markers across multiple 

diseases, such as CRC(11, 13-15), obese(16), Inflammatory bowel disease (IBD)(17), via 16S 

rRNA sequencing or whole metagenome shotgun sequencing (WMS) technique. However, 

previous researches based on meta-analysis(11, 13) still could not identify universal stool-based 

microbial markers for colorectal cancer across multiple cohorts (Supplementary Note 1). 

Additionally, the commonly used non-invasive stool-based screening test, Faecal 

Immunochemical Test (FIT), has drawbacks such as poor sensitivity to early and advanced 

adenoma (7.6% and 38%, respectively)(18). Therefore, it is urgent to explore and identify novel 

stool-based microbial markers that could more precisely and efficiently diagnose colorectal 

adenoma and its various stages. 

Here, we presented a meta-analysis study, aiming to identify a series of markers that enable 

distinguishing adenoma from healthy control or CRC with high accuracy across multiple cohorts. 

We included fecal 16S rRNA sequencing studies considering that 16S rRNA gene-based profiles 

are more closely matching the “real community”(19). We then investigated the potential 

mechanisms of the disordered microbiome in colorectal adenomas, which may provide biological 

insights and therapeutical strategies to detect early syndromes and alleviate symptoms of CRC. 

 

Results 
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Characteristics of the datasets in meta-analysis  

In this study, we investigated 16S rRNA sequencing data from four studies to measure the gut 

microbiome changes as CRC progresses (from control to adenoma to cancer) and to identify the 

biomarkers specific to adenoma. In total, we collected 307 samples from colorectal adenoma 

patients, 217 from CRC subjects and 252 samples as control. The demographic information was 

listed in detail in Table 1. All samples were sequenced at sufficient depth, with average counts of 

85637 in each sample. Consistent processing was performed for all raw sequencing data on the 

QIIME2 platform. 

 

Table 1 Characteristics of the large-scale adenoma datasets included in this study 

Study Group(N)* 
Age 

(average�s.d.)# 

BMI 

(average�s.d.) 

Sex 

F(%)/M(%)† Country 

CA(12) 

Control(30) 55.27�9.22 26.73�5.19 63.30/36.70 

American 

Canadian 
Adenoma(30) 61.30�11.15 27.40 �4.45 60.00/40.00 

Cancer(30) 59.40�10.99 30.59�7.18 70.00/30.00 

FR(20) 

Control(50) 62.32�8.98 24.66�4.69 52.00/48.00 

France Adenoma(38) 62.29�8.51 27.40 �4.45 28.90/71.10 

Cancer(41) 65.51�10.51 30.59�7.18 41.50/58.50 

US1(21) 

Adenoma(41) 62.34�9.01 26.37�4.28 34.10/65.90 

American 
Cancer(26) 61.65�12.89 28.63�7.19 42.30/57.70 

US2(22) 

Control(172) 54.29�9.93 26.69�5.33 64.50/35.50 

American Adenoma(198) 63.35�11.47 26.27�4.73 40.40/59.60 

Cancer(41) 63.78�12.89 28.89�7.25 43.30/56.70 

 Control(252) 56.00�10.14 26.48�5.25 61.90/38.10  

Total: Adenoma(307) 62.89�10.80 26.21�4.80 38.89/61.11  

 Cancer(217) 63.25�12.28 28.30�7.23 41.01/58.99  

* Number of samples 

# Standard deviation;  

† The ratio of percentage of female and male 

 

Identification of the potential confounder in meta-analysis 

Since differences existed among these studies in both technical and biological aspects, we first 

investigated the potential confounders. The variances explained by disease status for each ASV 

were calculated to quantify the effects of potential confounders (see method confounder analysis) 

(Supplementary Fig. 1, 2). This analysis revealed that the factor ‘study’ had a predominant impact 

on microbial composition (Fig. 1a and Supplementary Fig. 1). Additionally, the microbial alpha 

and beta diversity also supported that the heterogeneity of studies had a more significant impact 
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on microbial composition than disease status (Fig. 1b and Supplementary Fig. 3). Therefore, we 

treated ‘study’ as a blocking factor in the subsequent analysis. 

 

Alterations of gut microbial composition in colorectal adenoma 

At the phylum level, the gut microbiota was dominated by members of Firmicutes and 

Bacteroidetes, followed by Proteobacteria, Actinobacteria, Verrucomicrobia, Tenericutes and 

Fusobacteria in healthy controls, adenomas and CRC. These dominant phyla were similar to those 

reported in previous studies on gut microbiota(20). Furthermore, the phylum Fusobacteria, the 

most CRC-associated bacteria as reported(23), were observed with significantly decreased 

abundance in adenoma compared to that in cancer, while there was no significant difference 

between adenoma patients and controls (Fig. 1c). 

