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ABSTRACT 
 
Machine learning predictive models are being used in neuroimaging to predict information 
about the task or stimuli or to identify potentially clinically useful biomarkers. However, the 
predictions can be driven by confounding variables unrelated to the signal of interest, such 
as scanner effect or head motion, limiting the clinical usefulness and interpretation of 
machine learning models. The most common method to control for confounding effects is 
regressing out the confounding variables separately from each input variable before machine 
learning modeling. However, we show that this method is insufficient because machine 
learning models can learn information from the data that cannot be regressed out. Instead of 
regressing out confounding effects from each input variable, we propose controlling for 
confounds post-hoc on the level of machine learning predictions. This allows partitioning of 
the predictive performance into the performance that can be explained by confounds and 
performance independent of confounds. This approach is flexible and allows for parametric 
and non-parametric confound adjustment. We show in real and simulated data that this 
method correctly controls for confounding effects even when traditional input variable 
adjustment produces false-positive findings. 
 
INTRODUCTION 
 
Machine learning predictive models are now commonly used in clinical neuroimaging 
research with a promise to be useful for disease diagnosis, predicting prognosis or treatment 
response (Wolfers et al. 2015). They are also being used in non-clinical settings to detect 
possible relationships between biology and personal characteristics such as cognitive 
capabilities, or identify neural correlates of stimuli or a task (Naselaris et al. 2011). For the 
correct interpretation of the results and translation of machine learning models into clinical 
practice, it is important to verify that the machine learning predictions are not driven by the 
effects of confounding variables. For example, in a cognitive experiment, accurate 
predictions of a stimulus identity can be caused by head motion or increased effort due to 
task difficulty, instead of a neural signal of interest. In a clinical setting, gender, scan-site, 
motion, or age can cause seemingly accurate machine learning prediction, capturing no 
other useful information about the disease. 
 
The most common way to control for confounds in neuroimaging is to adjust input variables 
(e.g., voxels) for confounds using linear regression before they are used as input to a 
machine learning analysis (Snoek et al. 2019). In the case of categorical confounds, this is 
equivalent to centering each category by its mean, thus the average value of each group 
with respect to the confounding variable will be the same. In the case of continuous 
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confounds, the effect on input variables is usually estimated using an ordinary least squares 
(OLS) regression. The input variables are adjusted by subtracting the estimated effect (i.e., 
taking the residuals of the confound regression model). This method is, however, 
problematic for confound adjustment for machine learning models. Since machine learning 
models are often non-linear, multi-variable, and not fitted using OLS, they can extract 
information about confounds that OLS regression does not remove. Thus, even after 
confound adjustment of input variables, the machine learning predictions might still be driven 
by confounds. 
 
We propose an alternative approach to control for confounds at the level of machine learning 
predictions instead of the level of input variables. This avoids the problems of input 
adjustment because we only need to estimate the effect of confounds on the outcome, so 
that it produces valid results even for complex machine learning models. This method has an 
intuitive interpretation: estimating the proportion of variance in the outcome can be explained 
by model predictions that are not already explained by confounding variables. 
 
The remainder of this paper is organized as follows: First, we illustrate multiple 
circumstances where adjustment of input variables does not sufficiently control for 
confounding effects. Second, we describe our proposed method, including important caveats 
relating to the adjustment in regression and classification settings, non-linear and non-
parametric adjustment, and cross-validation and permutation schemes. Third, we will show 
using simulated and real data that the proposed method adequately controls for confounds, 
even in situations where traditional input adjustment fails. Last, we will discuss how our work 
relates to other methods, and to which extent published results can be affected by 
insufficiently adjusted confounds. 
 
PROBLEMS OF INPUT ADJUSTMENT 
 
Confound adjustment of input variables is the most widely used method for controlling for 
confounds in neuroimaging machine learning studies. It is based on a simple idea that if we 
remove the effects of confounds from the input variables, the results of the subsequent 
analysis will not be affected by confounds. The effect of confounds is usually estimated using 
an ordinary least squares (OLS) linear regression for each input variable separately: 
 
X = Cβ 
 
where X is a vector of the to be adjusted input variables (e.g., voxels or regions of interest), 
C is a matrix of confounds, and B is a vector of regression coefficients estimated using OLS. 
The variable is then adjusted by subtracting the estimated effect of confounds 
 
