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Abstract

Studies on spatial coding and episodic memory typically involve record-
ings of hippocampal place cell activity while rodents navigate in mazes. Lin-
ear place fields serve as reduced representations of the activity of place cells,
revealing their spatial preference along the tracks of the maze. Sometimes,
the experimental designs include complex mazes with irregular geometries
and one or more decision points. Unfortunately, in such complex mazes,
the production of linear place fields becomes a non-trivial problem. Here, I
present a MATLAB toolbox which implements a graph-theoretic approach
for the efficient production of linear place fields in a variety of complex mazes.
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1. Introduction1

The role of hippocampus in navigation and episodic memory is a highly2

active research area [1]. The indispensable functional element that under-3

lies these cognitive functions is the hippocampal place cell. Place cells fire4

preferentially at specific locations (i.e., place fields) while an animal moves5

in space, thus providing spatial coding [2]. Place fields were first reported6

in an open field area but similar place fields have been recorded on narrow7

tracks and mazes [3]. Place fields on tracks exhibit directionality; that is,8

they change depending on the direction of movement along the track [4].9
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Place cells also encode for the intended destination and learned route when10

the animal has multiple options in a maze [5, 6].11

2. Problem and Background12

Place cell activity and the video-tracked trajectory of the animal on tracks13

and mazes are routinely analyzed in tandem for the production of place14

fields. Subsequent analysis, such as measuring place field size or constructing15

place cell sequences, relies on the linearization (i.e., transforming the 2D16

representation to 1D) of the place fields [7, 8]. While linearization is trivial17

for single linear tracks, it is not trivial in mazes; especially in complex mazes18

with one or more decision points [9]. A general solution for the production19

of linear place fields in complex mazes is still missing from the open science20

toolbox.21

The research community would benefit from an algorithm able to effi-22

ciently analyze the animal’s trajectory and the place cell activity in order23

to produce linear representations of each cell’s activity along the different24

end-to-end paths in a maze (end being a point in a maze where the animal25

needs to turn back). Notice that the cells’ activity need to be analyzed sep-26

arately for each end-to-end path (see [5, 6] and illustrative example in Fig.27

1). Ideally, the algorithm would be applicable to a variety of mazes made up28

of interconnected linear tracks. Thus, the problem at hand is, first, to detect29

individual end-to-end runs (or traversals) in a maze of arbitrary shape, sec-30

ond, to cluster the runs in a path-specific way and, third, to represent the31

activity of the recorded place cells along the different paths of the maze, that32

is, to produce a linear place field for each path.33

Here I present a largely autonomous algorithm and its implementation in34

MATLAB (LinCoM) for a graph theoretic solution of the problem applicable35

to a diverse class of user-defined mazes, as opposed to software that are36

designed for specific mazes (e.g., for W maze, see https://github.com/Eden-37

Kramer-Lab/MoG tools). The mazes can have one or more decision points38

with each one providing two or more alternative paths for the animal to39

follow. However, the mazes cannot have any cycles; that is, all the branches40

of the maze must have an end.41
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3. Software Framework42

3.1. Software Architecture43

The software solves the problem by analyzing three types of input data:44

an image of the maze, the video-tracking data, and the spike-times of one45

or more cells. The software analyzes the input following the workflow shown46

in Fig. 2 and outputs the linear place fields for each cell. The image of the47

maze is only used to create the graph representation of the maze. Using48

this maze-graph as a reference, the continuous trajectory of the animal (i.e.,49

video-tracking data) is transformed into a discrete trajectory, that is, its50

trajectory in the maze-graph. Then, the software autonomously detects the51

runs in the discrete trajectory and clusters them in path-specific clusters.52

Finally, the spike-times are analyzed in conjunction with the clustered runs53

in order to produce the linear place fields for each cell.54

3.2. Software Functionality55

The software prompts the user to provide all the necessary inputs from56

the beginning of the process. The software accepts a variety of image and57

video formats for acquiring an image of the maze. The animal’s trajectory58

is expected as a T × 2 matrix with the (x, y) coordinates of the animal for59

each one of the T time-points. The user also needs to provide an N × 1 cell60

array containing the spike-times for each one of the N place cells.61

The software makes use of interactive features of MATLAB plots to collect62

some additional user input for the creation of the graph representing the63

maze. Typical mazes without cycles or open fields, such as T-maze and64

radial maze, are all supported (see schematics in Supplementary Fig. S1).65

The software autonomously analyzes the data and outputs a K × N cell66

array containing the K place fields of the detected paths for each one of the67

N place cells.68

4. Implementation69

4.1. Creation of a spatially embedded graph70

The software prompts the user to draw a preliminary graph on top of71

the image of the maze using interconnected line segments (see example in72

Supplementary Fig. S2). The line segments are then subdivided into in-73

terconnected spatial bins, thus forming a spatially embedded graph G (see74
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Fig. 3). The degree of edge subdivision dictates the spatial resolution of the75