At the ASV level, significant alterations across studies were observed among different disease 

status. In the comparison of gut communities between controls and patients with adenoma, 43 

ASVs were identified with distinguishable abundances (Supplementary Note 2). Moreover, we 

also identified 114 differentially abundant ASVs between adenoma and cancer (Supplementary 

Note 3).  

Additionally, pathogenic bacteria with increased abundance were detected in adenoma or 

cancer compared with control. For instance, Parvimonas genus was enriched in adenoma 

compared with controls while Fusobacterium, Porphyromonas, Peptostreptococcus, Parvimonas, 

and Escherichia-Shigella genus were enriched in cancer compared with adenoma. Particularly, 

Fusobacterium, Porphyromonas, Parvimonas and Peptostreptococcus were identified as oral 

pathogens associated with CRC(17, 24). Notably, there were only 9 common differential ASVs 

between healthy controls versus adenoma and adenoma versus cancer, which could be further 

classified into Ruminococcaceae, Lachnospiraceae, Family XI and Veillonellaceae family (Fig. 

1d). The two sets of differential ASVs with a Jaccard distance of 0.939 indicate that the 

microbiota has a remarkable difference between adenoma and control or cancer.  
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Fig. 1 Alterations of gut microbial composition in different disease status accounting for study 

heterogeneity. a, Variance explained by disease status (adenoma versus cancer) is plotted against 

variance explained by study effects for individual ASVs. The significantly differential ASVs are 

colored in red and the dot size is proportional to the abundance of each ASV. b, Principal coordinate 

analysis of samples from all four studies based on Bray-Curtis distance; the study is color-coded and 

the group (control, adenoma and cancer) is indicated by different shapes. The upper-right and the 

bottom-left boxplots illustrate that samples projected onto the first two principal coordinates broken 

down by study and disease status, respectively. P values were calculated with a Kruskal–Wallis test for 

study and group. All boxplots represent 25th–75th percentile of the distribution; the median is shown in 

thick line at the middle of the box; the whiskers extend up to values within 1.5 times, and outliers are 

represented as dots. c, Relative proportions of bacterial phyla in healthy controls, adenomas and CRC 

across four different studies. d, Venn diagram shows the overlap of differential ASVs between 

adenomas and healthy controls or CRC. 

 
Microbial classification models for colorectal adenoma  

Next, we constructed RF models by pooling all samples to select features capable of 

distinguishing adenoma from control and cancer. Besides using differential ASVs as key metrics, 
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alpha diversity indices including Shannon Index, Simpson Index and Observed ASVs, and three 

patient metadata, age, gender and BMI were also included in model building. To obtain the best 

performing models and most important features, an IEF step was further applied.  

A robust RF model was constructed with a core set of important features, including 8 

differential ASVs (as biomarkers) together with age, gender and BMI, which were proved to have 

the best capability to distinguish control subjects from patients with adenoma (AUC = 0.80) (Fig. 

2a, c and Supplementary Table 3). Among these, the ASV assigned as Christensenellaceae R-7 

group sp. was the highest-ranking biomarker (Fig. 2a). The biomarkers also included the increased 

abundance ASVs of [Eubacterium] coprostanoligenes group, Ruminiclostridium 9 sp., 

Christensenellaceae R-7 group sp., Ruminococcaceae UCG-005 sp. and Veillonella parvula as 

well as the decreased abundance of Rothia dentocariosa and Aminipila butyrica in adenoma 

(Supplementary Fig. 4). 

Similarly, the best performance of the RF model for distinguishing adenoma from cancer is 

0.89 (AUC). The RF model was built with 24 ASVs together with age and BMI (Fig. 2b, d and 

Supplementary Table 4). Among these biomarkers, the ASV belonging to Streptococcus 

thermophilus TH1435 was the top-ranking biomarker(Fig. 2b). The following ASVs were 

assigned as Parvimonas micra, Bacteroides dorei, [Clostridium] scindens, Erysipelatoclostridium 

ramosum, Blautia sp., [Eubacterium] coprostanoligenes group sp. and Lachnospira pectinoschiza 

(Fig. 2b). The [Clostridium] scindens was significantly (P < 0.001) enriched in cancer compared 

with adenoma with a generalized fold change of 0.49. Additionally, the abundance of Blautia sp., 

Hungatella hathewayi WAL-18680 and Eubacterium ruminantium were gradually increased while 

Streptococcus thermophilus TH1435, Erysipelatoclostridium ramosum, [Eubacterium] ventriosum 

group sp. and Roseburia intestinalis were gradually decreased during CRC carcinogenesis 

(Supplementary Fig. 5). In the two models, age was ranked as the top and third predictor in the 

testing phase, respectively. In the two sets of biomarkers, there was only one common ASV 

classified as Eubacterium ruminantium.  