Xadj = X – Cβ 
 
However, this method does not guarantee that the subsequent machine learning analysis will 
not be affected by confounds. This is because machine learning models can capture 
information in the data that cannot be captured and removed using OLS. Therefore, even 
after adjustment, machine learning models can make predictions based on the effects of 
confounding variables. 
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There are several sources of confounding information that the OLS adjustment method 
cannot remove. These are illustrated schematically in Figures 1 and 2 in the context of a 
machine learning classification and regression, respectively. These plots show scenarios 
where only confounding variables are added to the data (i.e. no signal) which are then 
regressed from the data using OLS. Nevertheless, a classifier (Figure 1) or regression model 
(Figure 2) can still detect signal. First, usually, only linear effects are removed, but nonlinear 
effects will still be present in the data. This can be mitigated by fitting a more complex model 
using, for example, regressions with polynomial or basis spline expansion. However, even 
with a complicated model, it is not guaranteed that the model fits the data well. In traditional 
GLM analysis, this could be easily checked using, for example, diagnostic residual plots. 
However, such a manual check is not feasible for the large number of variables commonly 
included in neuroimaging machine learning studies.  
 
Second, the confounds can affect the scale or shape of the data distribution. For example, in 
a multi-site analysis, the data variance might be higher in data from one scan-site than 
another. As was described by Görgen and colleagues (2017), differences in variance can be 
learned by non-linear but also linear machine learning models. Therefore, even after 
centering by site, a machine learning model can learn that subjects from one site are more 
likely to have extreme values of input variables than subjects from the other site (Fig 1A, Fig 
2B). This can be mitigated by additionally adjusting the scale of the residuals. The simplest 
way is to divide residuals in each scan site by their standard deviation or model the 
residuals' standard deviation as a random effect. Such a modeling approach is performed by 
ComBat procedure for adjustment of batch effects of microarray data (Johnson et al. 2007) 
and scan-site effects of MRI data (Fortin et al. 2017). However, this will not help if the 
confounds affect not only the scale of the distribution but also its shape, such as skewness 
or kurtosis (Fig 1b). Third, confounds might have a multivariate effect or they may affect the 
interaction between input variables. Since each variable is adjusted separately, it is 
impossible to remove multivariate effects, although they can be easily captured using 
nonlinear machine learning models (Fig 1C). Since OLS regression is fitted to minimize 
mean squared error, machine learning models that do not minimize mean squared error 
might still be able to capture confounding information from the data (Fig 1D, Fig 2C). The 
most prominent example is SVM, which minimizes the hinge loss instead of mean squared 
error. The hinge loss is less affected by outliers that mean squared error, thus if outliers are 
present in the data, OLS will be heavily influenced by these outliers whereas robust machine 
learning models will still be able to capture information about confounds from the adjusted 
data. 
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Figure 1: Examples of classification situations where confounding variables are still 
discriminable using machine learning methods even after regressing out confounds from 
input variables. A: The confound does not affect the mean, but it affects the variance, which 
can be learned by a linear or nonlinear machine learning model. B: Two groups have the 
same mean, same variance, but different shape of the distribution, which can also be picked 
up by a machine learning model. C: The individual variables x1 and x2 have the same 
marginal mean, variance, and shape, however, their joint distribution is different between two 
groups, which can be detected by a nonlinear machine learning model. D: Two groups have 
the same mean, however, due to outliers, a robust machine learning model can still 
discriminate between the two groups. 
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Figure 2: Examples of situations when adjusting input variables for continuous confounding 
variables does and does not work. Left: original variable before adjustment. Right: variables 
after confound adjustment. A: A situation where confound adjustment works. A linear effect 
of y on x is removed, and there is no more information about y left in the data. B: there is 
heteroskedastic noise in the input variables. Although the linear effect is removed, there is 
still confounding information left in the data that can be picked up by a nonlinear machine 
learning model. C: A situation where confound adjustment does not work due to a different 
loss function. A linear effect is removed from the data as estimated by ordinary least squares 
regression, which is affected by outliers. A robust machine learning model (in this case 
support vector machine) can learn a relationship between confound and outcome variable 
even after adjustment. 
 
