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Abstract 14 

Convolutional neural networks (CNNs) have become a standard for analysis of biological 15 

sequences. Tuning of network architectures is essential for CNN’s performance, yet it requires 16 

substantial knowledge of machine learning and commitment of time and effort. This process thus 17 

imposes a major barrier to broad and effective application of modern deep learning in genomics. 18 

Here, we present AMBER, a fully automated framework to efficiently design and apply CNNs 19 

for genomic sequences. AMBER designs optimal models for user-specified biological questions 20 

through the state-of-the-art Neural Architecture Search (NAS). We applied AMBER to the task 21 

of modelling genomic regulatory features and demonstrated that the predictions of the AMBER-22 

designed model are significantly more accurate than the equivalent baseline non-NAS models 23 
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and match or even exceed published expert-designed models. Interpretation of AMBER 24 

architecture search revealed its design principles of utilizing the full space of computational 25 

operations for accurately modelling genomic sequences. Furthermore, we illustrated the use of 26 

AMBER to accurately discover functional genomic variants in allele-specific binding and 27 

disease heritability enrichment. AMBER provides an efficient automated method for designing 28 

accurate deep learning models in genomics. 29 

 30 

 31 

Main 32 

Artificial neural networks, or deep learning, have become a state-of-the-art approach to solve 33 

diverse problems in biology1,2.  Convolutional Neural Networks (CNNs) are especially well-34 

suited for identifying high-level features in raw input data with strong spatial structures3 and as 35 

such are powerful at modelling raw genomic sequences and extracting functional information 36 

from billions of base-pairs in the genome1. CNN-based approaches address the computational 37 

challenges of predicting the chromatin state and RNA-binding proteins binding state from 38 

sequence4–6, identifying RNA splice sites7, predicting gene expression8, and prioritizing disease 39 

relevance of variants9, and many more1. Overall, CNNs have become the de-facto standard for 40 

analysis of genomes - a fundamental problem in both basic understanding of biology and for 41 

enabling personalized and precision medicine approaches.  42 

 43 

The successful applications of CNNs have been largely attributed to their corresponding 44 

architectures. Indeed, for CNN applications in genomics and biomedicine, numerous efforts have 45 

been devoted to the development of architectures, such as in DeepSEA4, Basenji10 and SpliceAI7. 46 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.251561


This is similar to the extensive efforts in architecture designs for tackling computer vision 47 

problems, for example VGG11, Inception12, and ResNet13.  Each of these architectures is 48 

motivated and inspired by deep understanding of machine learning and domain knowledge; and 49 

requires substantial effort and time commitment by experts to design and implement by 50 

extensive trial-and-error processes.  51 

 52 

Here, we present Automated Modelling for Biological Evidence-based Research (AMBER), an 53 

automatic framework for efficiently designing convolutional neural networks in genomics. To 54 

our knowledge, AMBER is the first automated approach specifically designed for modelling 55 

genomic sequences. It leverages the groundbreaking idea of Automated Machine Learning (or 56 

AutoML), and the related family of algorithms for Neural Architecture Search (NAS) previously 57 

developed in the context of computer vision14,15.  For a given fixed set of training data, AMBER 58 

designs an optimal architecture by NAS in a pre-defined model space. We show that the 59 

AMBER-designed models significantly outperformed equivalent non-NAS models, matching or 60 

even exceeding published expert-designed models. Finally, we use two well-established 61 

benchmarks to demonstrate that the AMBER-designed optimal architectures provided significant 62 

advantages in prioritizing functional genomic variants in allele-specific binding and heritability 63 

enrichment in Genome-Wide Association Studies (GWAS). We also illustrate the use of 64 

AMBER-designed models to discover disease-relevant variants. Thus, AMBER creates accurate 65 

and informative deep-learning models that can support functional genomics discoveries by 66 

biologists with and without machine learning expertise. AMBER is publicly available at 67 

https://github.com/zj-zhang/AMBER. 68 

  69 
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 70 

 71 

Figure 1. Method and workflow overview of AMBER.  72 

A) AMBER uses a compendium of training data to design deep learning models in functional 73 

genomics. In this application, we applied AMBER to the task of predicting transcriptional 74 

regulation on DNA sequences. The features are one-hot encoded reference human genome, and 75 

the labels are functional annotations derived from a large set of ChIP-seq data. B) AMBER 76 

designs network architecture by searching for optimal combinations of computational operations 77 

(blue box) and residual connections (red box) for each layer, to construct a child model that maps 78 

training features to training labels.  C) Taking the optimal architecture as output, AMBER 79 

performs downstream functional analyses. For the transcriptional regulation model, we analyzed 80 

the functional variant prioritization by AMBER-designed models to predict allele-specific 81 

binding and heritability enrichment in GWAS. 82 

  83 
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Overview of methods and workflow 84 