Moreover, we also identified that a core set of 34 ASVs, together with age, gender and BMI, 

collectively had the highest capability to distinguish control from cancer (AUC=0.93) 

(Supplementary Fig. 6, Supplementary Note 4). It is worth noting that there was no common ASV 

in the two sets of biomarkers between healthy controls and adenomas or CRC(Supplementary Fig. 

7). Thus these results highlighted that microbial markers aimed to detect CRC are specific and 

exclusive, and would not be used as optimal diagnosis of adenoma. 

 

Co-occurrence and clustering analysis of microbiota in different states 

Through the co-occurrence network of differential ASVs, our results suggested that most of the 

identified biomarkers have functional importance in the network (Supplementary Note 5). To gain 

further insight, we analyzed metagenomes of patients in adenoma and control. Co-occurrences 

analysis demonstrated four clusters of biomarkers with distinct taxonomic composition 

(Supplementary Fig. 9a). These clusters are not tightly associated with patient characteristics such 

as Age, Sex and BMI (Supplementary Fig. 10a), revealing that the adenoma-associated microbiota 

closely resembles that of the healthy control. These results further proved the high detection 

accuracy (AUC of 0.8) and overall success of merely using 11 important features to distinguish 

control from adenoma.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2020. ; https://doi.org/10.1101/2020.08.16.253344doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.16.253344
http://creativecommons.org/licenses/by-nd/4.0/


Moreover, we also explored the CRC patient metagenomes for co-occurrences among a panel 

of 24 biomarkers and yielded three clusters (Supplementary Fig. 9b). Cluster 2 demonstrated 

strong taxonomic consistency, which was primarily comprised of members following Clostridiales 

order. In contrast, the other two clusters exhibited heterogeneous taxonomy, with cluster 1 

containing high-ranking biomarkers and cluster 3 assorting together the species that highly 

prevailed in CRC individuals. We then investigated the association between these three clusters 

and various tumor characteristics. Clostridiales cluster 2 is significantly enriched in male CRC 

patients. Besides, both cluster 1 and cluster 3 show a slight tendency toward late-stage CRC 

(containing stages 3 and 4 according to the American Joint Committee on Cancer), and this 

tendency is significant for cluster 3. Associations with patient age and BMI are weaker and not 

significant (Supplementary Fig. 10b). Based on these results, it can be deduced that the 

adenoma-associated microbiota differs from that of CRC. To consider the impact of using 

different studies, all of these tests were adjusted by blocking for “study” (see method 

co-occurrence and clustering analysis). 
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Fig. 2 Performance of discriminating adenoma from control or cancer using important features. a, b, 

The important biomarkers identified to construct RF model for discriminating adenoma from control (a) 

and CRC (b). The rank in (a) and (b) means the order of feature importance in the RF model; *: P < 

0.05, **: P < 0.01and **: P < 0.001. c, d, The AUC of the optimized models constructed with 

biomarkers and metadata of Control versus Adenoma (c) and Adenoma versus Cancer (d). Mean ROC 

in (c) and (d): the average AUC from tenfold cross-validation. 
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Validation of the colorectal adenoma classifiers  

To test whether the selected important features are universal and robust across multiple studies, 

we performed study-to-study transfer validation and LODO validation on the entire samples. In 

study-to-study transfer validation, the average AUC for healthy controls versus adenoma model 

was 0.64 and the AUCs of all datasets ranged from 0.52 and 0.86, which maintained the 

diagnostic accuracy of within-study (Fig. 3a). Notably, the US2 study serves as a better training 

set than other studies through exhibiting relatively higher testing AUCs. The reason could be that 

the US2 study has a larger data set that is beneficial to develop accurate classifiers. Moreover, we 

also compare the diagnostic performance of selected important features with FIT, which illustrates 

improved adenoma diagnostic ability by combining with non-invasive clinical screening tests 

(Supplementary Note 6). Additionally, in the LODO analysis, the AUC values of control versus 

adenoma models range from 0.61 to 0.87 with an average 0.72, which is superior to study-to-study 

transfer validation owing to using large datasets (Fig. 3a). This reveals that more training samples 

would in principle improve the robustness of classifiers. 

Similar results were observed in the adenoma versus cancer model (Fig. 3b). The average AUC 

of study-to-study transfer validation is 0.76 and the AUCs of all datasets range from 0.59 to 0.93. 

Besides, the classification accuracy of the CA within-study is relatively low. The possible reason 

is that the CA study was small-sized and subjects came from different countries, which indicates 

that classifiers may be geographic region-specific when dataset is limited. This result reinforced 

Zhou’s research that region variation limits the usefulness of disease modelling(25). Moreover, 

the AUC values are also elevated in the LODO analysis, ranging from 0.86 to 0.95 with an 

average 0.89 (Fig. 3b). We notice that the classifiers performed better in adenoma versus cancer 

than that in control versus adenoma, which reinforced previous findings that the 

adenoma-associated stool microbiome closely resembled that of the health status(7, 11, 20).  