PROPOSED METHOD TO CONTROL FOR EFFECTS OF CONFOUNDING VARIABLES 
 
We propose that the machine learning predictions themselves should be controlled for 
confounds instead of individual input variables. We treat machine learning predictions as we 
would any other potential biomarker and apply traditional regression techniques for confound 
adjustment (multiple linear and logistic regression) (Pourhoseingholi et al. 2012). This 
approach aims to estimate, after the machine learning model is fitted, what proportion of 
variance is explained by machine learning predictions that cannot be explained by 
confounds.        
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Using model predictions as an input to an additional regression model to evaluate its 
performance is not a new idea; it goes back at least to Smith and Rose (1995). The 
proposed approach is closely related to a method known as pre-validation (Tibshirani and 
Efron 2002; Hoffling and Tibshirani 2008) used in microarray studies to test if a model based 
on microarray data adds anything to clinical data. In this section, we will first focus on the 
most general problem of confound adjustment for machine learning regression and machine 
learning classification in an independent test set. Next, we will describe the usage of this 
approach when the machine learning model is evaluated using cross-validation and 
permutation testing. Last, we will describe non-linear and non-parametric methods for 
confound adjustment and choice of subjects for creating the adjustment model. 
 
CONFOUND ADJUSTMENT IN AN INDEPENDENT TEST SET 
 
In a regression setting, there are multiple equivalent ways to estimate the proportion of 
variance of the outcome explained by machine learning predictions that cannot be explained 
by the effect of confounds. One is to estimate the partial correlation between model 
predictions and outcome controlling for the effect of confounding variables. 
 
Given n-dimensional vectors of outcome values y, machine learning predictions p and a 
matrix of confounding variables C, the partial correlation is equivalent to the correlation 
coefficient between residuals of p and residuals of y after regressing out confounds from 
both p and y (Whittaker 1990; Kim 2005), that is: 
 
pcor(p, y | C) = cor(p-Cβp, y-Cβy) 
 
where βp and βy are regression coefficients estimated using OLS from a regression equation 
 
p = Cβp + ep 
y = Cβy + ey 
 
where ep and ey are vectors of error values. 
 
The statistical significance of the partial correlation can be obtained parametrically using a 
Student‘s t distribution (Sheskin 2000; Kim 2005) where the t-statistic is calculated as 
 
t(y, p | C) = pcor(y, p | C)*sqrt((n-2-g)/(1-pcor(y,p | C)^2)) 
 
where n is the sample size, and g is the total number of confounding variables. The 
statistical significance of the partial correlation is equivalent to fitting a linear regression 
model with machine learning predictions p and confounds C as covariates and testing if, in 
this model, p is statistically significant, or if adding p into the model predicting y based on 
confounds C will significantly improve R2 using an F test. 

For the interpretation, we can decompose the proportion of explained variance to the 
variance explained only by confounds (ΔR2

c), variance explained only by machine learning 
(ML) predictions (ΔR2

p), and variance explained by both confounds and ML predictions 
(R2

p∩c). 
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ΔR2
c = R2

p+c - R2
p 

ΔR2
p = R2

p+c - R2
c 

R2
p∩c = R2

p+c - ΔR2
c - ΔR2

p 

R2
p+c = ΔR2

p + ΔR2
c + R2

p∩c 

Where R2
p+c, R2

p, and R2
c are R2 of models containing ML predictions and confounds, ML 

predictions, and confounds, respectively. 
 
For categorical outcomes (classification), the logic of the procedure is the same, but instead 
of performing adjustment using linear regression, we use logistic regression. Our goal is the 
same as for regression. We want to know what information about the outcome we can 
explain using model predictions that is not already explained by confounding variables. This 
can be similarly expressed as the added value of p in the model that includes confounds. 
The optimal way to do this in a logistic model is to evaluate likelihood ratio (LR) or difference 
in log-likelihoods of two models: 1) predicting outcome using confounding variables 
 
M1: logit(y) = Cβ 
 
and 2) predicting the outcome using confounding variables and ML predictions. 
 
M2: logit(y) = pβp + Cβc 
 
LR = likelihood(M1)/likelihood(M2) = loglikelihood(M1) - loglikelihood(M2) 
 
It is important to point out that – similar to the regression setting – this procedure ignores 
potential miscalibration of predictions, such as systematic overconfidence or 
underconfidence of estimated probabilities. Thus, we are testing if model predictions contain 
any information about the outcome that is not already contained in the confounds, but not if 
the machine learning model's absolute prediction error is better than that of the model using 
only confounds as predictors. Statistical significance of the partial correlation and likelihood 
ratio test statistics can be computed parametrically or non-parametrically using a 
permutation test.       

Instead of variance explained, which is not a meaningful measure of model fit for a 
categorical outcome, we can use a fraction of deviance explained D2, also known as R2

kl due 
to its connection to Kullback-Leibler divergence (Cameron and Windmeijer 1995). This is 
equivalent to a fraction of variance explained in linear regression, and in logistic regression, 
it can be interpreted as a proportion uncertainty reduced due to the inclusion of variables to 
a model (Cameron and Windmeijer 1995). Another benefit of this measure is that it is closely 
related to the likelihood ratio test that we use to test the added benefit of ML predictions. 