The AMBER framework fully automates the process of training and applying deep learning to 85 

genomics, including automatic design of neural network architecture from the training data and 86 

downstream functional analyses with the AMBER-designed model (Figure 1). Unlike existing 87 

approaches that focus on making deep learning more accessible using established model 88 

architectures16,17, AMBER automatically designs an optimal architecture for each user-specified 89 

problem.  90 

 91 

In general, to investigate a biological question with AMBER, a biologist would compile a 92 

compendium of functional genomics data such as profiles of transcription factor binding or 93 

histone marks along the genome. AMBER uses such sets of compiled training features and labels 94 

as input to automatically design deep learning models for the biological question or task of 95 

interest (Figure 1A). Here, we use AMBER to model transcriptional regulatory activities. For 96 

this task, the training features are one-hot encoded matrices that each represent 1000-bp DNA 97 

sequences from the reference human genome, and the training labels are binary outcomes 98 

derived from a compendium of 919 distinct transcriptional regulatory features. These regulatory 99 

features include four main functional categories in diverse tissues and cell lines: transcription 100 

factors (TF), polymerases (Pol), histone modifications (Histone), and DNA accessibility 101 

(DNase). The task aims to predict whether one or more of the 919 transcriptional regulatory 102 

features are active for any 1000-bp human DNA sequences. In total, the training dataset spans 103 

more than 500 million base-pairs of the human genome, with 4400000, 8000, and 455024 104 

samples for training, validation and testing, respectively. Conditioned on this dataset, the target 105 
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model for AMBER to design is a convolutional neural network with multi-tasking consisting of 106 

919 individual tasks. 107 

 108 

To more formally define the neural architecture search problem, the target convolutional neural 109 

network architecture can be divided into two interconnected components: the computational 110 

operations used in each layer (blue box, Figure 1B), and the residual connections from previous 111 

layers (red box, Figure 1B).  Residual connections have been demonstrated to enable the training 112 

of much deeper neural networks with superior performances13, while greatly expanding the 113 

model search space (7.4 × 10!" times more viable architectures in our model space; see 114 

Methods). Thus, it’s essential that residual connection search is considered when AMBER 115 

searches for architectures, and the search needs to be efficient. AMBER searches for both of the 116 

two components jointly using the Efficient Neural Architecture Search (ENAS) controller 117 

model15. The controller model is parameterized as a Recurrent Neural Network (or RNN; for 118 

details, see Methods). Briefly, for each layer in the model search space, the probability of 119 

selecting a computational operation is computed by a multivariate classification dependent on the 120 

current RNN hidden state; and the probability of selecting the residual connections from a 121 

previous layer is a function of the RNN hidden states of the current layer as well as the previous 122 

layer of interest. The RNN hidden states were subsequently updated by the operations or residual 123 

connections sampled from the output probabilities. To train the controller RNN, we employed 124 

reinforcement learning to maximize a reward of AUROC on the validation dataset.  125 

 126 

The output of AMBER is an optimized architecture that performs better than architectures 127 

uniformly sampled from the same model search space (Methods). Furthermore, we show that 128 
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AMBER-designed models provide significant advantages over baseline models in multiple 129 

practical scenarios, including allele-specific binding and heritability enrichment in GWAS. In the 130 

following sections, we describe each part of the AMBER pipeline as well as the downstream 131 

analyses in detail. 132 

 133 

 134 

AMBER designs accurate and efficient models 135 

In our example AMBER application, we defined the model search space of 12 layers, each layer 136 

with 7 commonly used computational operations. We chose to use a 12-layer model space 137 

because this was the maximum hardware memory limit for a single Nvidia-V100 GPU, and 138 

shallower models can be attained by an identity operator that in effect removed one layer. In 139 

total, this model space hosts 5.1 × 10#$ distinct model architectures (Methods).  140 

 141 

We benchmarked the computational efficiency of AMBER by comparing the GPU time used by 142 

the AMBER search phase to other architecture search algorithms (Table 1). The time of 143 

AMBER search phase is orders of magnitude more efficient than RL-NAS14 and AmoebaNet18 144 

and comparable to DARTS19 and ENAS15.  145 

 146 

To robustly evaluate the accuracy of AMBER-designed models, we performed six independent 147 

runs of AMBER architecture search, generating six “searched models”. We compared these 148 

searched models with uniformly sampled residual network architectures from the same model 149 

space (“sampled models”). Given the architectures, the final training step for AMBER 150 
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architectures and the sampled residual network architectures were identical, with all models 151 

trained to convergence (Methods).   152 

 153 

Table 1. Runtime comparison in GPU hours 154 

Method Time (in GPU hours) 