To determine the maximum subset of important features required to provide comparable 

accuracy on validation studies and methods, we analyzed sets of features including all ASVs (all), 

differentially abundant ASVs (control versus adenoma:43, adenoma versus cancer:114), all 

important features (control versus adenoma:11, adenoma versus cancer:26) and reduced important 

features according to the feature ranks of the RF classifiers. In both study-to-study transfer 

validation (Fig. 3c, d) and LODO validation (Supplementary Fig. 12a, b), as the number of 

important features increases, the average AUC increases and reaches maximum when all the 

important features are included for all studies except the CA study. This may also be owing to the 

characteristics of small-sized and geographic heterogeneity in the CA study. As we continued to 

add more ASVs, especially the ones not part of important features among disease status, the 

average AUC of cross-validation decreases. Therefore, this result further confirmed that the sets of 

selected important features contributed to the accuracy of classifiers. 
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Fig. 3 Prediction performance of important features across studies and identification of minimal 

features for detecting adenoma. a, b, Cross-prediction matrix depicting prediction values for 

differentiating adenoma from control (a) and CRC (b) as AUC obtained using important features. 

Values on the diagonal refer to the results of within-cohort validation; Off-diagonal values refer to the 

AUC values obtained from cross-cohort validation, which training the classifier on the study of the 

corresponding row and applying it to the study of the corresponding column; The LODO values refer 

to the performances obtained by training the classifier using all but the study of the corresponding 

column and applying it to the study of the corresponding column (see methods). c, d, Average AUC of 

study-to-study transfer validation classifiers for control versus adenoma (c) and adenoma versus cancer 

(d) at different sets of features. The x-axis in (c) and (d) indicate different sets of features: All (c-d): all 

ASVs; 43 (c) and 114 (d): differentially abundant ASVs; 11 (c) and 26 (d): all important features and 

other top-ranking important features. The different studies were indicated in different colors.  

 
Validation of colorectal adenoma markers in independent cohorts 

To further validate our meta-analysis results, two additional independent cohorts from America 

(Validation Cohort1) and China (Validation Cohort2) were incorporated into this study. The 

validation cohort1 is comprised of 70 controls and 102 adenoma patients, while there were 57 

adenoma patients and 52 CRC patients in the validation cohort2(Supplementary Table 8). The 

independent predictive RF model was confirmed to be relatively accurate on the two new cohorts, 
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with an AUC of 0.73 and 0.83 for distinguishing adenoma from controls or cancer, respectively 

(Supplementary Fig. 13a, b). Although the validation cohort2 was lack of patient metadata, it 

obtained a relatively high AUC, indicating that the gut microbial biomarkers could distinguish 

adenomas from CRC precisely. Additionally, Ruminococcaceae UCG-005 sp. and 

Christensenellaceae R-7 group sp. were confirmed as the top-ranking biomarkers between 

controls and adenoma patients in validation cohort1. Furthermore, Parvimonas micra, 

Streptococcus thermophilus TH1435 and Bacteroides dorei were confirmed as the three 

top-ranking biomarkers for distinguishing between adenoma and CRC patients in validation 

cohort2. 

 

The specificity of colorectal adenoma predictive models 

After evaluating the accuracy of the above colorectal adenoma predictive models on different 

cohorts, we further validated the specificity of colorectal adenoma related important features in 

other potentially microbiome-linked diseases. Five microbiome-linked diseases including NAFLD, 

T2D, CD, UC and IBS were considered in this analysis(Supplementary Table 8). We randomly 

drew samples from each disease and the control of these non-CRC studies and added them to the 

control class of the validation cohort1. By comparing AUC scores between adding non-CRC cases 

and adding the corresponded external controls, we found a small decrease (ranging from 1% to 

4%) in prediction accuracy for the non-CRC group(Supplementary Fig. 14). When adding both 

control and case samples of the IBD study, the AUCs decreased more than other studies, which 

may be caused by lack of several key features including BMI and two biomarkers. Taken together, 

these results indicated that the colorectal adenoma-specific model might not be necessarily 

applicable to other microbiome-associated diseases.  

 
Microbial functional changes in colorectal adenoma 

We investigated the microbial-based functional alterations for multiple different disease status. 