D2 = 1 – deviance(model)/deviance(null) 

where deviance is 2*(loglikelihood(saturated_model) – loglikelihood(model)), the 
saturated model represents a model with one parameter per observation, and null is an 
intercept only model. The saturated model is a model that has a perfect fit to the data and 
thus achieves the maximum possible log-likelihood for the given dataset (McCullagh and 
Nelder 1989). 
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D2 can be decomposed into a ΔD2
c ΔD2

p and D2
p∩c in the same way as R2 as explained 

before.  
 
 
CONFOUND ADJUSTMENT IN CROSS-VALIDATION AND PERMUTATION TEST 
 
The parametric computation of the statistical significance is only valid when the machine 
learning model is evaluated in an independent test set. However, if a machine learning 
model is evaluated in cross-validation, traditional parametric tests will produce overly 
optimistic results. This is because individual errors between cross-validation folds are not 
independent of each other since when a subject is in a training set, it will affect the errors of 
the subjects in the test set. Thus, a parametric null-distribution assuming independence 
between samples will be too narrow and therefore producing overly optimistic p-values. The 
recommended approach to test the statistical significance of predictions in a cross-validation 
setting is to use a permutation test (Golland and Fischl 2003; Noirhomme et al. 2014). The 
outcome values are randomly permuted many times, and for each permutation, the cross-
validation is performed using the permuted outcome values instead of original outcome 
values. A p-value is then calculated as a proportion of cross-validation results performed 
using the permuted data that is better than cross-validation results obtained using the 
original, non-permuted data. 
 
A similar permutation testing procedure can also be used to obtain a null-distribution of an 
across cross-validation folds averaged confound adjusted test statistic e.g., ΔR2

p or ΔD2
p as 

described above. An important caveat is that the permutation procedure should only affect 
the relationship between input variables and the outcome, but not the relationship between 
the outcome and confounding variables (Fig 3) (Hoffling and Tibshirani 2008). The 
permutation needs to be performed on the rows of the input variables but not on the 
outcome labels and not on the confounding variables. If only the outcomes were shuffled, 
the results would be biased because the confounds will no longer be related to the 
outcomes, and thus this will not create a correct null distribution. 
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Figure 3: Valid and invalid permutation scheme in the presence of confounds. Given input 
variables x, confounds c, and outcome values y, the incorrect way is to shuffle only y, which 
would remove the relationship between x and y but also between c and y, leading to biased 
results. The correct way is to remove the relationship between x and y a but keep the 
relationship between c and y fixed. 
 
 
WHICH DATA TO USE TO CREATE THE ADJUSTMENT MODEL 
 
The model used to perform confound adjustment can be estimated using all available data, 
however, in some cases, it has been recommended in the literature to use only a subset of 
the data to fit the confound adjustment model. Dukart and colleagues (2011) recommended 
performing confound adjustment only based on the data from healthy controls but omit data 
from cases, with the justification that otherwise we might be removing the effect of the 
disease as well, due to its interaction with the confound. However, as was pointed out by 
Linn et al. (2016), this procedure will not sufficiently remove the effects of confounds, and 
thus it will produce biased results as illustrated in Figure 4. This is because data from 
healthy controls are insufficient to estimate the effect of confounds in subjects with a 
disease. 
 
Snoek et al. (2019) recommend performing confound adjustment only based on the data 
from the training set but omit the test set to avoid a negative bias that can even lead to a 
significant below chance performance. If an effect of a variable on the outcome in the whole 
dataset is 0, then the effect learned in the training set will have an opposite sign in the test 
set, leading to negatively biased results. 
 
To avoid this problem, Snoek et al. (2019) recommend that the confound adjustment of the 
test set data is performed using a model developed only on the data in the training sets, thus 
no artificial dependency between the training and test set data is created. However, in some 
situations, this is not possible because the levels of confounds we want to adjust for are not 
presented in the training data, for example, in the case of confounding effects of scan-sites 
where the test set consists of scan-sites that are not present in the training set. A second 
problem relates to a similar issue when adjusting only based on the data from healthy 
controls: if there is a difference in confound distribution between training and test set, then 
the test set will be insufficiently adjusted, and thus the results might be confounded. Since 
our proposed method is based on adjusting model predictions, it will not create an artificial 
dependency between the training and test set data, thus it will not lead to artificially lower 
than chance predictions. 
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Figure 4: Adjustment of the test set based on training set data, or patients based on healthy 

controls data might be insufficient and thus should be avoided.  
 
