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Figures and Figure Legends: 

 

 

Figure 1: Non-overlapping old versus new histone H3 distribution patterns in mitotic 

Drosophila female germline stem cells (GSCs), but not in cystocytes (CCs). (A) A cartoon 

and corresponding immunofluorescence image depicting the Drosophila germarium. Terminal 
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filament cells (TFC) and cap cells (CapC) create a niche for female germline stem cells (GSC), 

which divide asymmetrically to self-renew and produce a cystoblast (CB). The CB undergoes 

four mitotic divisions to create differentiating cystocytes (CC). The germline (gray) is supported 

by somatic (green) escort cells (EC) and follicle stem cells (FSC) that produce follicle cells that 

surround developing egg chambers. The spectrosome (Spec, red) is a specialized organelle in the 

early-stage germline, such as GSCs and CBs. The spectrosome structure is round while fusome is 

branched, which branches over the mitotic divisions in further differentiated germ cells, 

connecting the CCs within a cyst. (B) A cartoon detailing how the heat shock controlled dual-color 

system driven by GreenEye-nanos-Gal4 labels preexisting (old) histones with eGFP (green 

fluorescent protein) and newly synthesized (new) histones with mCherry (red fluorescent 

protein), respectively. (C) A scheme of recovery time and histone incorporation after heat shock 

that induces an irreversible genetic switch in the histone transgene. (D-F) Old (green) versus new 

(red) histone patterns for H3 (D), H4 (E), and H2A (F) in prometaphase female GSCs marked by 

anti-H3S10ph (gray). (G) Old (red) versus new (green) histone patterns for H3Rev in 

prometaphase female GSCs marked by anti-H3S10ph (gray). (H-J) Old (green) versus new (red) 

histone patterns for H3 (H), H4 (I), and H2A (J) in prometaphase female 4-cell CC marked by 

anti-H3S10ph (gray). (K) Old (red) versus new (green) histone patterns for H3Rev in 

prometaphase female 4-cell CC marked by anti-H3S10ph (gray). (L) Quantification of the 

overlap degree between old and new histones in late prophase and prometaphase GSCs and CCs 

using Spearman correlation: The measurement is from a single Z-slice at the center of each 

mitotic nucleus, which shows results similar to analyzing every Z-slice throughout the entire Z-

stacks followed by averaging them (Fig EV1A, see Materials and Methods). Values are mean + 

95% CI. P-value: pairwise ANOVA test with bonferroni correction. ****: P< 0.0001, n.s.: not 
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significant. Asterisk: niche. Scale bars: 2m. See relevant Supplemental Table for individual 

data points for Fig 1L. 
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Figure 2: Mitotic GSCs and CBs exhibit non-overlapping old versus new histone H3 

patterns, but overall symmetric old and new segregation patterns. (A-C) Telophase GSCs 

marked by H3S10ph (gray) expressing old (green) and new (red) histone H3 show non-

overlapping patterns (A). Telophase GSCs expressing old (green) and new (red) histone H4 show 

moderate levels of overlap (B). GSCs expressing old (green) and new (red) histone H2A show 

high levels of overlap (C). (D) A control where the old and new fluorescent tags have been 

switched shows the non-overlapping patterns of old (red) versus new (green) H3Rev histone in 

mitotic telophase GSCs marked by H3S10ph (gray). (E) Quantification of log2 ratios of total old 

and new histone inherited by each future daughter cell of the GSC division, where a value of 0 is 

equal inheritance at exactly a 1:1 ratio. Values are mean + 95% CI. (F-H) Telophase CBs 

marked by H3S10ph (gray) expressing old (green) and new (red) histone H3 also show non-

overlapping patterns (F). Telophase CBs expressing old (green) and new (red) histone H4 (G) 

and H2A (H), which depict more overlap like GSCs. (I) A control with switched old and new 

fluorescent tags shows the non-overlapping old (red) versus new (green) H3Rev histone patterns 

in mitotic telophase CBs marked by H3S10p (gray). (J) Quantification of log2 ratios of total old 

and new histone inherited by each future daughter cell of the CB division, where a value of 0 is 

equal inheritance at exactly a 1:1 ratio. Values are mean + 95% CI. (K) Summary of total old 

histone inherited in GSCs and CBs: <1.2-fold is symmetric, >1.2-fold but <1.4-fold is 