There are 27 differential pathways between control and adenoma (Supplementary Table 9) and 41 

differential pathways between adenoma and cancer (Supplementary Table 10) consistently 

detected across studies. A total of 64 differential pathways (4 pathways were overlapped) were 

clustered based on their generalized fold change scores. (Fig. 4, Supplementary Note 7).  
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Fig. 4 Functional alterations in control, adenoma and cancer. The relative abundances of functional 

pathways were compared between adenoma and control or cancer. These pathways were differentially 

abundant ones, with *: P < 0.05, **: P < 0.01. Generalized fold change (see method) was indicated by 

a gradient color. The generalized fold change >0: enriched in later; generalized fold change <0: 

enriched in former.  
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Notably, the biosynthesis of ADP-heptose, a key metabolic intermediate in the biosynthesis of 

lipopolysaccharide (LPS) was significantly enriched in adenoma compared with control. It was 

associated with the activation of Nuclear factor-κB (NF-κB) and a strong pro-inflammatory 

response(26) which led to colorectal adenoma. The ASV was assigned as Veillonella, one of the 

biomarkers differentiating healthy controls from adenoma samples (Fig. 2a). It was highly ranked 

among all ASVs in the average contribution of the ADP-heptose. (Supplementary Table 11). 

There are five limiting steps catalyzed by genes of hldE, rfaD, gmhA and gmhB in the biosynthesis 

of ADP-heptose. These four genes were consistently enriched in adenoma compared with control 

(Supplementary Table 12). To further validate the results and explore its possibility of application 

in diagnosis, we analyzed the expression patterns of these genes based on qRT-PCR. As shown in 

Fig. 5a-d, the expressions of the hldE and rfaD gene were enriched in adenoma compared with 

control, in consistent with the picrust2 results, especially that the hldE gene was statistically 

significant. 

Moreover, it is worth noting that menaquinone (Vitamin K2) biosynthesis was significantly 

enriched in cancer compared with adenoma. Especially, the MK-10 (one type of Vitamin K2) was 

mainly produced by Bacteroides, one of the biomarkers between adenoma and cancer (Fig. 2b), 

which reinforced the previous study that Bacteroides had high-level production of MK-10(27). 

The ASV assigned as Bacteroides ranked the 3rd and 4th in contribution to MK-10 biosynthesis in 

adenoma and cancer among all ASVs (Supplementary Table 13). Collectively, the production of 

Vitamin K2 by microbiota may serve as a response to compensate for induction of feedback 

inhibition in colorectal cancer cells(28). We found a significantly increased abundance of menH, 

menF and menC in CRC samples compared with that of control in pooled datasets by blocked 

Wilcoxon test (Supplementary Table 12). These results were further confirmed in adenoma and 

CRC by qRT-PCR on several patient samples (Fig. 5e-g), especially the menH and menF genes 

with statistical significances. 
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Fig. 5 Relative abundance of candidate genes is plotted against qRT-PCR quantification in gDNA 

extracted from stool samples of healthy controls, adenomas and CRC . The expression of (a) hldE; (b) 

rfaD; (c) GmhA; (d) GmhB were compared between control and adenoma groups, while the expression 

of (e) menH; (f) menF; (g) menC were compared between between adenoma and cancer groups. All 

results are presented as mean ± standard error. *: P < 0.05. 

 
Discussion 
This study comprehensively assessed the alterations of CRC-associated gut microbiome and the 

ability of microbial markers for the early detection of CRC. Thus, we first constructed machine 

learning classifiers. The best performing model achieves a high accuracy (AUC=0.80) with 11 

important features to distinguish colorectal adenoma from non-tumor controls (Fig. 2c). Similarly, 

the AUC of the best model for detecting colorectal adenoma from CRC with 26 important features 

is 0.89 (Fig. 2d). Through study-to-study transfer validation and LODO validation across multiple 

datasets, the selected microbial markers could overcome technical and geographical discrepancies 

with the average AUC of 0.72 in the adenoma-control model (Fig. 3a) and 0.89 in the 

adenoma-cancer model (Fig. 3b), while previous researches revealed that the majority of 

differential microbial taxa differed in given case-control studies(17). Furthermore, the two 

additional independent cohorts strengthened and validated the extensibility of these makers 

(Supplementary Fig. 13a, b). The accuracy of classifiers with adenoma-specific markers is higher 

than that in previous WMS based studies(11, 14), probably due to more complete taxonomic 

profilings represented by ASVs. WMS data is well-recognized to possess the advantage of 

species- and even strain-level resolution. However, the current strategies for characterizing 

microbial community compositions with WMS are “closed annotation” that strongly rely on the 

known reference genome database(29-31), which is likely missing some species without known 
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genomes or maker genes. It will thus result in biases in relative abundance estimation. 