WHAT VARIABLES TO ADJUST FOR 
 
Another important consideration is what variables we should adjust for. Since the goal is to 
evaluate machine learning predictive models, this is not necessarily a causal question, but 
mostly a practical one and thus entirely problem-dependent. We might want to ask two 
questions: 1) Is the machine learning model predicting a signal of interest or signals that are 
not of interest (e.g., scan-site, age, motion, BMI)? 2) Does the machine-learning model 
predict the actual outcome or perhaps something correlated to the outcome? For example, if 
we want to create a predictive model of future disease remission based on MRI data, we 
may want to ask whether our model based on MRI data predicts future remission or just 
current disease severity (which may be highly related to future remission). Therefore, we 
might want to control for current severity to estimate the added value of MRI data for 
prediction. However, maybe the goal of our study is to create an MRI based predictive model 
to replace a clinical assessment. In that case, the current severity of symptoms would not be 
considered a confound to control for, although we might still want to evaluate if the variance 
explained by severity is the same as the variance explained by the MRI based machine 
learning model. 
 
NONLINEAR AND NONPARAMETRIC ADJUSTMENT 
 
The effect of confounds might not be strictly linear, thus it is important to be able to also 
accommodate nonlinear effects. If this is not considered, the residual effects of confounds 
can still be present in the data and can bias results (Figure 5). Since our proposed method is 
just an application of traditional linear or logistic regression, the same methods for estimating 
nonlinear effects apply. One way is to expand confounding variables using polynomial or 
basis spline expansions. Another possibility is to estimate the effects of confounding 
variables through non-parametrically generalized additive models and smoothing splines 
(Hastie and Tibshirani 1987; Wood 2017), according to the following equation: 
 
y = pβp + f(C) 
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logit(y) = pβp + f(C) 
 
Where f(C) is a parametric or non-parametric smoothing function. 
 
A somewhat common, but invalid approach to account for nonlinear effects of confounds is 
categorizing confounding variables. For example, instead of correcting for BMI, the 
correction is performed for categories of low, medium, and high BMI. Such a categorization 
is unsatisfactory because it keeps residual confounding within-category variance in the data, 
which can lead to both false positive and false negative results (Austin and Brunner 2004). 
False-positive results because there can still be residual confounding information presented 
in the input data, and false negative because the variance in the data due to confounding 
variables will lower the statistical power of a test. Thus, categorizing continuous confounding 
variables should not be performed. Instead, other parametric or nonparametric approaches 
for the modeling of nonlinear effects should be used. 

 

 
Figure 5: Categorizing continuous confound variable before adjustment might lead to 
insufficiently adjusted data, with the residual confounding signal still present in the data.  
 
EXAMPLE ANALYSIS  
 
To illustrate the usage of the proposed approach, we performed an example analysis in a 
similar way that it can be performed in practice. We aimed to predict a fluid intelligence score  
(FI) based on volumetric data of brain regions of interest. We performed a separate control 
for two confounding variables, 1) brain size, to evaluate if a machine learning model learned 
any useful patterns from the data, above and beyond what can be explained by brain size. 2) 
Age, when a continuous full time education was completed, to evaluate the added benefit of 
a brain-based machine learning model to a variable that is much easier to obtain and test if 
the ML model learned to predict anything else than function of education length. 
 
Dataset: We used the 2018 release of the UK Biobank dataset, specifically region of interest 
volumetric data as obtained from the structural MRI images using FSL FAST. The details 
about the dataset, preprocessing, and volume extraction procedure can be found elsewhere 
(Sudlow et al. 2015; Fawns-Ritchie and Deary 2020; Miller et al. 2016; Alfaro-Almagro et al. 
2018). Prior to analysis, we used the funpack utility v2.0.1 (McCarthy 2019) to compute 
imaging derived phenotypes and non-imaging data.  From the dataset of size n=21,407 we 
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excluded 2,149 subjects due to missing FI data. Next, we split the data into halves while 
preserving the FI distributions between a training and test set. We also excluded 
4,461subjects from the test set due to missing education data, leaving the size of the training 
set at 9,630 and the test set 5,167. 
 