AMBER 72 

AmoebaNet 75600 

DARTS 96 

ENAS 10.8 

RL-NAS 537600 

 155 

 156 

The average testing AUROC and AUPR for each functional category of 919 regulatory feature 157 

prediction tasks (i.e. TF, Pol, DNase and Histone) were compared for the six searched and six 158 

sampled model architectures. AMBER-designed architectures significantly outperformed the 159 

sampled architectures for all categories (Figure 2A). The prediction accuracies of different 160 

models were more alike within a given functional category than across different categories, 161 

indicating that the inherent characteristics of the training data play an essential role in the 162 

model’s prediction performance, regardless of its model architecture. This is expected, because 163 

the training data determined the upper bound of model performance20, while the searched 164 

architectures better approximated this bound. Of course, with unlimited time and resources to 165 

enable complete sampling, the optimal architecture is theoretically reachable by sampling as 166 

well; however, the time and resource consumption will be tremendous in a model space of 167 
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5.1 × 10#$ potential architectures. The AMBER architecture search by far speeds up this process 168 

and yields model architectures in a narrow high-performance region. Detailed performances for 169 

each model can be found in Supplementary Table 1. Hence, AMBER robustly designs high-170 

performance convolutional neural network architectures. 171 

 172 

 173 

Figure 2. AMBER searched architectures outperform sampled architectures.  174 

A) The average testing AUROC and AUPR in each functional category were compared for 175 

twelve models with distinct architectures either generated by AMBER searched (orange) or 176 

uniformly sampled from model space (grey). Each model, represented by a line, was identically 177 

trained to convergence. B) An illustration of the optimal model architecture, AMBER-Seq, used 178 

for downstream analyses. AMBER-Seq is an AMBER-designed deep convolutional neural 179 
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networks that outputs a multi-label binary classification for 919 transcriptional regulatory 180 

features using 1000-bp DNA sequences as inputs. 181 

Statistical significance (t-test) *: p<0.05, **: p<0.01, ***: p<0.001  182 

 183 

 184 

 185 

Theoretically, the superior performance from searched model architectures could be achieved by 186 

higher relative model complexity. However, no significant differences were observed between 187 

the two groups of architectures (p-value=0.69, t-test). When we examined the total number of 188 

parameters in each child architecture (dot sizes, Supplementary Figure 1), the average number 189 

of parameters is 12.9 million for searched architectures and 13.3 million for sampled 190 

architectures, respectively. Furthermore, we did not observe correlations between the model 191 

complexities and their testing performances (spearman correlation=0.06, p-value=0.87). This 192 

indicates that the superior performance from searched model architectures is not explicitly linked 193 

to model complexities, and that AMBER-designed models are parameter-efficient.   194 

 195 

For the rest of the analyses in this study, we used the AMBER-designed architecture with the 196 

best testing performance, referred to as AMBER-Seq (Figure 2B); and compared it to the 197 

sampled architecture with the best testing performance, referred to as AMBER-Base 198 

(Supplementary Figure 2). Starting with the 1000-bp one-hot encoded input, we use the input 199 

stem of one convolutional layer to expand the 4-channel DNA sequence into 64 channels. The 200 

input stem is identical for all child networks. Similarly, the output stem flattens the convolutional 201 

feature maps, followed by a dense layer of 925 hidden units to predict the 919 regulatory outputs. 202 
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The middle 12 layers are variable and grouped into four blocks, each with 3 layers. The total 203 

number of parameters in AMBER-Seq is 13.5 million, which is substantially fewer than the 204 

original expert-based implementation (52.8 million) in ref.4 and a model of a similar task (22.8 205 

million) in ref.10. With fewer total parameters, AMBER-Seq matched and even exceeded the 206 

previously expert-designed implementation in prediction accuracy (AUROC and AUPR; see 207 

Supplementary Table 1).  208 

 209 

 210 

Deciphering the logic of AMBER architecture search 211 

Unbiased architecture search performed by AMBER provides insight into which computational 212 

operations and architectures are most suited for particular problems in genomics. This can 213 

diagnose whether the controller RNN model has learned meaningful representations and help 214 

design better model search spaces for future applications.  215 

 216 

For this analysis, we analyzed the average probability of all computational operations in the last 217 

step of the AMBER-Seq controller training across the 12 layers (Figure 3A). The likelihood of 218 

using convolutions (vanilla and dilated convolution) was the highest in the bottom- to middle- 219 

layers; in particular, convolution with kernel size 8 was universally preferred, which is consistent 220 

with the choice in expert-based architectures4. Interestingly, in higher layers, the likelihood of 221 

max pooling starts to increase as the layers are closer to the output. In light of CNN’s 222 

hierarchical representation learning in computer vision21, we speculate this is because more high-223 

level features with biological semantic meanings are constituted in the top layers of 224 

convolutions, after extensive usage of convolution operations in the bottom layers. Subsequently, 225 
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by using max pooling as the computational operation in top layers, the model performs feature 226 

selections that regularizes model complexity and encourages the usage of high-level semantic 227 

features in predicting the final regulatory outcomes. We anticipate this AMBER architecture 228 

design pattern can be further generalized and transferable to other related tasks22. 229 