Consistently, we built the cancer-control model with a panel of 34 important ASVs and achieved 

performance AUC of 0.93, whose accuracy is significantly higher than meta-analysis based WMS 

analysis(AUC=0.84)(11, 14). Importantly, the co-occurrence network analysis confirmed several 

biomarkers that are crucial in subnetworks, for example, Ruminococcaceae UCG-005 sp., 

[Clostridium] scindens, Blautia sp., etc. Furthermore, the performance of these features in 

diagnosing colorectal adenoma worsened when randomly adding samples from other 

microbiome-associated diseases, such as IBD and NAFLD(Supplementary Fig. 14), indicating that 

the panel of markers was adenoma-specific. Overall, all these validations point to the robustness 

of the classifiers and provide evidence that microbial classifier could serve as an effective 

non-invasive clinical indicator for colorectal adenoma. 

Several other studies have reported that some fecal bacteria could serve as biomarkers for 

non-invasive diagnosis of colorectal cancer, such as Fusobacterium nucleatum, Escherichia coli, 

Bacteroides fragilis(8, 32-34). Unlike these existing studies, we aim to identify microbial-derived 

markers that could effectively diagnose adenoma (early stage of colorectal cancer), which 

represents a primary target for CRC screening at the early stage, as majority of CRC begins with 

the malignant transformation of benign polyps, the colorectal adenoma(2). Microbial communities 

altered in both colorectal adenoma and cancer during the progression of CRC, and the difference 

of microbiome alteration remains unclear. Notably, we found markers for distinguishing adenoma 

and cancers from healthy controls are not always the same (Supplementary Note 8). What’s more, 

the combination of the important adenoma-specific features and FIT improved the classifier’s 

accuracy (AUC=0.81) compared to microbial makers (AUC=0.78) or FIT (AUC=0.60) alone 

(Supplementary Fig. 11), indicating the non-invasive clinical screening tests could be used as 

complementary characteristics of gut microbiota for early screening of adenoma. Recently, a 16s 

rRNA analysis showed that microbiome dysbiosis in adjacent tissues could discriminate colorectal 

adenomas from healthy controls effectively(13), providing a new insight for following research of 

adenoma biomarkers. 

The functional analysis sheds light on the convoluted underlying mechanisms and would 

greatly enhance our understanding and interpretation of CRC development (Supplementary Fig. 

15). Among the differential pathways, we found the biosynthesis of ADP-heptose is significantly 

enriched in adenoma compared with control. ADP-heptose is a key metabolic intermediate in the 

biosynthesis of LPS, which is associated with the activation of NF-κB and then induces a strong 

pro-inflammatory response(35) in the initiation and progression of colorectal cancer, especially in 

adenoma(36). More importantly, the contribution decomposition analysis indicated that the 

adenoma-specific marker Veillonella parvula was highly ranked in the average contribution of the 

ADP-heptose among all ASVs (Supplementary Table 11). This suggests that the microbial 

markers contributed to the activation of pro-inflammatory pathways that ultimately led to the 

progression of colorectal adenoma. Notably, hldE was an important bifunctional protein involved 

in the biosynthesis of ADP-heptose, which catalyzes the nucleotide-activated heptose precursors 

used in the biosynthesis of LPS and in post-translational protein glycosylation(37). HldE was 

significantly enriched in adenoma compared with control according to computational finding and 

was further validated by qRT-PCR validation analysis(Fig. 5a). Since the hldE was reported to 

play an important role in bacterial virulence(37), it is promising to utilize it as an attractive target 

for therapeutic treatment of colorectal adenoma. Moreover, a series of Vitamin K2 biosynthesis is 
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significantly different between adenoma and cancer. Especially, the MK-10 pathway increased in 

cancer compared with adenoma and the biomarker Bacteroides dorei was ranked as the third and 

fourth contributor to MK-10 biosynthesis in adenoma and cancer among all ASVs (Supplementary 

Table 13). Computational finding and qRT-PCR results demonstrated that the menH and menF 

gene were significantly increased in CRC compared with adenoma (Fig. 5e, f). Specifically, menH 

catalyzes the first step and plays distinct roles in the biosynthesis of MK-10 biosynthesis(38). The 

increased abundance of menH in CRC samples activated the synthesis of this pathway. Previous 

studies indicated that Vitamin K2 played a key role in antitumor effect via cell-cycle arrest, cell 

differentiation and cell apoptosis(28). Therefore, the increased production of Vitamin K2 may be a 

compensatory effect of the dysregulated microbiota to survive the tumor microenvironment, 

which also shows a potential novel CRC intervention strategy targeting Vitamin K2 biosynthesis 

bacteria. Though the main pathways differ between the control-adenoma and the adenoma-CRC 

stage, all these important pathways triggered by altered microbiome could offer promising 

perspectives and evidence for intervention and treatment in the CRC carcinogenesis 

(Supplementary Note 9). 