Method: We fitted a ridge regression model implemented in the glmnet package (Friedman 
et al. 2010) in the training set to predict FI using the regional brain volumetric data. Next, we 
used this model to obtain predicted FI scores for subjects in the test set. We evaluated the 
predicted test set FI scores by including them in two multivariable linear regression models 
with the brain size variable (model 1) or with an age of completed full-time education (model 
2) as covariates. We tested if the predicted FI scores are statistically significant in these 
models and estimated their partial R2 given covariates. To take into account nonlinear 
effects of education, we used cubic spline expansion with 5 knots. This procedure allowed us 
to estimate the proportion of the FI, explained by confounding variables, and a proportion of 
FI variance explained by predictions alone, thus effectively controlling the effects of 
confounding variables. Note that the machine learning model was built in the training set, but 
statistical tests were performed in the test set. 
 
Results: Machine learning predictions, e.i., the predicted FI score based on the volumetric 
data, explained a small proportion of FI variance (R2=0.035, p < 0.001), which could partly 
be explained by brain size (R2

shared = 0.014; ΔR2
MLpredictions=0.021, p < 0.001). This indicates 

that ML can learn patterns related to FI above and beyond  brain size, even though the 
added benefit is small. Brain size was not able to explain additional variance not already 
explained by ML predictions (ΔR2

brainsize = 0, p=0.290), which was expected since the effect 
of brain size can be implicitly learned from the individual region of interest volume measures. 
The R2 due to ML predictions (R2

ml_predictions = 0.039, p < 0.001) was smaller than R2 due to 
education length (R2

education=0.079, p < 0.001). However, the ML predictions explained a 
proportion of variance that could not be explained by the effect of education. Therefore, the 
partial effect of ML predictions was still highly statistically significant. 
 

 
Figure 6: Results of machine learning prediction of fluid intelligence based on brain imaging 
data, taking into account the confounding effects of education length or brain size. Machine 
learning predictions were able to predict a proportion of variance not already explained by 
the impact of confounding variables, therefore the results were not fully driven by confounds. 
 
 
EXPERIMENTS 
 
For the empirical validation of the proposed method, we simulated confounded datasets for 
regression and classification and also used a real dataset with the artificially created 
confounded outcome variable. The dataset for regression was simulated similarly to the 
dataset in Fig 2B. The confounding variable was uniformly distributed between 0 and 100. 
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Input variable x was simulated as a function of the confound with heteroscedastic noise term 
according to: 

x = 10 + 5*confound + norm(mean=0, sd=1)*(10+confound*weight) 
 
where the weight was set to 0.1, 0.2, and 0.3 representing low, medium, and high effect of 
confounding. The outcome variable y was simulated as a function of the confounding 
variable according to: 
 
y = 100 + 0.2*confound + norm(mean=0, sd=5) 
 
therefore, there was no relationship between x and y that cannot be explained by the effect 
of the confounding variable. 
 
The dataset for classification was simulated similarly to Fig 1C. First, a categorical 
confounding variable with two categories was created. Next, two input variables x1 and x2 
were sampled from a bivariate normal distribution with mean = 0, 0 and covariance matrix = 
1 0.9 0.9 1 or 1 −0.9 −0.9 1, depending on the category of the confounding variable. 
Outcome variable y was created as a function of the confounding variable, such as the 
probability of y=1 was 0.6, 0.7, 0.8 representing low, medium, and high confounding, if the 
confounding variable was 0. 
 
We use support vector regression with a radial basis function (RBF) kernel with C=1 for the 
regression problem (Smola and Schölkopf 2004) and Gaussian process classification 
(Rasmussen and Williams 2005) with an automatic sigma estimation for the classification 
problem, both implemented in kernlab (Karatzoglou et al. 2004). For each simulation, we 
created a dataset of size 200. We assessed the statistical significance of machine learning 
predictions in two ways: 1) in the test set, by splitting the dataset into halves used as a 
training set and a validation set where the statistical significance was assessed using a 
parametric test. 2) in a 5-fold cross-validation, where the statistical significance was 
assessed using a permutation test. Our goal was to adjust for the confounding variables. We 
performed two types of confound adjustments. 1) adjustment of input variables according to 
(Snoek et al. 2019), where the training set data and test set data were first adjusted for 
confounds by regressing out the effect of confounding variables estimated using the training 
dataset. 2) additional adjustment of the ML predictions according to the proposed method 
using linear regression for the regression problem and logistic regression for the 
classification problem. The statistical significance was assessed either parametrically on the 
holdout set, or nonparametrically using a permutation test for cross-validation. Since the 
datasets were created, such as there is no relationship between input variables and the 
outcome that is not explained by the effect of confounding variables, the valid confound 
adjustment method should produce statistically significant results with p < 0.05 around 5% of 
the time. 

