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Abstract

The three-dimensional (3D) organization of the genome plays a critical role in gene regulation for

diverse normal and disease processes. High-throughput chromosome conformation capture (3C) assays,

such as Hi-C, SPRITE, GAM, and HiChIP, have revealed higher-order organizational units such as topo-

logically associating domains (TADs), which can shape the regulatory landscape governing downstream

phenotypes. Analysis of high-throughput 3C data depends on the sequencing depth, which directly af-

fects the resolution and the sparsity of the generated 3D contact count map. Identification of TADs

remains a significant challenge due to the sensitivity of existing methods to resolution and sparsity. Here

we present GRiNCH, a novel matrix-factorization-based approach for simultaneous TAD discovery and

smoothing of contact count matrices from high-throughput 3C data. GRiNCH TADs are enriched in

known architectural proteins and chromatin modification signals and are stable to the resolution, and

sparsity of the input data. GRiNCH smoothing improves the recovery of structure and significant in-

teractions from low-depth datasets. Furthermore, enrichment analysis of 746 transcription factor motifs

in GRiNCH TADs from developmental time-course and cell-line Hi-C datasets predicted transcription

factors with potentially novel genome organization roles. GRiNCH is a broadly applicable tool for the

analysis of high throughput 3C datasets from a variety of platforms including SPRITE and HiChIP to

understand 3D genome organization in diverse biological contexts.
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Introduction1

The three-dimensional (3D) organization of the genome has emerged as an important layer of gene2

regulation in developmental processes, disease progression, and evolution [1–6]. High-throughput chro-3

mosome conformation capture (3C) assays such as Hi-C [7, 8], SPRITE [9], and GAM [6] provide a4

comprehensive view of 3D organization by measuring interactions among chromosomal regions on a5

genome-wide scale. High-throughput 3C data captured from diverse biological contexts and processes6

has led to an improved understanding of DNA packaging in the nucleus, and the dynamics of 3D confor-7

mation across developmental stages [10], and between normal and disease cellular states [4,11]. Analysis8

of such datasets has shown that chromosomal regions preferentially interact with one another, giving rise9

to higher-order structural units such as chromosomal territories, compartments, and topologically asso-10

ciating domains (TADs) which differ in the size of the structural unit and molecular features associated11

with the constituent regions. Although the relationship between TADs and changes in gene expression12

is debated [12–14], these units have been shown to be conserved across species [5, 15] and also associ-13

ated with developmental [16] and disease processes [11, 17–19]. Accurate identification of TADs is an14

important goal for linking 3D genome organization to cellular function.15

Recently a large number of methods to identify TADs have been developed, utilizing different com-16

putational frameworks, such as dynamic programming, [20, 21], community and subgraph detection17

within networks [20, 22], Gaussian mixture modeling [23, 24], and signal processing approaches [25].18

However, comparison of TAD-finding methods [26–28] have found large variability in the definition of19

TADs and high sensitivity to the resolution (size of the genomic region), sequencing depth, and sparsity20

of the input data. A lack of a clear definition for a TAD leads to difficulty in downstream interpretation21

of these structures [29]. To address the sparsity of datasets, different smoothing based approaches have22

been proposed, e.g. mean filter [30] and Gaussian filter [31]; however, it is unclear whether and to what23

extent TAD identification can benefit from pre-smoothing the matrices.24

Here, we present Graph Regularized Non-negative matrix factorization and Clustering for Hi-C25

(GRiNCH), a novel matrix-factorization-based method for the analysis of high-throughput 3C datasets.26

GRiNCH is based on non-negative matrix factorization (NMF), a powerful dimensionality reduction27

method used to recover interpretable low-dimensional structure from high-dimensional datasets [32–34].28

However, a standard application of NMF is not sufficient because of the strong distance dependence29

found in Hi-C data, that is, regions that are close to each other on the linear genome tend to have more30

interactions. We employ a graph regularized NMF approach, where the graph captures the distance de-31
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pendence of contact counts such that the learned lower-dimensional representation is smooth over the32

graph structure [35]. Furthermore, by exploiting NMF’s matrix completion property, which imputes33

missing entries of a matrix from the product of the low-dimensional factors, GRiNCH can smooth a34

sparse input matrix.35

We perform a comprehensive comparison of GRiNCH and existing TAD-finding methods using a36

number of metrics: similarity of interaction profiles of regions belonging to the same TAD, stability37

to different resolutions and depth of input data, and enrichment of architectural proteins and histone38

modification known to facilitate or correlate with 3D genome organization. Despite the general trend of39

trade-off in performance among different criteria, e.g., a high performing method based on enrichment40

of architectural proteins is not as stable to resolution and depth, GRiNCH consistently ranks among41

the top across different measures. Furthermore, compared to existing smoothing approaches, GRiNCH-42

based smoothing of downsampled data leads to the recovery of TADs and significant interactions best43

in agreement with those from the original high-depth dataset. We apply GRiNCH to Hi-C data from44

two different developmental time courses; we successfully recapitulate previously identified topological45

changes around key genes, and predict novel boundary factors that could interact with known architec-46

tural proteins to form topological domains. Taken together, GRiNCH is a robust and broadly applicable47

approach to discover structural units and smooth sparse high-throughput 3C datasets from diverse plat-48

forms including Hi-C, SPRITE and HiChIP.49
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Results50

GRiNCH, a non-negative matrix factorization-based method for analyzing high-throughput51

chromosome conformation capture datasets52

GRiNCH uses graph-regularized Non-negative Matrix Factorization (NMF) to identify topologically53

associating domains (TADs) from a high-dimensional 3C count matrix (Figure 1, Methods). GRiNCH54

has several properties that make it attractive for analyzing these count matrices: (1) matrix factorization55

methods including NMF have a “matrix completion” capability, which can be used to smooth noisy,56

sparse matrices, (2) the low-dimensional factors provide a clustering of the row and column entities57

that can be used to define chromosomal structural units, (3) the non-negativity constraint of the factors58

provide a parts-based representation of the data and is well suited for count datasets (such as Hi-C59

matrices), and (4) GRiNCH can be applied to any symmetric count matrix measuring chromosomal60

interactions between genomic loci such as Hi-C, [36], SPRITE [9], and HiChIP [37] datasets.61

For the ease of description, we will consider a Hi-C matrix as the input to GRiNCH. In GRiNCH,62

the count matrix is approximated by the product of two lower dimensional matrices, U and V, both with63

dimension n × k, where n is the number of genomic regions in the given chromosome, and k is the64

rank of the lower-dimensional space. Because Hi-C matrices have a strong distance dependence, we use65

a constrained formulation of NMF, where the columns of the U and V matrices are smooth on a graph66

of genomic regions (Figure 1), such that regions that are connected in the graph have similar sets of67

values in the lower-dimensional space. The graph in turn captures the distance dependence using a local68

neighborhood, where two regions i and j have an edge between them if they are within a particular radius69

r of each other in linear distance along the chromosome. GRiNCH has three parameters, k, the rank of70

the lower dimensional space, r to control the size of the neighborhood, and λ to control the strength71

of graph regularization. After factorization, GRiNCH uses chain-constrained k-medoids clustering to72

define clusters of contiguous regions, which we consider as TADs. We probed the impact of the three73

parameters, k, r, and λ, on the resulting GRiNCH TADs. We determined that setting k to identify74

TADs of size ≈ 1Mb, with a neighborhood size of r = 250kb and a small amount of regularization75

(λ = 1), yields the best results (Figure S1). Notably, the regularization yields TADs with higher CTCF76

enrichment than vanilla matrix factorization without any regularization (i.e. λ = 0).77

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.08.17.254615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254615
http://creativecommons.org/licenses/by-nc-nd/4.0/


GRiNCH TADs are high quality and stable to varying resolution and depth of input Hi-C78

data.79

To assess the quality of GRiNCH TADs, we considered seven existing TAD identification methods80