 230 

The controller’s ability to distinguish distinct and similar computational operations is critical for 231 

searching high-performance architectures. The differential selection likelihood of operations 232 

across layers is a function of previous RNN hidden states and the embedding vectors for each 233 

operation, which are learned during the AMBER search phase (Methods). We performed 234 

Principal Component Analysis (PCA) on the embedding vectors and analyzed how AMBER 235 

distinguishes operations (Figure 3B and Supplementary Figure 3). We found that the first 236 

principal component separates identity from all other computational operations, as the identity 237 

layer does not involve any computations. In the second principal component, convolution and 238 

pooling were separated with dilated convolution as an intermediate between vanilla convolution 239 

and pooling layers. Indeed, dilated convolution enlarges the receptive field similar to pooling 240 

layers, while also performs convolution computations23. The third principal component further 241 

separated computational operations by their corresponding operation types (Supplementary 242 

Figure 3).  Overall, AMBER controller RNN can distinguish between similar but distinct 243 

operations in building the target architecture. 244 

 245 

 246 

 247 
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 248 

Figure 3. Illustration of AMBER architecture search logistics. 249 

A) Selection probabilities for distinct computational operations in each layer of the AMBER-Seq 250 

controller. For this architecture, convolutional operations were preferred in bottom to middle 251 

layers, while the likelihood of selecting max pooling increased in top layers. B) Principal 252 

component analysis of the embedding vectors for different computational operations. PC1 253 

separated identity from computational operations; PC2 separated vanilla convolution, dilated 254 

convolution and pooling. 255 

Abbreviations: conv8/4: 1D convolution with kernel size 8/4; dconv8/4: dilated convolution with 256 

kernel size 8/4; max/avgpool: max/average pooling. 257 
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Variant effect prediction on allele-specific binding 259 

A key application of convolutional neural networks in genomics is to predict functional effects of 260 

genomic variants, i.e. a variant’s potential to disrupt an existing molecular mechanism or 261 

generate a new one. To investigate the variant effect prediction of different neural network 262 

architectures, we compared their ability to correctly predict allele-specific binding for 52,413 263 

variants in 83 distinct transcription factors generated by ChIP-seq experiments24. These 264 

experiments measure the effect of specific alleles on binding of transcription factors, providing 265 

an independent evaluation set for our predictions. For comparison, in addition to AMBER-Seq 266 

and AMBER-Base, we included a set of commonly used models and motifs for scoring variant 267 

effects: expert-designed CNNs DeepSEA4 and DeepBind6, deltaSVM25, Jaspar26 and MEME27 268 

(Figure 4A). For comparison across different models, variant scores were rank transformed to 269 

the range of [-1, 1] and AUROC was computed for each method’s ability to distinguish 270 

loss/gain-of-binding alleles versus neutral alleles (Methods). In general, machine learning 271 

methods (AMBER, DeepSEA, DeepBind, deltaSVM) predict variant effects significantly better 272 

than the motif-based methods (i.e. Jaspar and MEME). Importantly, AMBER-Seq’s performance 273 

matched or exceeded all other methods, including expert-designed architectures and the 274 

AMBER-Base model, demonstrating the power of automated architecture search (asteroid, 275 

Figure 4A).    276 

 277 

As a biological case study, we focused on the effect of genomic variant rs11658786 on binding 278 

of the SPI1 transcription factor (Figure 4B). SPI1 (also known as PU.1) is a transcription 279 

activator with important functions in hematopoiesis28, leukemogenesis29, and adipogenesis30,31.  280 

AMBER-Seq predicted that the alternative allele at this position reduces SPl1 binding, a 281 
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prediction supported by independent experimental data -- in an independent ChIP-seq dataset, 282 

SPI1 predominantly binds to the G allele (85.2%) than the A allele (14.8%; Figure 4B, inset).   283 

Interestingly, all other models except DeepSEA predicted that the alternative allele enhances 284 

SPl1 binding, contradicting experimental results. Moreover, rs1165876 is an eQTL for its target 285 

gene, STARD3 (Supplementary Figure 4A), where the gene expression for the G genotype is 286 

the highest and the A genotype is the lowest. The eQTL effect for gene expression is consistent 287 

with the AMBER-Seq predicted effect of SPI1 binding and its transcription activation function. 288 

Finally, STARD3 is a gene that encodes a member of a subfamily of lipid trafficking proteins 289 

that is involved in cholesterol metabolism. By querying GWAS catalog32, we confirmed that 290 

rs11658786 is in strong LD with significant GWAS loci in high cholesterol, its interaction terms, 291 

as well as smoking status (Supplementary Figure 4B). Overall, this case study illustrates how 292 

variant effects accurately predicted by the automatically generated AMBER-Seq model can be 293 

useful for prioritizing functional variants of interest. 294 
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 296 