 
Methods 
 

Data collection  

We collected data from studies in PubMed.gov that published 16S rRNA sequencing data on 

patients with CRC, adenomas and healthy controls. Only four studies with accessible metadata of 

every sample were included in this work. Raw sequencing data of these studies were downloaded 

from Sequence Read Archive (SRA) and European Nucleotide Archive (ENA) using identifiers: 

PRJNA389927 for Zeckular et al(12), PRJEB6070 for Zeller et al(20), PRJNA290926 for Baxter 

et al(22) and PRJNA362366 for Sze et al(21). Besides, two additional cohorts (Supplementary 

Table 8) were used as independent cohorts with accession numbers PRJNA534511(39) and 

PRJNA280026(40). 

The collection of human data for real-time quantitative PCR (qRT-PCR) analysis was approved 

by the Review Board of School of Public Health, Shanghai Jiao Tong University School of 

Medicine. Patients were recruited for initial diagnosis and had never received any treatment before 

fecal sample collection. Patients with hereditary CRC syndromes, with a previous history of CRC 

were excluded from the study. Based on pathological section and colonoscopy results, recruited 

subjects were classified into three groups: (1) healthy subjects, namely controls: individuals with 

colonoscopy negative for tumor, adenoma or other diseases; (2) patients with adenoma: 

individuals with colorectal adenoma(s); and (3) patients with CRC: individuals with newly 

diagnosed CRC. A total of 94�subjects were initially recruited based on criteria sex, age, BMI 

and other confounding factors. Finally, 43 were remained: 30�patients with CRC, 6�adenomas 

and 7�controls. Stool was collected in fecal collection tubes and was stored at –80�°C. DNA was 

extracted from fecal samples using Stool Genomic DNA Kit (CW20925, CWBIO, China) 

following the manufacturer’s instructions. Relative gene expression by qRT-PCR and the patient 

characteristics for qRT-PCR were summarized in Supplementary Table 14. 

 

Data Preprocessing 
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The 16S rRNA sequencing data were analyzed using Quantitative Insights Into Microbial Ecology 

(QIIME2 V.2018.11), a plugin-based platform for microbiome analysis(41). DADA2 software, 

wrapped in QIIME2, was used to filter out sequencing reads with quality score Q > 25 and 

denoise reads into amplicon sequence variants (ASVs) (i.e. 100% exact sequence match), resulting 

with feature tables and representative sequences. Taxonomy classification was assigned based on 

the naïve Bayes classifier using the classify-sklearn package(42) against the Silva-132-99 

reference sequences. ASVs that couldn’t be precisely annotated to species were reassigned to ones 

having the most similar sequences in the same genus (or family) using NCBI Blast. Subsequently, 

representative sequences were aligned using Fast Fourier Transform (MAFFT) in Multiple 

Alignment and a phylogenetic tree was generated with the Fast-Tree plugin. Then, the feature 

tables were converted to relative abundance tables. A set of ASVs that were confidently detectable 

in at least three studies and were present in at least 80% of samples were selected for further 

analysis. 
 

Confounder analysis  

We used ANOVA-like analysis(14) to quantify the effect of potential confounding factors and 

disease status. The total variance of a given ASV was compared to the variance explained by 

disease status (control, adenoma and cancer) and the variance by confounding factors (age, BMI, 

diabetes, Nonsteroidal anti-inflammatory drug (NSAID), platform, race, gender and study) akin to 

a linear model. Variance calculations were performed on ranks to account for non-Gaussian 

distribution of microbiome abundance data(14). Potential confounding factors with continuous 

values were transformed into discrete variables either as quartiles or in the case of BMI as groups 

of lean(>25), overweight (25-30), and obese(>30) based on conventional cutoffs. 

 

Meta-analysis of differentially abundant ASVs 

The significance of differential abundance was tested on a per ASV using the blocked Wilcoxon 

test implemented in the R (V.3.5.2) ‘coin’ package (P values < 0.05 were deemed as significant in 

all differential analysis). Confounder with high variance explanation was defined as a block to 

adjust the differential analysis. Significance was tested against a conditional null distribution 

derived from permutations of the observed data. Permutations were performed within ‘study’ to 

control variations in block size and composition(14). For further analysis, we evaluated a 

generalization of the (logarithmic) fold change for each ASV. This quantity is widely applied to 

genomic sequencing data such as RNA-seq and GRO-seq and further improved for better 

resolution of sparse microbiome profiles(43). The generalized fold change was calculated as the 

mean difference between predefined quantiles (ranging from 0.1 to 0.9 in increments of 0.1 in this 

study) of the logarithmic control and adenoma, and between adenoma and cancer distributions.  