(Table 1) and applied them along with GRiNCH to Hi-C data of five different cell lines from Rao et81

al. [36] for comparison. The quality of a TAD was measured with two internal validation metrics used82

for cluster evaluation, Davies-Bouldin index (DBI) and Delta Contact Count (DCC), both assessing the83

similarity of interaction profiles of regions within defined TADs. DBI of a cluster measures how well84

separated the given cluster is from other clusters; in our case, how distinct each TAD’s interaction count85

profile is from other TADs (Methods); a lower value for DBI indicates a more distinct, better-separated86

cluster. DCC measures the difference between intra-TAD interaction counts and inter-TAD interaction87

counts, with higher difference associated with better TADs. For each TAD-finding algorithm, we esti-88

mated the proportion of TADs with significantly better DBI or DCC value than randomly shuffled TADs.89

GRiNCH and HiCseg yield the highest proportion of TADs with significantly better DBI or DCC values90

compared to randomly shuffled TADs (Figure 2A), suggesting these methods provide the most coherent91

set of TADs.92

Many TAD-calling methods are sensitive to the input data resolution (size of genomic region), with93

the resulting TAD lengths varying greatly as a function of resolution [28]. A robust method is expected94

to yield consistent length distribution of TADs when given the same user-specified parameter settings,95

regardless of the change in resolution. Therefore, we next assessed the ability of GRiNCH and the96

seven TAD calling methods for their ability to recover stable TADs across different resolutions, 10kb,97

25kb, and 50kb. When comparing the median length of TADs across different resolutions (Figure 2B),98

GRiNCH and Directionality Index are the most stable, with the exception of NHEK where Directionality99

index learns longer TADs at 10k resolution. This suggests that GRiNCH is robust to different resolutions,100

recovering consistently-sized TADs across different resolutions.101

TAD-calling methods can be sensitive to the sparsity of the Hi-C matrices due to low sequencing102

depth [28]. To assess the robustness of each method to low-depth, sparse datasets with many zero entries,103

we first took the highest-depth dataset (GM12878, 86 million reads total) and downsampled to the depth104

and sparsity level of lower-depth data from other cell lines (e.g. K562, the second “deepest” cell line with105

16 million reads). We then compared the similarity of the TADs from the original high-depth data and106

those from the downsampled counterpart (Figure 3A, Methods). We utilized metrics that can quantify107

the similarity of pairs of clustering results: Rand Index and Mutual Information (Methods). Intuitively,108
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Rand Index is a measure of cluster membership consistency; it measures whether two data points (in109

our case, two genomic regions) that belonged to the same cluster (TAD) in one clustering result also110

stayed together in the other result, and whether two data points that belonged to different clusters stayed111

separate. Rand Index ranges from 0 to 1, with 1 being perfect concordance. Mutual Information is an112

informational-theoretic metric measuring the dependency between two random variables, where each113

variable indicates a clustering result. A Mutual Information of 0 indicates complete disagreement and114

the higher the Mutual Information value the better the agreement between the corresponding clustering115

results. Based on Rand Index, TopDom, HiCseg, and GRiNCH yield the most reproducible TADs across116

different depths, particularly at the lower depths of HMEC, HUVEC, and NHEK cell lines. Based on117

Mutual Information, TopDom is the most consistent followed by GRiNCH and HiCseg. Other methods118

were generally less consistent based on the Mutual Information metric.119

A third hindrance in the interpretation of results from TAD finding methods is the disagreement120

on the TAD definitions [28, 29]. Hence, we further evaluated whether different TAD-calling methods121

yielded relatively similar TADs, and which sets of methods yielded the most similar TADs to one another.122

Here again, we used Rand Index and Mutual Information as metrics to compare the sets of TADs from123

different methods. All pairwise comparisons of TAD-calling methods yielded high values of Rand Index124

(>0.8) and high Mutual Information (Figure 3B,C). Furthermore, GRiNCH and TopDom yield the most125

similar sets of TADs, followed by rGMAP across all cell lines. This pattern is fairly consistent even126

when analyzed for each cell line individually (Figure S2).127

To summarize, our internal validation and stability analysis showed that the top performing methods128

depends upon the evaluation criteria. However, GRiNCH is among the top performing methods for all129

the criteria we examined (Table 1), producing TADs that are as good or better than existing methods and130

are stable to varying resolution and depth.131

GRiNCH TADs are enriched in architectural proteins and histone modification signals.132

We next characterized GRiNCH TADs as well as TADs from other methods for their ability to capture133

well-known one-dimensional signal enrichment patterns (Table 1). In particular, one hallmark of TADs134

is the enrichment of architectural proteins such as CTCF and cohesin elements (RAD21, SMC3) on the135

boundaries of TADs [29, 38]. We tested the TAD boundaries from each method for the enrichment of136

peaks of CTCF, RAD21, and SMC3 in the five Rao et al. cell lines with Hi-C data (Figure 4A, Methods).137

All methods identified boundaries enriched for peaks of these proteins; however, the methods varied138

in their relative performance across cell lines. GRiNCH TAD boundaries have comparable or better139
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enrichment as the other top performing methods, namely, Directionality Index and Insulation Score in140

most cell lines, and HiCseg in K562 and Huvec. All these methods including GRiNCH have significantly141

higher enrichment than 3DNetMod, rGMAP, Armatus across different cell lines.142

As histone modifications have been shown to be associated with three-dimensional organization [39],143

we next measured the proportion of TADs with significant levels of mean histone modification signals144

(Figure 4B) compared to randomly shuffled TADs (Methods). The histone modification signals in-145

clude promoter- (H3K4me3, H3k4me2), elongation- (H3K79me2, H3k36me3), and enhancer-associated146

marks (H3K27ac), and repressive chromatin marks (H3K27me3). A larger proportion of GRiNCH147

TADs, along with Armatus and HiCseg TADs, are consistently enriched for the activating histone makes148

such as H3K27ac, and the elongation marks, H3K36me3 and H3K79me2. Interestingly, with the ex-149

ception of GM12878, the enrichment of histone marks in the TADs from Insulation and Directionality150

index was much lower than the other methods suggesting these methods tend to find TADs defined by151

CTCF and might miss other types of TADs [38]. These enrichment metrics show that when considering152

existing methods, there is a tradeoff in the ability to recover TADs that are associated with CTCF and153

TADs that are associated with significant histone modifications. However, GRiNCH ranks among the154

top methods for both criteria suggesting that GRiNCH TADs capture a diverse types of TADs.155

GRiNCH smoothing of low-depth datasets help recover structure and significant156

interactions.157

Our analysis so far compared different TAD finding methods for their ability to recover stable and bio-158

logically meaningful topological units. However, most Hi-C datasets are sparse, which can influence the159

TAD predictions significantly. Smoothing the input Hi-C matrix to impute missing values can enhance160

the visualization of topological units on the matrix and improve the agreement among biological repli-161

cates [30, 31]. Unlike existing TAD-calling methods, the matrix factorization framework of GRiNCH162

provides a natural matrix completion solution that can generate a smoothed version of the sparse input163

Hi-C matrix. We next compared GRiNCH’s smoothing functionality to common smoothing techniques164

such as mean filter and Gaussian filter, which are used in imaging domains and also for Hi-C data [30].165

We used two metrics to assess the quality of smoothing: (a) recovery of TADs and (b) recovery of sig-166

nificant interaction after smoothing downsampled data. To perform these comparisons, we again used167

the downsampled GM12878 datasets.168

To assess TAD recovery, we identified TADs on the original high-depth GM12878 dataset and com-169

pared them to the TADs identified in the downsampled and smoothed data matrices using Rand Index170
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and Mutual Information. Here, to avoid any bias in our interpretation, we used the Directionality Index171

method to call TADs. We find that using both Rand Index and Mutual Information, TADs recovered on172

GRiNCH smoothed matrices are the most similar to the TADs from the high-depth dataset across differ-173

ent parameter settings of the mean filter and Gaussian filters (Figure 5A). The usefulness of GRiNCH174

is more apparent for lower-depth datasets such as NHEK. To assess the recovery of significant interac-175

tions, we applied Fit-Hi-C [40] on the original GM12878 dataset and on the downsampled and smoothed176

datasets to identify significant interactions (q-value < 0.05). Treating the significant interactions in177

the original high-depth dataset as the ground truth, we measured precision and recall as a function of178

the statistical significance of interactions from the smoothed datasets and computed the Area Under179