 297 

Figure 4. Benchmarking variant effect prediction with allele-specific binding. 298 

A) Performance of distinguishing loss- and gain-of-binding variants from different models and 299 

methods evaluated by AUROC. AMBER-Seq outperformed AMBER-Base on the compendium 300 

of allele-specific transcription factor binding sites, matching or even exceeding previous expert-301 

designed machine learning methods. In each boxplot, center line marks the median while top and 302 

bottom lines mark the first and third quartiles. B) A biological case study of variant effect 303 

prediction of human genomic variant rs11658786. This variant was predicted to alter a SPI1 304 

binding site in gene STARD3. Among different methods, only AMBER-Seq and DeepSEA 305 

predicted the loss-of-binding effect (G>A) of this variant. The A allele significantly reduces SPI1 306 

binding, as illustrated by an independent ChIP-seq experiment (inset).  307 

Statistical significance of results of AMBER-Seq versus each of the other models (Wilcoxon 308 

test) ns: p>0.05, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001 309 
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Heritability enrichment analysis of genome-wide association studies 311 

Finally, we assessed the utility of automatic architecture search by comparing AMBER-Seq with 312 

the uniformly sampled AMBER-Base model for explaining disease heritability in GWAS from 313 

UK Biobank33. Using AMBER-Seq and AMBER-Base models, variant annotations for each of 314 

the 919 transcriptional regulatory features of each model were generated, followed by stratified 315 

LD-score regression34 to evaluate their heritability enrichment for a given GWAS (Methods). 316 

We analyzed the GWAS summary statistics of disease phenotypes previously reported35 317 

(Methods). The union of the significantly enriched variant annotations (FDR<0.05) from both 318 

models were used for downstream comparisons and were subsequently examined for overlapping 319 

between the AMBER-Seq and AMBER-Base models, or unique to either one of the models 320 

(Supplementary Figure 5). Of the six GWAS diseases we studied, five have significantly more 321 

enriched heritability in AMBER-Seq variant annotations (Figure 5A; Methods). On average, 322 

AMBER-Seq variant annotations were 1.81x more enriched in heritability compared to their 323 

counterparts in AMBER-Base across all diseases, indicating that AMBER-designed model 324 

produced more informative variant effect predictions for interpreting disease-associated genomic 325 

loci. 326 

 327 

Moreover, the variant annotations from AMBER-Seq were particularly useful where baseline 328 

annotations34 fail to explain heritability (Figure 5B). Baseline annotations are a collection of 97 329 

functional annotations previously curated34 that cover major known regulatory patterns for 330 

human genome. Specifically, to quantify how well the baseline annotations alone explained 331 

heritability, we regressed baseline annotations for each GWAS phenotype and calculated the 332 

proportion of baseline annotations that were significantly enriched in heritability. We observed a 333 
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significant negative correlation between the median log fold-change of heritability enrichment of 334 

annotations from AMBER-Seq over AMBER-Base, versus the proportion of baseline 335 

annotations that are significant (Figure 5B). This demonstrates that for disease where only a few 336 

baseline annotations were significantly enriched in heritability, AMBER-Seq provides the most 337 

improvement over AMBER-Base in variant annotation. Conversely, when AMBER-Seq and 338 

AMBER-Base heritability enrichment was comparable, the majority of the heritability was 339 

largely explained by baseline annotations. Therefore, the automated model design pipeline of 340 

AMBER is able to deliver more informative variant annotations in the cases where they are 341 

arguably most needed, i.e. for diseases that are poorly annotated by baseline annotations. 342 
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 344 

 345 

 346 

Figure 5. Benchmarking heritability enrichment in disease GWAS. 347 

A) Comparison of heritability enrichment of AMBER-Seq and AMBER-Base’s variant 348 

annotations for six disease GWAS. On average, AMBER-Seq annotations were 1.81x more 349 

enriched in disease heritability than the annotations of AMBER-Base. In each boxplot, center 350 

line marks the median while top and bottom lines mark the first and third quartiles. B) The 351 

median magnitude of enrichment fold-change between AMBER-Seq and AMBER-Base was 352 

negatively correlated with the proportion of enriched baseline annotations in various diseases, 353 

indicating that AMBER can deliver more informative variant annotations in diseases with poor 354 

baseline annotations. 355 

 356 
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 357 

 358 

Discussion 359 

The past decade has witnessed a revolutionary transformation in genomics and exponential 360 

accumulation of high-throughput sequencing data. These data enable the study of diverse 361 

molecular mechanisms and biological systems through a quantitative lens. Deep learning models 362 

have been especially powerful in modeling biological sequences, transforming our ability to 363 

interpret genomes4–6. These methods generally employ convolutional neural networks to extract 364 

features from raw genomic sequences, but such an approach comes with a price: a convolutional 365 