 

Model construction and features extraction 

Following the differentially abundant ASVs analysis, we built Random Forest (RF) classifier 

models with stratified 10-fold cross-validation to distinguish adenoma from cancer or control. The 

features used for model building consisted of patient metadata as well as differential ASVs and 

alpha diversity indices. The alpha diversity indices consisted of Shannon Index, Simpson Index 

and Observed ASVs, while the patient metadata features consisted of age, gender and BMI. The 

RF classifier models were built with 501 estimator trees and each tree had 10% of the total 
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features. Then an iterative feature elimination (IFE) step was used to optimize the performance of 

subsequent RF models. The top features from the top-performing model were selected as 

“important features” and the top microbial features as “biomarkers”. Finally, the AUC was used to 

evaluate the performance of the optimized models. 

 

Co-occurrence and clustering analysis 

To further analyze the co-occurrence of biomarkers, the relative abundances of biomarkers were 

discretized into binary values ‘positive’ or ‘negative. For each biomarker, the 90th percentile in 

control or adenoma was used as the threshold. A sample was labeled ‘positive’ when the relative 

abundance of ASV was above the defined threshold(14). Based on the binarized 

markers-by-sample matrix, biomarkers were then clustered using the Jaccard index. Associations 

between clusters and metadata were calculated by a Cochran–Mantel–Haenszel test with ‘study’ 

as blocking factors. 

 

Model evaluation 

To assess the generalizability of microbial-based adenoma classifiers across geographic and 

technical differences of metagenomic data generation and processing in multiple patient 

populations, both study-to-study transfer validation and leave-one-dataset-out (LODO) validation 

were performed. In study-to-study transfer validation, RF classifiers were trained in one single 

study and externally assessed on all other studies (off-diagonal cells in Fig. 3a-b). Meanwhile, we 

applied a nested cross-validation procedure on the training study to calculate within-study 

accuracy (diagonal cells in Fig. 3a, b). In LODO validation, data from one study was set as the 

testing set, while data from the remaining three studies were pooled as the training set. The input 

features of the validation classifiers were the important features identified from the IFE analysis.  

To evaluate whether the selected important features would achieve the best performances in 

study-to-study transfer validation and LODO validation, we constructed RF models with 3 

different sets of input features, including (1) all ASVs, (2) differential ASVs and (3) important 

features. Then we sought to identify if there was a minimal set of important features that could 

achieve higher accuracy. A few of the top-ranking important features were always included in the 

minimal set in prior. We used the same methods as the study-to-study transfer validation and 

LODO validation and then calculated the average AUC of each testing study as each point in Fig. 

3c, d. Finally, we compared the predictive values in the testing set across RF models with different 

sets of input features. 

 

Additional validation of independent studies and other diseases 

As an external test, we used additional independent data to validate the performance of the 

selected important features to differentiate adenoma from cancer or control. The input features of 

RF models were the ASVs with the same taxonomy assignments as the selected important features 

as well as patient metadata (validation cohort2 without the patient metadata only used ASVs as 

input features).  

To assess the specificity of the selected important features for colorectal adenoma, we 

investigated five non-CRC diseases. For each disease, we randomly drew 30 samples from the 

control group (excluding NAFLD and IBD diseases of which 15 samples were selected) as well as 

30 samples from the cases, and added them to the validation cohort1 dataset in turns, labeled as 
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controls. The random selection process was repeated ten times, and the validation AUC was 

computed accordingly. 

 

Functional profile analysis 

The functions of gut microbiome were inferred from 16S rRNA sequences with Phylogenetic 

Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) as previously 

published(44). Functional metagenome profiles that have more than 20% samples with relative 

abundance < 1�10-5 and show up in less than three of the studies were removed. The differential 

analysis and generalized fold change calculations were performed on pathway profiles in the same 

way as on ASVs profiles (see data preprocessing method). Then, we evaluated the contribution of 

each ASV to overall differential pathways. The contribution was defined as the ratio of one ASV 

functional abundance to the total functional abundance of all ASVs in a given pathway. 

 

Quantitative PCR validation 

To quantify the abundance and expression of genes from two selected biosynthesis, the qRT-PCR 

analysis was performed on 14 healthy controls, 12 adenoma and 30 CRC samples. For these 

samples, the gDNA was extracted with the FecalGen DNA Kit (Cat# e9604) according to the 

manufacturer’s instructions. We used the primes in the Supplementary Table 15 for candidate 

genes; standard primers F515 and R806 for 16S. To perform the qRT-PCR reaction, the final 

primer concentration was diluted to 0.5 μM including 5 ng of gDNA in a 20 μl final reaction 

volume with the SYBR Green qPCR Mix (Thermo Fisher Scientific). The used qRT-PCR 

program was as follows: pre-denaturation at 95 °C for 10 min; denaturation at 95 °C for 15 s for 

40 cycles; annealing at 60°C for 60 s followed by melt curve analysis(14). The qRT-PCR analysis 

was  to calculate 2-ΔΔCt values between candidate genes and 16S Ct values. The significance of 

the comparison between adenoma and control or CRC samples was tested by Wilcoxon test 

(P<0.05). 
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