Precision-Recall curve (AUPR). The higher the AUPR, the better the recovery of significant interactions180

after smoothing. GRiNCH has the highest AUPR compared to mean filter and Gaussian filter (Figure181

5B) across multiple parameter configurations. Overall, our experiments suggest that GRiNCH offers182

superior smoothing functionality compared to standard smoothing techniques enabling better recovery183

of TAD structures and long-range interactions.184

GRiNCH application to chromosomal organization during development.185

To assess the value of GRiNCH in primary cells and to examine dynamics in chromosomal organiza-186

tion, we applied GRiNCH to two time-course Hi-C datasets profiling 3D genome organization during (a)187

mouse neural development [41] and (b) pluripotency reprogramming in mouse [42]. Bonev et al. [41]188

used high-resolution Hi-C experiments to measure 3D genome organization during neuronal differenti-189

ation from the embryonic stem cell state (mESC) to neural progenitor cells (NPCs) and cortical neurons190

(CNs). We applied GRiNCH on all chromosomes for all three cell types and compared them based on191

the overall similarity of TADs between the cell lines. Based on the two metrics of Mutual Information192

and Rand Index, the overall TAD similarity captured the temporal ordering of the cells, with CNs being193

closer to NPCs and ESCs the most distinct (Figure S3A). We next focused on a specific 4Mbp region194

around the Zfp608 gene, which was found by Bonev et al. as a neural-specific gene associated with195

a changing TAD boundary. In both NPCs and CNs, GRiNCH predicts a TAD near the Zfp608 gene,196

which is not present in the mESC state. Zfp608 was also associated with increased expression, and ac-197

tivating marks, H3K27ac and H3K4me3 at these time points, which is consistent with Zfp608 being a198

neural-specific gene (Figure 6A).199

We next examined another time-course dataset which studied the 3D genome organization during200

reprogramming of mouse pre-B cells to pluripotent stem cells (PSC), with four intermediate time points201
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(Day 2, 4, 6, and 8, see Methods). As in the neural developmental time course, we applied GRiNCH202

to all chromosomes from each time point and compared the overall 3D genome configuration over time.203

Here too we observed that time points closer to each other generally had greater similarity in their TAD204

structure, as well as two different replicates within the same time point displaying even greater TAD205

similarity (Figure S4B). We examined the interaction profile in the 1.3 Mbp around the Sox2 gene, a206

known pluripotency gene (Figure 6B). We see a gradual formation of a boundary around Sox2, which is207

also associated with concordant increase in expression, accessibility and the presence of H3K4me2, an208

active promoter mark.209

As chromatin accessibility data was also measured at each timepoint during reprogramming, we210

asked if we could identify additional regulatory proteins that could play a role in establishing TADs211

(Methods). Briefly, we tested the GRiNCH TAD boundaries from each mouse cell type, from pre-212

B cell to pluripotent cells, for enrichment of accessible motif instances of 746 transcription factors in213

the JASPAR 2020 core vertebrate motif database [43]. We ranked the TFs based on their significant214

enrichment in each cell type (Figure 6C, Table S2). The top-ranking TF across the cell types was215

CTCF, which is consistent with its role as an architectural protein in establishing TADs (Figure 6C).216

We also found other factors in the same zinc finger protein family as CTCF [44], such as ZBTB14,217

Plagl2/1, ZIC1/3/4/5, CTCFL, YY1/2 that were enriched across the cell types. YY1 and YY2 (which are218

65 and 56% identical in their DNA and protein sequence respectively in humans [45]), are of interest,219

as YY1 has been identified as an enforcer of long-range enhancer-promoter loops [46]. Interestingly, we220

found several hematopoietic lineage factors, such as STAT3 and FOXP3, ranked highly in the pre-B cell221

TADs compared to other time points. STAT3 is needed for B cell development [47]. FOXP3 is a master222

regulator of T cells [48], but could be involved in the suppression of B cells. We also found a number of223

HOX transcription factors, HOXA4, HOXA5, HOXB2, HOXB5, HOXB7, and the transcription factor224

MEIS3 to be ranked highly in the B cells. The HOX genes depend upon MEIS3 [49] to bind to their225

targets, supporting the simultaneous enrichment of these factors.226

We repeated this analysis for the Rao et al. cell lines (Table S3). Here too we found CTCF and YY1/2227

proteins highly enriched across cell lines. However, there was lesser degree of cell-line specificity for this228

dataset. Taken together, this analysis suggests that GRiNCH captures high-quality TADs, which can be229

used to define global similarities and difference between cell types. Furthermore, the GRiNCH boundary230

enrichment analysis identified novel transcription factors that could be followed up with downstream231

functional studies to examine their role in 3D genome organization.232
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GRiNCH can be used for a variety of 3D conformation capture technologies233

Although Hi-C is still the most widely used technology to map 3D genome structure, recently several new234

methods have been developed to measure chromosomal contacts on a genome-wide scale [6]. To assess235

the applicability of GRiNCH to these technologies, we considered two complementary techniques to236

measure 3D genome organization: Split-Pool Recognition of Interactions by Tag Extension (SPRITE) [9]237

and HiChIP [37]. SPRITE measures multi-way chromatin interactions, and captures interactions across238

larger spatial distances than Hi-C. In HiChIP, long-range chromatin contacts are first established in situ239

in the nucleus before lysis; then chromatin immunoprecipitation (ChIP) is performed with respect to a240

specific protein or histone mark, directly capturing interactions associated with a protein or histone mark241

of interest [37]. A common property of both technologies is that they generate a contact count matrix,242

which is suitable for GRiNCH.243

We applied GRiNCH to GM12878 contact matrices measured with SPRITE [9], cohesin HiChIP244

[37], and H3k27ac HiChIP [50]. A visual comparison between these datasets for an 8Mb region of245

chr8 shows regions of good concordance between datasets (Figure 7A-D). We quantified the global246

similarity of GRiNCH TADs from the four different datasets, for all chromosomes, with Rand Index247

(Figure 7E) and Mutual Information (Figure 7F). Interestingly, the GRiNCH TADs from Hi-C are the248

most similar to those from cohesin HiChIP and this similarity measure is higher than between the two249

HiChIP datasets. This is consistent with cohesin being a major determinant for the formation of loops250

detected in HiC datasets. The H3K27ac HiChIP data is as close to Hi-C as it is to cohesin HiChIP. Finally251

the most distinct set of TADs are identified by SPRITE, which is consistent with SPRITE capturing252

multi-way interactions and longer-distance interactions. Despite the differences in the cluster, overall253

the datasets look similar across different platforms (Rand Index >0.97). Taken together, this shows that254

GRiNCH is broadly apply to different experimental platforms for measuring genome-wide chromosome255

conformation.256
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Discussion257

We present GRiNCH, a graph-regularized matrix factorization framework that enables reliable identifi-258

cation of high-quality genome organizational units, such as TADs, from high-throughput chromosome259

conformation capture datasets. GRiNCH is based on a novel constrained matrix factorization and cluster-260

ing approach that enables recovery of contiguous blocks of genomic regions sharing similar interaction261

patterns as well as smoothing sparse input datasets.262

A lack of gold standards for TADs emphasizes the need to probe both the statistical and biological263

nature of inferred TADs. Through extensive comparison of GRiNCH to existing methods with good per-264

formance in other benchmarking studies, we identified strengths and weaknesses of existing approaches.265

In particular, methods like Insulation Score identify TADs that are generally more enriched for signals266

such as CTCF and cohesin; however, when comparing statistical properties such as stability across reso-267

lutions and cluster coherence, this method does not necessarily rank the best. GRiNCH was among the268

top methods for both criteria, identifying clusters of genomic regions with high degree of similarity in269

their interaction profiles, stable to low-depth, sparse datasets, and enriched in architectural proteins and270

histone modification signals with known roles in chromatin organization.271

A unique advantage of GRiNCH lies in its smoothing capability via matrix completion. Smoothing272

has been an independent task from TAD-calling and a key processing step in downstream analysis of273