layer has more hyperparameters than a regular fully connected layer, making the hyperparameter 366 

tuning a significantly harder problem. To date, the vast majority (if not all) of the deep learning 367 

models are manually tuned by computational biologists through trial-and-error, which is time 368 

consuming and imposes a substantial barrier for applications of such models by biomedical 369 

researchers. To address this challenge, we developed an automatic architecture search 370 

framework, AMBER, for efficiently designing optimal deep learning models in genomics. In this 371 

study, we have applied AMBER to predicting genomic regulatory features, including 372 

downstream analyses such as variant effect prediction and heritability enrichment in GWAS. We 373 

found that AMBER matched or exceeded performance of baseline models, including both 374 

expert-designed and uniformly sampled architectures, and is computationally efficient.  We 375 

anticipate that AMBER will provide a useful tool for biomedical researchers, with and without 376 

machine learning expertise, to rapidly develop deep learning models for their specific biological 377 

questions. 378 

 379 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.251561


An important additional application of AMBER is for upgrading existing models with advanced 380 

model architectures or updating models when additional data become available. Compared to the 381 

original implementation of DeepSEA in 2015, it is interesting to observe that all six runs of 382 

AMBER searched models performed better (Supplementary Table 1). This is especially 383 

relevant as new and powerful architectures are being developed continuously (e.g. residual 384 

connections13 that likely contribute to AMBER-Seq’s high performance), yet it is non-trivial to 385 

adapt models with the latest deep learning techniques, and such adoption is time- and effort-386 

consuming. AMBER enables readily integrating such modern approaches into existing expert-387 

designed models. With AMBER, researchers can easily build and apply modern deep learning 388 

techniques to find the optimal neural architecture, thereby accelerating the scientific discoveries 389 

in biology.  390 

 391 

Finally, an important future direction for architecture search in biology is to jointly optimize the 392 

prediction accuracy as well as model interpretability. For example, elucidating the decision logic 393 

behind variant prediction can help identify molecular pathways that likely led to the predicted 394 

effects, shedding new light on molecular mechanisms of transcriptional regulation36. In general, 395 

an interpretable model is particularly desirable when practitioners need explicit evidence for 396 

decision making and/or for knowledge discovery, such as in hypothesis testing and variant 397 

prioritization in genetics studies. Moving forward, we hope frameworks like AMBER can be 398 

further developed to identify neural network architectures that are balanced in predictive power 399 

and interpretability. 400 

 401 

Methods 402 
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 403 

Designing model search space  404 

The AMBER neural architecture search framework consists of two components to design a child 405 

model for specific tasks: 1) a model search space with a large number of different child model 406 

architectures; and 2) a controller model that samples architectures from the model search space. 407 

For simplicity, we start by illustrating the design of model search space. 408 

 409 

The model search space is a sequential collection of layers for the child model, where each layer 410 

has a number of candidate computational operations. More concretely, in this study, we aimed to 411 

design a 1D-convolutional neural network with 12 candidate convolutional layers. Each layer 412 

had 6 distinct computational operations: 1D convolution with filter size 4 or 8 (conv4, conv8), 413 

dilated 1D convolution with rate 10 and filter size 4 or 8 (dconv4, dconv8), max-pooling or 414 

average pooling with size 4 (maxpool, avgpool). These hyperparameters for computational 415 

operations were selected based on previous works4,10. Moreover, we added an identity mapping 416 

to each layer that maps input identically to output without any computations (identity), for 417 

potentially reducing the child model complexity. The twelve convolutional layers were 418 

connected to fixed input and output stem layers for inputs and outputs, respectively. We divided 419 

the 12 convolutional layers into 4 blocks of layers, where each block had doubled the number of 420 

filters from the previous block while reduced the size of the feature map by a factor of four. 421 

Layers within each block had identical number of filters. We set the first block to have 32 filters 422 

for searching architectures. 423 

 424 
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Formally, let the model space of T=12 layers be 𝛺	 = {𝛺!, 𝛺%, … , 𝛺&}, where 𝛺' is the t-th layer. 425 

Under the current setup, 𝛺' = {conv8, conv4, dconv8, dconv4, maxpool, avgpool, identity}, ∀	𝑡. 426 

Let the selection of computational operations at t-th layer be a sparse categorical encoder, i.e. 427 

𝑎'( ∈ 	 {1, 2, … , |𝛺'|}. For example, 𝑎%( = 1 describes the operation for the second hidden layer of 428 

the child model is conv8. Therefore, child model computational operations are fully specified by 429 

a sequence of integers {𝑎!( , 𝑎%( , … , 𝑎!%( }; in total, different combinations of computational 430 

operations constitutes 8!% ≈ 6.9 × 10!$ viable child models in the model space. The task of 431 

finding the child model computational operations can be subsequently considered as a multi-432 

class classification problem with auto-regressive characteristics. 433 

 434 

In addition to searching operations, we also incorporated the residual connections in the model 435 

search space. For the t-th layer, the residual connections from layers 1, 2, ..., t-1 are binary 436 

encoded by 𝑎',*+ , ∀	𝑘 ∈ 	 {1,2, . . , 𝑡 − 1}. If 𝑎',*+ = 1, the residual connection is added from the 437 

output of the k-th layer to the t-th layer13. Having residual connections are essential for training 438 

deeper neural networks, but also significantly increases the complexity in architecture searching. 439 