moderately asymmetric, and >1.4-fold is highly asymmetric. Asterisk: niche. Arrowheads (cyan): 

biased spec inheritance. Scale bars: 2m. See relevant Supplemental Tables for individual data 

points for Fig 2E and Fig 2J. 
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Figure 3: bam mutant germ cells recapitulate the separable old versus new H3 distribution 

in WT GSCs, and Oligopaint IF-FISH reveal distinct old versus new H3 at key genes. (A) A 

cartoon depicting a WT germarium with differentiating germline at different stages (gray) 

compared with a bam mutant ovariole filled with GSC-like cells (pink) without further 
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differentiated germ cells. Undifferentiated cells can be identified by the presence of dotted 

spectrosome versus branched fusome structure (purple). (B-C) Non-overlapping patterns of old 

(green) versus new (red) histone H3 (B) and overlapping patterns for H2A (C) in mitotic 

prometaphase bam mutant cells marked by anti-H3S10ph (gray), similar to WT GSCs. Scale 

bars: 2m. (D) Quantification of the overlap between old and new histones in late prophase and 

prometaphase bam mutant cells using Spearman correlation, also plotted with and compared to 

the WT GSC values from Fig. 1L. Values are mean + 95% CI. P-value: pairwise ANOVA test 

with bonferroni correction. ****: P< 0.0001. n.s.: not significant. (E) A cartoon depicting the 

Oligopaint IF-FISH scheme to identify old versus new histone inheritance at single genomic loci 

in mitotic cells. (Left) A germarium containing a GSC in prometaphase, where the 3D chromatin 

structure may disguise local asymmetries at genomic regions of interest. (Top) A linearized gene 

of interest (GOI) displays local asymmetries. (Bottom) Two anaphase cells depict potential 

Oligopaint IF-FISH results. Maternal chromosomes are outlined in pink and paternal ones in 

blue. (Bottom Left) Probes recognize genes (magenta) that change their epigenetic state in a 2:2 

ratio with biased old:new H3-enriched regions. In this instance, each duplicated sister chromatid 

from either maternal or paternal chromosome has an “agreement” on old (green, inherited by 

GSC indicated by an asterisk) versus new (red, inherited by the CB) H3. (Bottom Right) Probes 

recognize genes (cyan) that maintain their epigenetic state associated with more symmetric 

regions (yellow) that do not have a strong bias for either old or new H3. (F-H) Examples 

showing old (green) versus new (red) H3 distribution at a single genomic locus labeled with 

fluorescent probes (gray) for dad gene (F), bgcn gene (G), and ss gene (H) in bam mutant GSC-

like cells at prometaphase marked by anti-H3S10ph (blue). Scale bars: 1m. (I) Examples of 

scatter plots showing probe’s association with normalized old H3 (green, above X=Y line) versus 
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new H3 (red, below X=Y line) and the (i):(ii):(iii) ratios that result from them, where (i) is the 

number of FISH signals more associated with old histone, (ii) is the number of FISH signals that 

had equal association with both old and new histone, and (iii) is the number of FISH signals 

more associated with new histone. (J) Quantification of the probe association ratios with old 

versus new H3 for each candidate gene in bam mutant germ cells. See relevant Supplemental 

Tables for individual data points for Fig 3D and Fig 3J. 
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Figure 4: Oligopaint IF-FISH reveals differential old versus new H3 inheritance at key 

genes for maintaining stem cell fate or promoting differentiation in WT female GSCs. (A-

B) Old (green) versus new (red) histone patterns with a single genomic locus labeled with 

fluorescent probes (cyan) for dad (A) and bam (B) in WT prometaphase female GSCs, marked 
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by anti-H3S10ph (gray). (C-D) Old (green) versus new (red) histone inheritance patterns with 

single genes labeled with fluorescent probes (cyan) for dad (C) and bam (D) in WT telophase 

female GSCs, marked by anti-H3S10ph (gray). (E) Quantification of the probe association ratios 

with old versus new H3 for each candidate gene in WT female GSCs. Asterisk: niche. 

Arrowheads: probe signal. Scale bars: 1m. Zoomed-in images of each probe are displayed to 

the right of each figure panel. Scale bars: 0.1m. See relevant Supplemental Table for individual 

data points for Fig 4E. 
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