Hi-C data (e.g. measuring reproducibility or concordance between Hi-C replicates [31]). We find that274

GRiNCH smoothing outperforms existing smoothing methods (mean filter and Gaussian filter) in its275

ability to retain TAD-level and interaction-level features of the input Hi-C data. Furthermore, GRiNCH276

is applicable to datasets from a wide variety of platforms, including SPRITE and HiChIP. Application277

of GRiNCH shows that Hi-C and HiChIP datasets capture more similar topological units than SPRITE.278

Interestingly, TADs from Hi-C and cohesin HiChIP are much closer than the two HiChIP datasets we279

compared. This shows that GRiNCH is capturing TADs that are reproducible across platforms. To study280

the ability of GRiNCH to identify dynamic topological changes along a time course, we applied GRiNCH281

to published developmental time-course datasets. GRiNCH recapitulated global temporal relationships282

in 3D organization and also transitions in topological units around key developmental genes. Thus,283

GRiNCH should be broadly applicable for analysis of chromosome conformation capture datasets with284

different experimental design, sequencing depths, and platforms.285

The 3D organization of the genome is determined through a complex interplay of architectural pro-286

teins such as CTCF, cohesin elements, and other transcription factors such as WAPL [51]. Application287
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of GRiNCH to Hi-C datasets representing cell lines and temporally related conditions identified known288

and novel transcription factors that could be important for establishing these boundaries in a cell-type-289

specific or generic manner. In particular, we recovered YY1/2 proteins that have been shown to interact290

with CTCF to establish long-range regulatory programs during lineage commitment [52]. Among the291

novel factors that were present in both the cell lines as well as the mouse reprogramming dataset, were292

several zinc finger proteins, e.g. PLAGL1, ZIC1, ZIC4/5, ZBTB14; such proteins can be investigated for293

their role in establishing organizational units in mammalian genomes. We also found several factors that294

were specific to cell lines and time points. For example, FOXI1, a forkhead protein, was ranked highly295

in K562. Forkhead proteins are involved in genome organization and replication timing in yeast [53] and296

zebra fish [54], but their role in mammalian genome organization is not well known. The time course data297

identified additional unique TFs that are likely involved in determining specific lineages, e.g. STAT3,298

MEIS3, FOXP3 and HOX genes in pre-B cells. HOX genes [55], FOXP3 [56], and STAT3 [47] in partic-299

ular have been shown to play critical roles in B cell and T cell development. While MEIS1 and MEIS2300

are involved in the hematopoietic lineage, MEIS3 specifically is involved in the binding of HOX TFs to301

target genes in the brain [49]. Therefore the simultaneous enrichment of MEIS3 and HOX sites is con-302

sistent with HOX proteins requiring MEIS3 for binding; however, its specific role in the hematopoietic303

lineage is yet unknown. Investigating the interactions of these proteins with well-known architectural304

proteins such as CTCF and cohesin could provide mechanistic insight into the factors governing 3D305

genome organization [29, 57].306

There are several directions of future work that are natural extensions to our framework. Although307

our current approach of analyzing temporal organization in time-course data extracted interesting bio-308

logical insights, TADs are identified independently for each time point, making it difficult to study the309

conservation and specificity of individual TADs. One area of future work is to allow joint identification310

of TADs or similar structural units across multiple conditions [58, 59]. Another direction is to leverage311

one-dimensional features to potentially inform the TAD-finding algorithm. The GRiNCH framework312

makes use of a distance dependence graph of regions; however, one could use the similarity of epige-313

nomic profiles to construct an additional graph to constrain the NMF solution.314

In conclusion, GRiNCH offers a unified solution, applicable to diverse platforms, to discover reliable315

and biologically meaningful topological units, while handling sparse high-throughput chromosome con-316

formation capture datasets. The outputs from GRiNCH can be used to predict novel boundary elements,317

enabling us to test possible hypotheses of other mechanisms for TAD boundary formation. We have318

made GRiNCH available at roy-lab.github.io/grinch, with a comprehensive installation and usage man-319
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ual. As efforts to map the three-dimensional genome organization expand to more conditions, platforms,320

and species, a method such as GRiNCH will serve as a powerful analytical tool for understanding the321

role of genome 3D organization in diverse complex processes.322
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Materials and Methods323

Graph-regularized Non-negative Matrix Factorization (NMF) and Clustering for324

Hi-C data (GRiNCH) framework325

GRiNCH is based on a regularized version of non-negative matrix factorization (NMF) [35] that is appli-326

cable to high-dimensional chromosome conformation capture data such as Hi-C (Figure 1). Below we327

describe the components of GRiNCH: NMF, graph regularization, and clustering for TAD identification.328

Non-negative matrix factorization (NMF) and graph regularization329

Non-negative matrix factorization is a popular dimensionality reduction method that aims to decompose330

a non-negative matrix, X ∈ R
(n×m) into two lower dimensional non-negative matrices, U ∈ R

(n×k) and331

V ∈ R
(n×k), such that the product X∗ = UVT, well approximates the original X. We refer to the U and332

V matrices as factors. Here k << n,m is the rank of the factors and is user-specified.333

In application of NMF to Hi-C data, we represent the Hi-C data for each chromosome as a symmetric334

matrix X = [xij ] ∈ R
(n×n) where xij represents the contact count between region i and region j. We335

note that in the case of a symmetric matrix, U and V are the same or related by a scaling constant.336

The goal of NMF is to minimize the following objective: ‖X − UVT ‖2, s.t. U ≥ 0,V ≥ 0 [32].337

A number of algorithms to optimize this objective have been proposed; here we used the multiplicative338

update algorithm, where the entries of U and V are updated in an alternating manner each iteration:339

uik ← uik
(XV)ik

(UVT V)ik
, vjk ← vjk

(XT U)jk

(VUT U)jk
(1)

Here uik corresponds to the ith row of column U(:, k) and vjk corresponds to the j th row of column340

V(:, k).341

Standard application of NMF to Hi-C data is ignorant of the strong distance dependence of the count342

matrix, that is, genomic regions that are close to each other tend to interact more with each other. To343

address this issue we apply an constrained version of NMF with graph regularization, where the graph344

represents additional constraints on the row (and/or column) entities [35]. Graph regularization enables345

the learned columns of U and V to be smooth over the input graph. In our application of NMF to Hi-346

C data, we define a graph composed of genomic regions as nodes, with edges connecting neighboring347

regions in the linear chromosome, where the size of the neighborhood is an input parameter. Specifically,348

we define a symmetric nearest-neighbor graph, W:349
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Wij =





1, if xi ∈ Nr(xj) and xj ∈ Nr(xi)

0, otherwise
(2)

where Nr(xi) denotes r nearest neighbors in linear distance to region xi.350

Graph regularized NMF has the following objective:351

‖X− UVT ‖2 + λTr(VT LV) + λTr(UT LU), (3)

where D is a diagonal matrix whose entries are column (or row, since W is symmetric) sums of352

W, i.e., Dii =
∑

j Wij . L = D − W denotes the graph Laplacian and encodes the graph topology.353

The second and third terms are the regularization term and measures the smoothness of U and V with354

respect to the graph. Here λ is the regularization hyperparameter. This new objective has the effect of355

encouraging the factors to be smooth on the local neighborhood defined by the graph. Accordingly, the356

multiplicative update rule from (1) gains regularization terms [35]:357

uik ← uik
(XV + λWU)ik

(UVT V + λDU)ik
, vjk ← vjk

(XT U + λWV)jk

(VUT U + λDV)jk
(4)

Both r (neighborhood radius) and λ are parameters that can be specified, with λ setting the strength358

of regularization (λ = 0 makes this equivalent to basic NMF). See section on “Estimating GRiNCH359

hyper-parameters” below.360

Chain-constrained k-medoids clustering for clustering assignment and TAD calling361

The factors U (or V) can be used to extract clusters of the row (or column) entities of the input matrix.362