We also used a real neuroimaging dataset consisting of region of interest (ROI) thickness 
data from the ABIDE dataset (Di Martino et al. 2014) obtained from the preprocessed 
connectome project (Craddock et al. 2013). The dataset consisted of 97 regions of interest 
(ROI), including cortical ROI obtained using the ANTs pipeline according to Desikan-Killiany 
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protocol (Klein and Tourville 2012) and FreeSurfer white matter and non-cortical ROI (Fischl 
2012)(See https://mindboggle.readthedocs.io/en/latest/labels.html for a complete list of 
ROIs). We used data from 530 healthy control subjects, with age at scan spanning between 
6 to 56 years (median = 14.66, IQR=8.2). 
 
For each simulation, we randomly created a categorical outcome variable y confounded by 
age, where the probability of y=1 was based on subjects age according to: 
 
log [p(y=1)/p(y=0)] = (age – 14.66)*weight 
 
where weight was set to 3, 4, and 5 representing low, medium, and high confounding, since 
the outcome variable was created solely as a function of age, there should be no signal in 
the data after adjustment for age. 
 
RESULTS 
 
Since the simulated datasets were created so that there is no signal in the data that cannot 
be explained by the confounding variables, all statistically significant results are false 
positive. Therefore, the successful de-confounding method should have a false positive rate 
at p < 0.05 around 5%. In simulated regression and classification datasets, the input 
adjustment method did not sufficiently control for confounds, and significantly above chance 
performance was obtained. The percentage of false-positive results could be made arbitrarily 
high (even as high as 100%), depending on the amount of confounding. In the real dataset, 
a false positive rate as high as 72% was observed when predicting the outcome that was 
created as a function of age after correcting for age. In all tested scenarios, our proposed 
confound adjustment method of the machine learning predictions achieved a false positive 
rate of around 5%. This was the case when the testing was performed on the independent 
hold-out set using a parametric test or in cross-validation using a permutation test (Figure 6). 
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Figure 6: Results of traditional input adjustment method and proposed output adjustment 
method. The datasets were created so that there is no signal in the data that cannot be 
explained by the effect of confounding variables, therefore after successful confound 
adjustment, the proportion of statistically significant results (p < 0.05) should be around 5% 
(black line). We simulated confounded data for regression and classification problems. Also, 
we used a real neuroimaging dataset (ABIDE), where the confounding variable was age, and 
we created an artificial categorical outcome as a function of age. The amount of confounding 
effect was varied. The statistical significance was assessed using a parametric test in the 
hold-out set, or a permutation test in 5-fold cross-validation. 
 
CODE AVAILABILITY 
 
The analysis code is available at https://github.com/dinga92/confounds_paper 
 
DISCUSSION 
 
We demonstrated that controlling for confounds at the level of model predictions correctly 
adjusts for the effect of confounding variables under low, medium, and high confounding, 
even in situations where the traditional input variable adjustment failed. Moreover, this 
approach has a simple and intuitive interpretation: what proportion of variance in the 
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outcome can be explained by model predictions that cannot be explained by confounding 
variables? Or in other words, does predicting the outcome using confounding variables 
improve when adding model predictions?  The proposed approach is based on testing if 
machine learning predictions are statistically significant in a linear or logistic regression 
model that includes confounding variables as covariates. The proposed approach evaluates 
if the model predictions have any information about the outcome that is not already present 
in the confounding variables. 
 
Traditional input variable adjustment failed to sufficiently control for confounds in simulated 
and real datasets. This is because input variable adjustment cannot remove all confounding 
effects that can be learned by machine learning methods, as we show illustrative examples 
and in the simulated data. This includes cross-validated input adjustment as proposed by 
(Snoek et al. 2019) and adjustment using a location and scale adjustment model as used in 
ComBat (Fortin et al. 2017). Therefore, it is possible that some of the previously published 
machine learning results are (partly) driven by insufficiently adjusted confounding instead of 
the signal of interest. Machine learning methods vulnerable to this problem include all 
nonlinear machine learning methods and linear machine learning methods that are fitted 
optimizing a different function than a regression used for input adjustment, such as support 
vector machines. Support vector machines optimize a hinge loss, which is more robust to 
extreme values than a squared loss used for input adjustment. Therefore, the presence of 
outliers in the data will lead to improper input adjustment that can be exploited by SVM. 
Studies using penalized linear or logistic regression (i.e., lasso, ridge, elastic-net) and 
classical linear Gaussian process modesl should not be affected by these confounds 
(assuming they are sufficiently adjusted) since these models are not more robust to outliers 
than OLS regression. 
 