resulting linear place fields and it is set by the user.76

The spatially embedded graph G = {V,E, P} is defined by an ordered77

set of N nodes V = {vi : i = 1 . . . N}, a set of edges, E, and an ordered set78

of the nodes’ positions in the 2-dimensional space P = {pi : i = 1 . . . N}.79

Note that G is considered to be acyclic and undirected (i.e., a tree in graph80

theoretic terms), thus the edges have no directionality and there is only one81

path connecting each pair of nodes. An adjacency matrix A is computed from82

E, where the binary value Aij indicates whether nodes i and j are connected.83

The ordering of the nodes in V is such that for each node j > 2 there is exactly84

one node i < j for which Aij = 1. Given this limitation, the distance matrix85

D is calculated by the dynamic programming algorithm in Supplementary86

Algorithm S1. The value Dij indicates the graph-theoretic distance between87

nodes i and j. The ordered set of eccentricity values U = {ui : i = 1 . . . N}88

is calculated directly from D as the maximum values of its rows, that is, the89

maximum distance of each node from the rest of the graph. The set Q of all90

end-nodes in the graph is also automatically defined.91

Graph G is supplemented by the user-defined commitment map C. The92

software prompts the user to select interactively a commitment subgraph for93

each end-node in the maze. During the run detection stage, whenever the94

trajectory enters a commitment subgraph, the animal is considered to have95

committed to the corresponding end (see Fig. 4 for an example).96

4.2. Discretization of trajectory97

In this stage, the continuous trajectory {X, Y } is transformed into the98

discrete trajectory Z which is a sequence of graph nodes z1, z2, . . . . For each99

time-point, the (x, y) position of the animal is projected to the nearest node100

in the graph. The connectivity of the graph is considered during this process101

such that the projection at time ti will need to be close, in graph-theoretic102

terms, to the projection at time ti−1 (see Supplementary Algorithm S3).103

4.3. Run detection104

The algorithm detects individual runs in the maze by using the trajectory105

eccentricity as a heuristic. It takes advantage of the fact that every time the106

animal reaches an end in the maze and turns back, the eccentricity of the107

discrete trajectory Z has a local maximum.108

First, the discrete trajectory Z is reduced in time, resulting in Ẑ, such that109

there are no consecutive appearances of the same node (i.e., ẑi 6= ẑi−1). This110
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reduction removes redundant information and simplifies the detection of local111

maxima. The resulting Ẑ is then expressed in terms of eccentricity producing112

the trajectory eccentricity S. Then, the algorithm finds the local maxima113

in S and saves them in an ordered set M , which also stores information114

about the corresponding node v and the corresponding index in Ẑ. Then the115

commitment map C : V → Q∪{�}, where � is a null character, is applied to116

M so that the nodes that are in a commitment subgraph are mapped to their117

respective end q, while the rest are mapped to � and removed from the set118

M . Then the algorithm finds all the consecutive pairs of the same end in M119

and, if they are close enough, it removes the one that is less eccentric. Two120

local maxima are considered to be close enough based on a leeway parameter121

L that allows for a negligible back-stepping of the animal while traveling122

from one end to another. Finally, the algorithm removes redundant entries123

in M and detects individual runs as subsequences of Ẑ for every consecutive124

pair of different ends remaining in M (see Algorithm 1 and its graphical125

representation in Supplementary Fig. S3).126

4.4. Clustering the detected runs127

At this stage the algorithm clusters the individual runs in path-specific128

clusters: one cluster for each unique traverse from one end to another. The129

user is able to label these clusters with meaningful names relevant to the130

experimental design (e.g., left-forward, right-backward).131

4.5. Production of the linear place fields132

At the final stage, the software brings together the clusters of detected133

runs and the spike-times provided by the user. It computes the linear place134

fields for each cluster and for each place cell. This computation involves the135

calculation of the time spent (occupation time) and the number of spikes136

recorded in each spatial bin. The cluster-specific firing rate for each spatial137

bin is calculated in spikes per second and the linear place field of each cluster138

is formed by the ordered concatenation of these firing rates (ordered from139

beginning to end of the corresponding path).140

5. Illustrative Example141

This illustrative example demonstrates the major functions of the soft-142

ware by using a ground truth dataset. This dataset represents a hypothetical143
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scenario where the animal moves in a Y maze (see Fig. 5A). The hypothet-144