Because X is symmetric in our application, either U or V can be used to define the clusters (the factors363

are equivalent up to a scaling constant). Assuming we use U, there are two common approaches for364

finding clusters from NMF factors: (1) assign each row entity i to its most dominant factor, i.e., assign365

it to cluster ci = argmaxj∈{1,...,k}uij , or (2) apply k-means clustering on the rows of U. However, both366

approaches fall short in our application. The first approach is sensitive to extreme values which can still367

be present in the smoother factors, yielding non-informative clusters. Furthermore, neither approach368

reinforces contiguity of genomic regions in each cluster along their chromosomal position. As a result,369

a single cluster could potentially contain genomic regions from two opposite ends of the chromosomes370

instead of being a contiguous local structural unit. To address this problem, we apply chain-constrained371

k-medoids clustering. k-medoids clustering is similar to k-means clustering, except that the “center”372
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of each cluster is always an actual data point, rather than the mean of the datapoints in the cluster.373

In its chain-constrained version (Algorithm 1), adopted from spatially connected k-medoids clustering374

[60]: each cluster grows outwards from initial medoids along the linear chromosomal coordinates. The375

algorithm assigns a genomic region to a valid medoid region either upstream or downstream along the376

chromosome, ensuring the contiguity of the clusters and resilience to noise or extreme outliers provided377

by using a robust ‘median’-like cluster center rather than a ‘mean’-like center used in k-means clustering.378

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.08.17.254615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254615
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 1: Chain-constrained k-medoids clustering

Input: U ∈ R
n×k, one of the factors from NMF, and maxIter, the maximum number of iterations

Output: The cluster assignments, C ∈ {c1, c2, . . . , cn}, for each of the chromosomal bins

1 Initialize k medoids to be the rows with the largest value from each column of U

2 Initialize an empty priority queue Q

3 while numIter < maxIter do

4 Add current medoids to priority queue Q, with priority value of 0

// Q orders bins by ascending priority values.

5 while Q is not empty do

6 Pop bin b from Q

7 if b is not assigned to a cluster yet then

/* First, assign bin to cluster */

8 if b is a medoid then

9 Assign b to its own cluster

10 else

11 Assign b to either: the same cluster as its nearest upstream neighbor along the chromosome

already assigned to a cluster, u, or the same cluster as its nearest downstream neighbor

along the chromosome already assigned to a cluster, d, based on the similarity between the

latent feature vectors of b and the cluster medoids, i.e.,

minc∈{u,d} ‖U [b, :]− U [medoid of c, :]‖

/* Next, add any unassigned neighbor to priority queue: */

12 for each immediate upstream or downstream neighbor i of b not assigned to a cluster do

13 Add i to Q with priority = priority of b+ ‖U [b, :]− U [i, :]‖

14 Update medoids

15 if sum of distances between each bin and its cluster medoid didn’t change from last iteration then

16 Break

379

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.08.17.254615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254615
http://creativecommons.org/licenses/by-nc-nd/4.0/


Selecting GRiNCH hyperparameters380

GRiNCH has three hyper-parameters: (a) k, the dimension of the lower-dimensional factors which can381

alternately be viewed as the number of latent features or clusters, (b) r, the radius of the neighborhood382

in the graph used for regularization, and (c) λ controlling the strength of regularization.383

The parameter k determines the number of latent features to recover and the resulting number of384

GRiNCH TADs. We can yield subTAD-, TAD-, or metaTAD-scale clusters (Figure S5A) by setting k385

such that the expected size of a cluster is 500kb, 1Mb, or 2Mb, i.e., k equals the given chromosome’s386

length divided by the expected size. We find that a larger portion of subTAD-scale clusters (i.e. expected387

TAD size = 500kb) have significant internal validation metric values (Figure S5B). SubTAD-scale clus-388

ters tend to be more stable to depth and sparsity (Figure S5C), and are also more enriched in boundary389

elements like CTCF (Figure S6A). As a tradeoff, higher proportion of metaTAD-scale clusters (i.e. ex-390

pected cluster size = 2Mb) are enriched in histone modification marks (Figure S6B). Based on the use391

case of GRiNCH, k can be set dynamically by the user; by default, GRiNCH sets k such that the expected392

size of a cluster is 1Mb, or at TAD-scale.393

For regularization strength, λ ∈ {0, 1, 10, 100, 100}were considered, with λ = 0 equivalent to stan-394

dard NMF without regularization. For neighborhood radius, r ∈ {25K, 50K, 100K, 250K, 500K,1M}395

were considered, where r = 100K in a Hi-C dataset of 25Kb resolution will use 4 bins on either side396

of a given region as its neighbors. We find that some regularization, with λ = 1, yields better CTCF397

enrichment than other λ values (Figure S1A). With regularization, a neighborhood radius of 100Kb or398

larger yields higher CTCF enrichment (Figure S1B). Based on these results, the default regularization399

parameters for GRiNCH are set at λ = 1 and r =250kb.400

Stability and initialization of NMF401

The NMF algorithm is commonly initialized with random non-negative values for the entries of U and402

V. The initial values can significantly impact the final values of U and V [61]. This leads to instability of403

the final factors hinging on the randomization schemes or changing seeds. To address the instability, we404

used Non-Negative Double Singular Value Decomposition (NNDSVD), which initializes U and V with405

a sparse SVD approximation of the input matrix X [62]. Since the derivation of exact singular values406

can considerably slow down the initialization step, we use a randomized SVD algorithm which derives407

approximate singular vectors [63]. NNDSVD initialization with randomized SVD results in lower loss,408

i.e. factors that can better approximate the original Hi-C matrix, in fewer iterations (Figure S7A,B), and409
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more stable results than direct random initialization (Figure S7C,D).410

Datasets used in experiments and analysis411

High-throughput chromosome conformation capture data412

We applied GRiNCH to SQRTVC-normalized Hi-C matrices from five cell lines, GM12878, NHEK,413

HMEC, HUVEC, and K562 at 10kb, 25kb, and 50kb resolution from Rao et al. [36] (GEO accession:414

GSE63525). We also applied GRiNCH to datasets from other technologies that capture the 3D genome415

structure and chromatin interactions: Split-Pool Recognition of Interactions by Tag Extension (SPRITE)416

[9] and HiChIP [37]. We used the SPRITE data for GM12878 cell line (GEO accession: GSE114242).417

For HiChIP, we applied GRiNCH to the contact matrices from HiChIP with cohesin (GEO accession:418

GSE80820) [37] and HiChIP with H3k27ac (GEO accession: GSE101498) [50].419

We applied GRiNCH to two different mouse developmental time course data: (a) neural differ-420

entiation Hi-C data from embryonic stem cells (mESC), neural progenitors (NPC), and cortical neu-421

rons (CN) [41] and (b) Hi-C data from reprogramming pre-B cells to induced pluripotent state [42]422

(GEO accession: GSE96553). For (a) neural differentiation dataset, Juicer Straw tool [64] was used to423

obtain 25kb Hi-C matrices with vanilla-coverage square-root normalization (original GEO accession:424

GSE96107). For (b) pluripotency reprogramming, we applied GRiNCH to published normalized Hi-C425

data from pre-B cells, Bα cells, day 2 of reprogramming, day 4, day 6, day 8, and finally, pluripotent426

cells.427

ChIP-seq, DNaseq, ATACseq, and motif datasets428

To interpret the GRiNCH results and for comparison to other methods, we obtained a number of ChIP-429

seq datasets. For CTCF, ChIP-seq narrow-peak datasets available as ENCODE Uniform TFBS com-430

posite track [65] were downloaded from the UCSC genome browser (wgEncodeEH000029, wgEn-431

codeEH000075, wgEncodeEH000054, wgEncodeEH000042, wgEncodeEH000063).432

As ChIP-seq data for SMC3 and RAD21 is not available in the five cell lines from Rao et al [36],433

we generated a list of cell-line specific accessible motif sites. Accessible motif sites are defined as the434

intersection of motif-match regions and DNase-accessible regions in the given cell line. The SMC3435

and RAD21 motif matches to the human genome (hg19) was obtained from [66]. To create a union436

of DNase hotspot regions from replicates within a cell line, BEDtools [67] merge program was used.437