The proposed approach is closely related to the “pre-validation” method used in microarray 
studies to test if a model based on micro-array data adds value to clinical predictors 
(Tibshirani and Efron 2002; Hoffling and Tibshirani 2008). Here we argued that this approach 
can also be used to control for confounds of machine learning predictions in general and 
suggest using D2 and R2 and their decompositions to interpret the results. Multiple 
alternative approaches for controlling confounding effects exist and can be used in a 
machine learning setting. A few indirect methods have been proposed. For example, Görgen 
et al. (2017) proposed to test whether a machine learning model can accurately predict 
confounding variables, and Kohoutova et al. (2020) proposed to test whether confounding 
variables can predict the outcome, thus diagnosing potentially spurious results. Our 
proposed method's benefit is that it provides a direct formal test of the association between 
machine learning predictions and the outcome controlled for confounds. 
 
A related approach to the proposed method, sometimes used in neuroimaging (for example 
in ABCD Neurocognitive Prediction Challenge 2019 (Pohl et al. 2019)), is to residualize 
target variables, i.e., regress out confounds from the target variables and apply machine 
learning to predict these residuals. This approach is similar to testing for partial correlations, 
as we proposed, with a few critical distinctions. First, the partial correlations are equivalent to 
regressing out confounding variables from both target variable and ML predictions. Thus, this 
approach accounts for more variance in the data, making it more sensitive and increasing 
statistical power. Second, regressing out confounds from the target variables cannot be 
applied to classification problems. Third, the interpretation is limited, since it only allows for 
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testing the partial effects of ML predictions, while our proposed method allows for the 
estimation of variance that can be explained by both confounds and machine learning 
predictions, confounds only, and machine learning predictions only. Fourth, the target 
residualization is often applied to the whole dataset, which leads to data leakage between 
the training set and the test set and thus to biased results (Snoek et al. 2019). This data 
leakage can be avoided by estimating model parameters using only training set data, 
however, this might also lead to biased results due to insufficient confound adjustment in the 
test. In contrast, the proposed approach is applied only in the test set, which avoids the data 
leakage and ensures that the effect of confounds is sufficiently estimated. 
 
Controlling for confounds can also be done using a permutation test where the permutations 
are performed within the confound groups (Winkler et al. 2015). For example, if we wish to 
control for effects of scan sites, labels would be shuffled within each scan site separately. 
Thus if a model‘s performance is driven by the scan site effects, this will be reflected in the 
permutation-based null-distribution. Although this method can be used even with a complex 
dependence structure (Winkler et al. 2015), it is limited to situations where the dependence 
structure is clear, and includes only a few categorical confounding variables, since the 
number of confounding variables limits the number of possible permutations. 
 
Another possibility is to use various resampling or reweighting methods to create a dataset 
where the confounding variable is not related to the outcome (Pourhoseingholi et al. 2012; 
Rao et al. 2017; Chyzhyk et al. 2018). Since only a subset of available subjects is used, this 
leads to data loss and highly variable estimates. Another problem of this approach is that the 
distribution of variables in the test set no longer matches the distribution of the original 
dataset or the population. For example, when controlling for a sex effect in the machine 
learning prediction of Autism diagnosis, resampling methods would be interpreted as the 
performance of the machine learning model in a population where sex is not related to the 
autism diagnosis. Since more males are diagnosed with autism than females, resampling 
methods will put a higher weight on predictions for females, which might lead to the selection 
of a model that makes worse predictions in males even though the majority of autism 
diagnoses are in males. 
 
A related problem of resampling methods is that they cannot be used to evaluate the 
additional benefit of the machine learning model predictions over what can be already 
predicted by confounds since by definition confounding variables have no predictive power in 
the newly created population. It might be tempting to say that the model's added value 
equals the performance of the model in this newly created population. This is, however, not 
the case. As shown by Pepe et al. (2012) and Janes and Pepe (2008), this can severely 
underestimate and also overestimate the added value and even change ranks of competing 
models. Thus, it can lead to selecting the worse model for prediction, missing potentially 
important biomarker, or selecting an apparently strong biomarker that, in reality, does not 
add much to what can be already predicted using confounds. 
 
CONCLUSION 
 
We showed that confound adjustment of input variables can fail to adequately control for 
confounding effects when machine learning methods are used. For this reason, we propose 
that confound adjustment of input variables should be avoided, and the already published 
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machine learning studies employing this method should be interpreted with care. We 
presented a simple approach of controlling for confounds at the level of machine learning 
predictions themselves. This approach produced more valid results even under heavy and 
complicated confounding. 
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