For our 12-layer model space, residual connection search increased the search space by around 440 

2!%×!!/% ≈ 7.4 × 10!". Now with the residual connections, a full child model can be specified 441 

by a sequence of integers {𝑎!( , … , 𝑎'( , 𝑎',!+ , … , 𝑎','.!+ , … }; for brevity, we use 𝑎' to denote both the 442 

operations and residual connections in the same layer and use {𝑎!, … , 𝑎'} to represent the child 443 

model architecture. 444 

 445 

 446 

Efficient neural architecture search 447 
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We adopted Efficient Neural Architecture Search (ENAS) as the optimization method for 448 

searching the child network architectures in the model space15. ENAS employs a Recurrent 449 

Neural Network (RNN) as the controller model to sequentially predict the child model 450 

architecture from the model space. Briefly, the controller RNN, parameterized by 𝜃, generates 451 

the child model architectures a with log-likelihood 𝜋(𝑎; 𝜃) and is trained by REINFORCE37. The 452 

policy gradient to maximize the reward 𝑅* over a batch of m sampled architectures is obtained 453 

by:  454 

1
𝑚B(𝑅* − 𝑏)

/

*0!

⋅B𝛻1𝑙𝑜𝑔𝑃J𝑎('.!):!; 𝜃K
&

'0!

= 455 

1
𝑚B𝛻1𝜋(𝑎; 𝜃) ⋅ (𝑅* − 𝑏)

/

*0!

 456 

 457 

We set the reward 𝑅* to be the validation AUROC of the k-th child model architecture; b is an 458 

exponential moving average of previous rewards to reduce the high variance of the policy 459 

gradient.  460 

 461 

Another important feature that enables efficiently sampling of child architectures is the 462 

parameter sharing scheme among child models15. The computational graph for a child model is a 463 

Directed Acyclic Graph (DAG). Under the parameter sharing scheme, we build a large 464 

computational graph, named child DAG with parameters 𝜔, which hosts all possible 465 

combinations of child model architectures. The key observation of ENAS is that each child 466 

model architecture is a subgraph of the child DAG, therefore the training of child model 467 
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parameters is shared and significantly faster. The gradient for the child model parameters 𝜔 is 468 

obtained though Monte Carlo estimate:  469 

𝛻5𝐸6∼8(6;1)[𝐿(𝜔; 𝑎)] =
1
𝑀B𝛻5𝐿(𝜔; 𝑎)

:

;0!

 470 

 471 

In this study, we made the following specifications and modifications in training the controller 472 

RNN parameters 𝜃	and the child DAG parameters 𝜔. The controller RNN was parameterized as 473 

a 1-layer LSTM of 64 hidden units. Following the original ENAS implementation15, we set M=1 474 

for updating 𝜔; and regularized the proportion of residual connections if it deviated from 0.4. 475 

The child DAG was set according to the model space described in the previous section. The child 476 

DAG was first trained for a whole pass of the training data with a batch size of 1000 as a warm-477 

up process. Next, the controller RNN sampled 100 child architectures from the child DAG and 478 

evaluated their rewards. The child architectures and the rewards were used to train the controller 479 

RNN parameters 𝜃. Then we trained the child DAG with architectures sampled from updated 480 

𝜋(𝑎; 𝜃). Both controller and child models were trained by Adam optimizer with a learning rate 481 

of 0.001. These two training processes were alternated for 300 iterations, and the child 482 

architecture with the best reward in the last controller step was extracted.   483 

 484 

Sampled architectures were generated by sampling the computational operations uniformly and 485 

sampling the residual connections at the proportion of 0.4 as used in searched models. Finally, 486 

the child models of searched and sampled were trained from scratch to convergence using 487 

identical setup to facilitate downstream comparisons. Convergence was defined as validation 488 