Finally, the intersection of DNase hotspot regions and motif match regions was calculated for each cell438
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line using BEDtools intersect program. DNase hotspot data was obtained from the ENCODE consor-439

tium [68, 69]: ENCFF856MFN, ENCFF235KUD, ENCFF491BOT, ENCFF946QPV, ENCFF968KGT,440

ENCFF541JWD, ENCFF978UNU, ENCFF297CKS, ENCFF569UYX.441

We obtained ChIP-seq datasets for histone modification marks from the ENCODE consortium [68,442

69]. To generate genome-wide histone modification levels for each mark, fastq reads were aligned to the443

human genome (hg19) with bowtie2 [70], and aggregated into a base-pair signal coverage profile using444

SAMtools [71], and BEDtools [67]. The base-pair signal coverage was averaged within each 25kb bin to445

match the resolution of Hi-C dataset. The aggregated signal was normalized by sequencing depth within446

each replicate; the replicates were collapsed into a single value by taking the median.447

In order to identify additional novel transcription factors that could play a role in 3D genome orga-448

nization, we obtained motifs of 746 different transcription factors from JASPAR core vertebrate collec-449

tion [43]. Next, we obtained obtained their accessible motif match sites to hg19 and mm10 for the five450

cell lines from [36] using the same process that was used for SMC3 and RAD21 motifs. To identify451

the accessible motif sites for mouse cells during pluripotency reprogramming [42], we aligned ATACseq452

fastq reads to the mouse genome (mm10) with bowtie2 [70] and deduplicated with SAMtools [71]. Ac-453

cessible peaks were called with MACS2 [72]. The ATACseq peaks were then used in place of DNaseq454

hotspots to find the accessible motif sites as was done for SMC3 and RAD21 motifs.455

TAD calling methods456

GRiNCH was benchmarked against 7 other TAD-calling methods: Directionality Index method [23],457

Armatus [20], Insulation Score method [25], rGMAP [24], 3DNetMod [22], HiCseg [73] and TopDom458

[74]. For all methods, default or recommended parameters values were used when available. Execution459

scripts containing the parameter values used for these methods are available to download.460

Directionality index461

Directionality index uses a hidden Markov model (HMM) on estimated Directionality Index (DI) scores.462

The DI score for a genomic region is determined by whether the region preferentially interacts with up-463

stream or with downstream regions. A bin can take on one of three states: upstream-biased, downstream-464

biased, or not biased, with directionally biased bins becoming TAD boundaries. TADs were called using465

the directionality index method implementation in TADtool [75], version as of April 23, 2018.466

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.08.17.254615doi: bioRxiv preprint 

https://drive.google.com/file/d/1-4nd8Azxe94e4FuaBUEmwzMNh3wr4EKA/view?usp=sharing
https://doi.org/10.1101/2020.08.17.254615
http://creativecommons.org/licenses/by-nc-nd/4.0/


Armatus467

Armatus uses dynamic programming to find subgraphs in a network where the nodes are the genomic468

regions, and the edge weights are the interaction counts. The objective is to find the set of dense sub-469

graphs; subgraph density is defined as the ratio of the sum of edge weights to the number of nodes within470

the subgraph. Armatus version 2.3 was used for comparison.471

Insulation score472

In the insulation score method, each bin is assigned an insulation score, calculated as the mean of the473

interaction counts in the window (of a predefined size) centered on the given bin. Bins corresponding474

to the local minima in the vector formed by these insulation scores are treated as TAD boundaries.475

TADtool [75] implementation of insulation score method, version as of April 23, 2018, was used in our476

experiments.477

3DNetMod478

3DNetMod employs a Louvain-like algorithm to partition a network of genomic regions into communi-479

ties where the edge weights in the network are the interaction counts. It uses greedy dynamic program-480

ming to maximize modularity, a metric of network structure measuring the density of intra-community481

edges compared to random distribution of links between nodes. Version 1.0 (10/06/17) was used in our482

comparison.483

rGMAP484

rGMAP trains a two-component Gaussian mixture model to group interactions into intra-domain or485

inter-domain contacts. Putative TAD boundary bins are identified by those with significantly higher486

intra-domain counts in its upstream window or downstream window of predefined size. The chromosome487

is then segmented into TADs flanked by these boundaries. Version as of April 23, 2018 was used for488

comparison.489

HiCseg490

HiCseg treats the Hi-C matrix as a 2D image to be segmented, with each block-diagonal segment corre-491

sponding to a TAD. The counts within each block are modeled to be drawn from a certain distribution492

(e.g. Gaussian distribution for normalized Hi-C data). Using dynamic programming, HiCseg finds a set493

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.08.17.254615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254615
http://creativecommons.org/licenses/by-nc-nd/4.0/


of block boundaries that would maximize the log likelihood of counts in each block being drawn from494

an estimated distribution. Version 1.1 was used in our experiments.495

TopDom496

TopDom generates a score for each bin along the chromosome, where the score is the mean interaction497

count between the given bin and a set of upstream and downstream neighbors (neighborhood size is a498

user-specified parameter). Putative TAD boundaries are picked from a set of bins whose score forms a499

local minimum; false positive boundaries are filtered out with a significance test. Version 0.0.2 was used500

in our analysis.501

TAD evaluation criteria502

We evaluated the quality of TADs using different enrichment metrics as well as internal validation met-503

rics used for comparing clustering algorithms.504

Enrichment analysis505

Enrichment of known architectural proteins We estimated the enrichment of three known ar-506

chitectural proteins (CTCF, RAD21 and SMC3) in the TAD boundaries of five cell lines from Rao et507

al [36]. TAD boundaries are defined by the starting bin and the ending bin of each predicted TAD, along508

with one preceding the starting bin and one following the ending bin. Let N be the total number of bins509

in a chromosome, nBIND be the number of bins with one or more ChIP-seq peaks or accessible motif510

sites, nTAD be the number of TAD boundary bins, and nTAD-BIND be the number of TAD-boundary bins511

with a binding event (ChIP-seq peak or accessible motif match site). The fold enrichment for a particular512

protein is calculated as:
nTAD-BIND/nTAD

nBIND/N
. Within each cell line, the fold enrichment across all chromosomes513

was averaged; then the mean across cell lines was used to rank the TAD-calling methods (Table S1F,514

Supplementary Data).515

Histone modification enrichment We used the percentage of TADs enriched in histone modifi-516

cation signals as a validation metric to assess the quality of TADs, similar to Zufferey et al., [28]. For517

each TAD, the mean histone modification ChIP-seq signal was calculated for the regions within the518

TAD. Next, for each TAD-calling method, TADs and non-TAD stretches were shuffled within each chro-519

mosome 10 times to yield randomized TADs. The empirical p-value of a TAD was calculated as the520

proportion of randomized TADs with higher mean ChIP-seq signal than that of the given TAD. A TAD521
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was considered significantly enriched if its p-value was less than 0.05. The mean proportion of TADs522

with significant enrichment across cell lines was used to rank the TAD-calling methods (Table S1G,523

Supplementary Data).524

Internal validation metrics525

Since a TAD represents a cluster of contiguous regions that tend to interact more among each other than526

with regions from another TAD or cluster, we used two internal validation or cluster quality metrics,527

Davies-Bouldin Index and Delta count, to evaluate the similarity of interaction profiles among regions528

within a TAD.529

Davies-Bouldin Index (DBI) The DBI for a single cluster Ci is defined as its similarity to its closest530

cluster Cj , where i, j ∈ {1, . . . , k}, i 6= j: DBIi = maxi6=j Sij . The similarity metric, Sij , between Ci531

and Cj is defined as:532

Sij =
di + dj

distanceij
(5)

where di is the average distance between each data point in cluster Ci and the cluster centroid and533

distanceij is the distance between the cluster centroids of Ci and Cj . In applying DBI to Hi-C data, a data534

point consists of a vector of a genomic region’s interaction counts with other regions in the chromosome535