ical animal executes three times the following sequence of runs: A to C, C145

to A, A to D, and D to A. The ground truth data also include spike-times146

for a single cell with place fields similar to the ones shown in Fig. 1.147

Figure 5A and B provide a visualization of the three input elements:148

image of the maze, continuous trajectory, and spike-times. After drawing149

a preliminary graph and setting the size of the spatial bins, the software150

produced the graph shown in Fig. 5C. Notice that the visualization of the151

graph includes the node numbers at the three ends. Those numbers appear152

again in the presentation of the detected runs shown in Fig. 5D. Finally153

the software produced and presented the linear place fields. Two of them,154

labeled AC and AD, are shown in 5E. Notice that the place fields look as155

expected, since the ground truth dataset was designed to follow the example156

in Fig. 1.157

6. Conclusions158

LinCoM addresses a problem which increasing number of researchers face159

in the field of spatial coding in mazes. It provides a general solution for160

the efficient production of linear place fields in complex mazes with irregular161

shapes or decision points, thus enabling further quantitative analysis of the162

place fields and the construction of place cell sequences. Despite the gen-163

erality of the solution, as it is, the graph-theoretic approach presented here164

is applicable only to mazes without cycles. The software can potentially be165

expanded to support mazes with cycles (e.g., 8-figure maze) by using directed166

graphs as an alternative representation of the maze.167
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Algorithm 1 Run Detection

Require: discrete trajectory Z, node eccentricity U , leeway parameter L,
commitment map C

1: Ẑ ← reduce(Z), such that ẑi 6= ẑi−1

2: S ← U(Ẑ), produce the trajectory eccentricity
3: M ← localMax(S), ordered set of nodes with local maxima in S
4: M ← C(M), map to the committed ends
5: for all consecutive pairs of the same entry in M , Mi = Mi+1 do
6: let j and k (where j < k) be the indices in S at which Mi and Mi+1

occur, respectively.
7: if Sj 6= Sk ∧min({Sj, Sk})−min({Sj, Sj+1, ..., Sk}) < L then
8: remove the entry, Mi or Mi+1, with the lowest eccentricity
9: end if

10: end for
11: for all consecutive triplets of same entry in M , Mi = Mi+1 = Mi+2 do
12: remove entry Mi+1 from M
13: end for
14: for all consecutive pairs of different entries in M , Mi 6= Mi+1 do
15: save the subsequence of Ẑ beginning from Mi and finishing at Mi+1 as

a detected run
16: end for
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Figure 1: Illustration of the problem and the difference between 2D and 1D
(linear) place fields. (A) A rodent moves in a Y maze with one decision point (point
B) while a single place cell in hippocampus is being recorded. Starting from point A, the
animal has the option to follow either the blue path, A→ C, or the purple path, A→ D.
(B) Overall spiking activity of the cell represented in a 2D firing rate map after multiple
A → C and A → D runs. (C-D) Path specific 2D representations of the activity during
A → C and A → D runs. Notice that the cell fires somewhere between A and B only
when the destination is C (indicative of the behavioral goal of the animal [5]). (E-F) After
separating the activity between the two paths, linear representations of the cell’s activity
are more suitable for subsequent analysis (e.g., construction of place cell sequences [8]).
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spike timescreate graph

discretize trajectory
detect & cluster runs

compute linear 
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linear place fields
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intermediate process

output
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Figure 2: Framework of the software. The framework shows that user involvement is
needed only in the initial stages of the whole process while the rest is autonomous. Spatial
and temporal relationships between the input elements are indicated with dashed lines.
The image of the maze and the trajectory of the animal should refer to the same (x, y)
plane. Ideally, the image should be taken from the same video that produced the video-
tracked trajectory. In addition, the spike-times and the trajectory must be in temporal
agreement (i.e., based on the same clock during data collection).
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Figure 3: Creation of the spatially embedded graph representing the maze. After
a preliminary graph is drawn by the user, the software asks the user for the desired size of
the spatial bins and finally creates a spatially embedded graph that represents the maze.

C : V → Q ∪ {  }

Figure 4: Example of a user-defined commitment map C. All nodes in the maze,
vi, are mapped either to an end-node, qi, or to a null character.
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Figure 5: Illustrative example using ground truth data. It demonstrates the most
important stages of the process and how the software presents the intermediate and final
results. The software: (A-B) accepts a set of raw data; (C) creates and presents the graph;
(D) detects, clusters, and presents the runs in time; and finally, (E) produces and presents
the place fields for each individual path.
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Nr. Code metadata description Please fill in this column
C1 Current code version v1.2
C2 Permanent link to code/repository

used of this code version
github.com/cpapasavvas/LinCoM

C3 Legal Code License MIT
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
MATLAB 2017b

C6 Compilation requirements, operat-
ing environments & dependencies

Signal Processing Toolbox, Image
Processing Toolbox, Statistics and
Machine Learning Toolbox

C7 If available Link to developer docu-
mentation/manual

github.com/cpapasavvas/LinCoM/
blob/master/README

C8 Support email for questions christoforos.papasavvas@ncl.ac.uk

Table 1: Code metadata
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