AUROC not increasing for at least 10 epochs. To more robustly measure the accuracy of 489 
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AMBER, we ran the search and sample processes for six times, respectively. Throughout the 490 

manuscript, all processing and analysis of searched and sampled models were strictly identical, 491 

except for how we derived their corresponding architectures. We referred to the searched model 492 

with best testing performance as AMBER-Seq and referred to the sampled model with best 493 

testing performance as AMBER-Base. 494 

 495 

 496 

Dataset for transcriptional regulatory activity prediction 497 

The generic tasks of interest in this study were to predict transcriptional regulatory activity for a 498 

given DNA sequence. We aimed to design an end-to-end convolutional neural network model 499 

that takes raw one-hot encoded DNA as input. Following the previous work4, we used the pre-500 

compiled training, validation and testing dataset downloaded from 501 

http://deepsea.princeton.edu/help/ . The inputs were one-hot encoded matrices of DNA 502 

sequences built on hg19 reference human genome assembly. The training labels were compiled 503 

from a large compendium of publicly available ChIP-seq datasets, which measure the genome-504 

wide molecular profiles such as protein binding or chemical modifications using high-throughput 505 

sequencing. In total, there are 919 distinct labels for ChIP-seq profiles of transcription factor 506 

binding, histone modification, and DNase accessibility assays in diverse human cell lines and 507 

tissues; and there are 4400000 training samples, 8000 validation samples and 455024 testing 508 

samples, each of 1000 bp (1000 x 4 when one-hot encoded) in length. 509 

 510 

 511 

Allele-specific binding analysis 512 
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A compendium of allele-specific transcription factor binding sites reported previously24 were 513 

compiled for benchmarking the variant effect predictions of the AMBER searched models. 514 

Briefly, ChIP-seq data were collected that measured genome-wide binding profiles for 83 unique 515 

transcription factors. For each binding site, binomial test was performed to test allelic imbalance 516 

and Benjamini-Hochberg False Discovery Rate (FDR) was used to correct for multiple testing. 517 

The baseline machine learning methods and the motif scorings were computed previously24. We 518 

further divided the variants into loss-of-binding alleles (reference reads ratio>0.6 and 519 

FDR<0.01), gain-of-binding alleles (reference reads ratio<0.4 and FDR<0.01), and neutral 520 

alleles (FDR>0.9). 521 

 522 

The transcription factors were then mapped to the corresponding cell lines in the multi-tasking 523 

model. To benchmark the models of AMBER-Seq and AMBER-Base with other baseline 524 

models, we computed the variant effect scores as the log fold-change between reference allele 525 

prediction and alternative allele prediction, as previously described4. Then the AUROCs for 526 

distinguishing loss-of-function and gain-of-function alleles against the neural alleles were 527 

computed for each transcription factor from each model/motif, respectively.  To compare the 528 

variant effect scores across different methods, we further rank-transformed the scores to the 529 

range of [-1, 1] while preserving scores at 0 for each method. 530 

 531 

For the biological case study of variant effect prediction on SNP rs11658786, we reported its 532 

variant effect predictions from AMBER-Seq and AMBER-Base along with available baseline 533 

variant scoring methods24. Variants in high LD with the allele-specific variant of interest were 534 

queried from LDlink webserver38 (https://ldlink.nci.nih.gov/) using the EUR/CEU population and 535 
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R2>0.9. Then the set of variants were processed by plink39 (v1.90) and plotted by R package 536 

gaston40. The eQTLs for allele-specific variants were queried using the GTEx web portal41 537 

(https://www.gtexportal.org/home/). 538 

 539 

 540 

GWAS analysis 541 

To evaluate the informativeness of the variant annotations from different model architectures, we 542 

used stratified LD-score regression34 to assess the heritability enrichment for variant annotations. 543 

First, we downloaded the summary statistics files from UK Biobank for disease phenotypes 544 

reported previously35. Selene17 (v0.4.2) was employed to process the genome-wide variant effect 545 

predictions for SNPs from the 1000 Genome Project (European cohort) for each transcriptional 546 

regulatory feature in both AMBER-designed AMBER-Seq model and uniformly-sampled 547 

AMBER-Base model. Then the variant effect predictions were subsequently converted to LD 548 

scores and regressed on the 𝜒% statistics using ldsc v1.0.1 Python implementation 549 

(https://github.com/bulik/ldsc), conditioned on a set of 97 baseline LD annotations from 550 

baselineLD v2.2 (https://data.broadinstitute.org/alkesgroup/LDSCORE/). We restricted our 551 

analyses for phenotypes with the ratio statistics less than 10% to avoid potential model 552 

misspecifications34. The enrichment P-values were computed by ldsc and corrected for multiple 553 

testing by Benjamini-Hochberg FDR. Regulatory features whose variant annotations were 554 

significant (FDR<0.05) in either the searched AMBER-Seq or the sampled AMBER-Base 555 

models were analyzed for their overlapping statistics and enrichment fold-changes across 556 

models.   557 

 558 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.251561doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.251561


 559 

Data Availability 560 

All data used in this study are publicly available and the URLs are provided in the corresponding 561 

sections in Methods. 562 

 563 

Code Availability 564 

The AMBER package is available at GitHub: https://github.com/zj-zhang/AMBER ; the analysis 565 

presented in this study is available at https://github.com/zj-zhang/AMBER-Seq  566 

 567 

 568 
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