(e.g. an entire row or column in the Hi-C matrix); a cluster corresponds to a group of regions within536

the same TAD; the cluster centroid is a mean vector of rows that belong to the same cluster/TAD. The537

smaller the DBI, the more distinct the clusters are from one another.538

For each TAD-calling method, we first computed the DBI for each TAD. Next, TADs and non-TAD539

stretches were shuffled within each chromosome 10 times to yield randomized TADs. The empirical540

p-value of a TAD was calculated as the proportion of randomized TADs with lower DBI (recall a lower541

DBI means better clustering) than that of the given TAD.542

Delta Contact Count (DCC) DCC for cluster Ci is defined as follows: let ini denote the mean543

interaction counts between pairs of regions that are both in Ci, and outi denote the mean interaction544

counts between pairs of regions where one region is in cluster Ci and the other region is not. Then545

DCCi = ini − outi.546

We expect that for a good cluster, the pairs of regions within the cluster should have higher contact547

counts. Therefore, the higher the value of DCC, the higher the quality of the cluster. Again, a cluster548

corresponds to a group of regions within the same TAD. Given the DCC values for each TAD, the549
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empirical p-value of a TAD was calculated as the proportion of randomized TADs with higher delta550

count than that of the given TAD.551

A TAD was considered to have significant DBI or DCC if its p-value was less than 0.05. The552

mean proportion of TADs with significant DBI/DCC across cell lines was used to rank the TAD-calling553

methods (Table S1A,B, Supplementary Data).554

TAD similarity and stability metrics555

When assessing the similarity or stability of TADs, we used cluster comparison metrics, Rand Index and556

Mutual Information. First, TADs were converted to clusters so that regions in the same TAD were all557

assigned to the same cluster; all non-TAD regions, if a TAD-calling algorithm should have them, were558

assigned to a single cluster together.559

For Rand Index, each genomic region is treated as a node in a graph; two nodes are connected by an560

edge if they are in the same cluster. Then, the number of edges that were preserved between clustering561

result A and clustering result B is divided by the total number of pairs of nodes, i.e. number of edges562

in a fully connected graph. Rand Index of 1 corresponds to perfect concordance between two clustering563

results; Rand Index of 0 means no agreement.564

Mutual Information (MI) is an information-theoretic metric measuring the dependency between two565

random variables, where each variable can be a clustering result. Specifically,566

MI(A;B) =
∑

a∈A

∑

b∈B

p(A,B)(a, b) log

(
p(A,B)(a, b)

pA(a)pB(b)

)
(6)

where A,B are random variables derived from clustering results, e.g. A is the cluster assignment cor-567

responding to TADs from high-depth data and B is the cluster assignment based on TADs from down-568

sampled data. Mutual Information is 0 if the joint distribution of A and B equals the product of each569

marginal distribution, i.e. A and B are independent, or in an information-theoretic sense, knowing A570

does not provide any information about B. The higher the Mutual Information value, the greater the in-571

formation conveyed by the variables about each other; in the context of measuring clustering agreement,572

one clustering result is similar to the other.573

Both metrics were used to evaluate the stability of TADs across depth, the similarity of TADs from574

different TAD-calling methods, the recovery of TADs from smoothed Hi-C data, the similarity of TADs575

along time-course data, and the consistency of GRiNCH TADs from different 3D genome capturing576

technologies (e.g. SPRITE, HiChIP). In ranking TAD-calling methods for stability across depth, the577
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mean Rand Index or Mutual Information across cell lines was used (Table S1D,E, Supplementary Data).578

Robustness to low-depth data579

To assess the robustness or stability of TADs to low-depth input data, the TADs from a high-depth dataset580

(GM12878) [36] were compared to the TADs from a downsampled, low-depth dataset. If the original set581

of TADs are similar to the set of TADs from downsampled data, they are considered to be stable to low582

depth. The similarity metrics used are described in the “TAD similarity and stability metrics” section.583

In order to downsample a high-depth Hi-C matrix (e.g. from GM12878) to similar levels as a lower584

depth one (e.g. from HMEC), a distance-stratified approach was used to match both the mean of non-585

zero counts and sparsity level between the two datasets. First, for each distance threshold d, let µh
d denote586

the mean of the non-zero counts in the high-depth dataset and µl
d denote the mean on non-zero counts in587

the low-depth dataset. The scaled down value for each non-zero entry of the original high-depth dataset588

is: x̃ij =
xh
ij

µh
d
/µl

d

. where xh
ij is the value for the i,j bin pair in the high-depth dataset. Then, to increase589

the sparsity of the high-depth dataset, zd of the non-zero counts in the high-depth dataset at distance d is590

randomly set to zero, where zd is the number of additional entries in the low-depth dataset that are zero591

compared to the high-depth dataset.592

Identification of novel factor enrichment at GRiNCH TAD boundaries593

A similar procedure to CTCF boundary enrichment was used to identify novel boundary elements, by594

assessing whether the accessible motif sites of 746 transcription factors from the JASPAR core vertebrate595

collection [43] are enriched in GRiNCH TAD boundaries. This procedure was applied to the five cell596

lines from Rao et al [36] and the cell types or time points from mouse reprogramming data [42]. One597

change to the procedure was that instead of calculating fold enrichment per chromosome, all counts were598

aggregated across all chromosomes within the given cell line, cell type, or time point. The hypergeo-599

metric test was used to calculate the significance of the number of TF sites in the boundaries and were600

ranked based on their p-value.601

Smoothing methods602

Smoothing with GRiNCH via matrix completion GRiNCH smooths a noisy input Hi-C matrix603

by using the matrix completion aspect of NMF. Specifically, the reconstructed matrix Xs = UVT is604

the smoothed matrix. The effectiveness of GRiNCH matrix completion as a smoothing method was605
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compared to that of mean filter and Gaussian filter, two methods used in image blurring [76] and Hi-C606

datasets [30].607

Mean filter Mean filtering is used in HiCRep [30] as a preprocessing step to measure reproducibility608

of Hi-C datasets. To create a smoothed matrix Xs from a given input matrix X with a mean filter,609

each element in xs
ij is estimated from the mean of its neighboring elements within radius r: xs

ij =610

1
(2r+1)2

∑i+r
a=i−r

∑j+r
b=j−r xab. Three different values for the radius r were considered: r ∈ {3, 6, 11}.611

Gaussian filter A Gaussian filter uses a weighted mean of the neighborhood of a particular contact612

count entry, xij , where the weight is determined by the distance of the neighbor from the given position:613

xs
ij =

1

2πσ2

i+n∑

a=i−n

j+n∑

b=j−n

e−
(i−a)2+(j−b)2

2σ2 xab (7)

Three different values of (σ) were considered, σ ∈ {1, 2, 3} and n was set to 4 ∗ σ.614

Assessment of benefits from smoothing615

Recovery of TADs from smoothed downsampled data To assess whether smoothing helps pre-616

serve or recover structure from low-depth data, downsampled datasets (see “Robustness to low-depth617

data” ) were smoothed with methods described above (see “Smoothing methods”). The Directionality618

Index (DI) TAD finding method was applied to the high and low depth datasets. Then the similarity of619

the TADs from the original high depth and the TADs from the smoothed data were measured (see “TAD620

similarity and stability metrics”). Higher similarity metric values imply better recovery of structure from621

smoothing.622

Recovery of significant interactions using Fit-Hi-C Fit-Hi-C [40] was used to call significant623

interactions in the original and the smoothed Hi-C datasets. Interactions from the original high-depth624

Hi-C dataset with Fit-Hi-C q-value < 0.05 was defined as the set of “true” significant interactions. From625

the downsampled then smoothed matrices, each smoothed interaction count was assigned a “prediction626

score” of 1− its Fit-Hi-C q-value. Precision and recall curves were then computed using the “true”627

interactions and the “prediction scores.” The recovery of significant interactions was measured with the628

Area under the Precision-Recall curve (AUPR).629
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Implementation and availability630

Source code (implemented in C++), installation instructions (supported in Linux distributions), docu-631

mentation, and tutorial for visualization (scripts implemented in Python) can be found at roy-lab.github.io/grinch.632

Scripts used to analyze the results and generate the figures are available to download.633
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Validation Stability
Consistency

Enrichment

DBI DCC Resolution RI MI CTCF Histone

GRiNCH À À À À À À À À
3DNetMod

rGMAP À

Armatus À À
Directionality À À

Insulation À

HiCseg À À À À À À
TopDom À À À À

Table 1: Shown are different criteria of evaluation. A medal denotes whether the given TAD-calling method is among

the top 3 methods for a particular criteria (gold/yellow: 1st place; silver/grey: 2nd place; bronze/brown: 3rd place).

DBI: proportion of TADs with significant Davies-Bouldin Index; DCC: proportion of TADs with significant Delta

Contact Counts; Resolution: stability of median TAD size to Hi-C resolution; RI, MI: stability to depth and sparsity

of input data, measured by Rand Index (RI) and Mutual Information (MI); Consistency: a group of methods yielding

TADs with highest similarity, with gold for the pair of methods with highest similarity according to hierarchical

clustering; CTCF: fold enrichment of CTCF and cohesin elements in TAD boundaries; Histone: proportion of TADs

with significant mean histone signal. See Table S1 and Supplementary Data for more details.
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Figure 1

Figure 1: Overview of GRiNCH. GRiNCH applies Non-negative Matrix Factorization (NMF) to a Hi-C or a similar
high-throughput 3C matrix to find clusters of densely interacting genomic regions. NMF recovers low-dimensional
factors U and V of the input matrix X that can be used to reconstruct the input matrix. As nearby genomic regions
tend to interact more with each other, we regularize the factor matrices with a neighborhood graph to encourage
neighboring regions to have a similar lower-dimensional representation, and subsequently belong to the same cluster.
We cluster the regions by treating one of the factor matrices as a set of latent features and applying k-medoids
clustering. The clusters represent topological units such as TADs. The factor matrices can be multiplied together to
yield a smoothed version of the input matrix which is often sparse and noisy.
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Figure 2

Figure 2: Characterizing TADs with internal validation metrics and median TAD size. A. Proportion of TADs with
empirical p-value < 0.05 for internal validation metrics Davies-Bouldin Index and Delta Count, shown for GRiNCH
and six other methods. Note: 3DNetMod outputted overlapping TADs, even when run under non-hierarchical settings
and was excluded from this analysis which involves TAD randomization/shuffling. Treating each TAD as a cluster of
genomic regions, we evaluate how distinct each cluster is to other clusters (Davies-Bouldin Index) and how much
higher the intra-cluster interactions are compared to inter-cluster interactions (Delta Count). The p-value of each
cluster’s metric value is derived against the empirical distribution of the metric values in randomly shuffled TADs.
The higher the bar, the better a method. B. The median size of TADs identified by different methods from different
Hi-C resolutions. A method is considered stable to the resolution (size of the region) of the data if the median TAD
size does not change substantially with the resolution, given the same user-defined parameter settings.

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 9, 2020. ; https://doi.org/10.1101/2020.08.17.254615doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.17.254615
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

Figure 3: Evaluating the stability and similarity of different TAD-calling methods. A. The mean similarity, across
chromosomes, between TADs from high-depth GM12878 dataset and TADs from low-depth GM12878 datasets
obtained by downsampling the GM12878 dataset to different depths observed in our five cell-line dataset. The
similarity of the TADs is measured by Rand Index and Mutual Information. The error bar denotes the standard
deviation from the mean. B. Similarity of TADs from pairs of TAD-calling methods (e.g. GRiNCH vs. TopDom),
measured by Rand index. The higher the number, the higher the similarity. C. Similarity of TADs from pairs of
TAD-calling methods measured by Mutual information. Note: 3DNetMod outputted overlapping TADs, even when
run under non-hierarchical settings; it was excluded from this analysis because of the requirement of distinct
within-TAD measurements.
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Figure 4

Figure 4: Evaluating the quality of TADs from different TAD-calling methods using enrichment of boundary
elements and regulatory signals. A. Fold enrichment of binding signals of architectural protein in TAD boundaries.
Shown are the mean fold enrichment of CTCF ChIP-seq peaks and accessible motif instances of cohesin proteins,
RAD21 and SMC3, estimated across multiple chromosomes. The error bar denotes the standard deviation from the
mean. B. Proportion of TADs with significant mean histone modification signal (i.e. empirical p-value < 0.05). The
darker the entry the higher the proportion of TADs with significant histone enrichment. The average ChIP-seq signal
for each histone modification mark was taken from within each TAD; the p-value of each TAD is derived from an
empirical null distribution of mean signals in randomly shuffled TADs. Note: 3DNetMod outputted overlapping
TADs, even when run under non-hierarchical settings; and it was excluded from this analysis as it involves TAD
randomization/shuffling.
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Figure 5

Figure 5: Evaluating the benefits of smoothing in GRiNCH. A. Recovery of Directionality Index TADs in
downsampled then smoothed data. Shown is the mean similarity (measured by Rand Index and Mutual Information)
between Directionality Index TADs from high-depth GM12878 dataset and Directionality TADs from downsampled
datasets smoothed by different methods (GRiNCH, Mean Filter, Gaussian Filter). The mean is computed across
chromosomes and the error bar denotes deviation from the mean. Directionality was used as a TAD-calling method
independent of any of the smoothing methods, i.e., GRiNCH. B. Recovery of Fit-Hi-C significant interactions, as
measured by the Area Under Precision-Recall curve (AUPR), with precision and recall measured for significant
interactions from downsampled and smoothed datasets against the “true” interactions defined as the significant
Fit-Hi-C interactions from the high-depth GM12878 dataset.
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Figure 6

Figure 6: GRiNCH applied to Hi-C datasets along developmental time courses. A. Interaction profile near the
Zfp608 gene in mouse embryonic stem cells (mESC), neural progenitors (NPC), and differentiated cortinal neurons
(CN). Heatmaps are of Hi-C matrices after log2-transformation of interaction counts for better visualization.
GRiNCH clusters are visualized as blocks of different colors under the heatmap of interaction counts. Genes in the
nearby regions are marked by small boxes, and a heatmap of their corresponding RNA-seq levels (in TPM) is shown
underneath each gene. ChIP-seq signals from H3K27ac, H3K4me3, and CTCF are shown as separate tracks. B.
Interaction profile near the Sox2 gene in mouse pre-B cells, in day 4 and day 8 of reprogramming, and in induced
pluripotent stem cell (iPSC). Heatmaps are of Hi-C matrices after log2-transformation of interaction counts for better
visualization. GRiNCH clusters are visualized as blocks of different colors under the heatmap of interaction counts.
Genes in the nearby regions are marked by small boxes, and peaks of their corresponding RNA-seq levels are shown
underneath each gene. ChIP-seq signals from H3K4me2 and ATAC-seq signals are shown as separate tracks. C. Top
20 TFs from a collection of 746 TFs ranked based on their motif enrichment in GRiNCH TAD boundaries from the
mouse reprogramming time course data. The significance of their fold enrichment was calculated with the
hypergeometric test and TFs were ranked by descending negative log p-value.
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Figure 7

Figure 7: Applying GRiNCH to datasets from different 3D genome conformation capture technologies. Visual
comparison of the interaction profile and GRiNCH TADs from a 8Mb region in chr8, GM12878 cell line. GRiNCH
TADs are visualized as blocks of different colors under the heatmap of interaction counts. A. Hi-C vs SPRITE. The
top heatmap and clusters are from Hi-C; bottom from SPRITE. B. HiChIP with cohesin (top) vs HiChIP with
H3k27ac (bottom). C. Hi-C (top) vs HiChIP with cohesin (bottom). D. Hi-C (top) vs HiChIP with H3K37ac
(bottom). For visualization purposes all interaction counts were log2-transformed. E. Measuring the similarity of
GRiNCH TADs from Hi-C and other 3D genome conformation capture platform (e.g. SPRITE, HiChIP with cohesin,
or HiChIP with H3k27ac) in the same GM12878 cell line, with Rand Index. The dendrogram depicts the relative
similarity between samples. F. Mutual-Information-based similarity of GRiNCH TADs from Hi-C and other
technologies.
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