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ABSTRACT17

Evaluation of ecological forecasts is a vital step in the continuous improvement of near-term ecological
forecasts. Here we performed a thorough evaluation of a near-term phenological forecast system which
has been operating for several years. We evaluated point forecast accuracy and the reliability of the
prediction intervals. We also tested the contribution of upstream climate forecasts on phenology forecast
proficiency. We found that 9 month climate forecasts contributed little skill overall, though some species
did benefit from them. The assimilation of observed winter and spring temperature provided the largest
improvement of forecast skill throughout the spring. We also found that phenology forecast prediction
intervals were most robust when uncertainty was propagated from climate, phenological model, and
model parameters as opposed to using climate uncertainty alone. Our analysis points the way toward
several potential improvements to the forecasting system, which can be re-evaluated at a future date in a
continuous cycle of forecast refinement.
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INTRODUCTION29

Predicting the future state of ecological systems is essential for conservation, management, stakeholder30

engagement, and the evaluation of ecological models. Near-term iterative forecasting, where forecasts31

are regularly updated based on the newest available data, can improve the accuracy of future predictions32

by using up-to-date information about the system and the newest forecasts for the drivers of the system33

(Dietze et al., 2018; White et al., 2019). The regularly updated nature of these forecasts also allows34

stakeholders and decision makers to use these forecasts for decision making (Dietze et al., 2018). One35

area of ecology with clear applications for near-term iterative forecasting is plant phenology, the timing36

of regularly occurring events including leaf-out, flowering, and fruiting. The timing of these events has37

broad influences on ecosystems and is relevant to agriculture, tourism, and wildlife management.38

While near-term iterative ecological forecasting is becoming more prevalent (Van Doren and Horton,39

2018; Welch et al., 2019; White et al., 2019; Thomas et al., 2020; Pearlstine et al., 2020) there has been40

limited work evaluating these forecasts and attempting to determine how different aspects of the iterative41

system influence their performance. Quantifying the proficiency of a forecast and how it is influenced by42

different aspects of data and modeling aids end users in forecast interpretation, allows inter-comparison43

of different models and methods, and can point the way toward model improvement. Three key aspects44
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of iterative forecasts are driver forecasts (e.g., forecasts for future weather/climate), data assimilation45

(updating models with the newest information on drivers or ecological responses or both), and uncertainty46

propagation (incorporating uncertainty from each step in the forecast into the final predicted uncertainty).47

In the context of phenology this means a focus on forecasts and data assimilation of temperature drivers48

and the propagation of uncertainty from these climate drivers, the choice of phenology model, and the49

parameters of the model.50

The use of long-term driver forecasts (greater than 25 years) based on climate scenarios is ubiquitous51

in ecological research, but near-term climate and weather forecasts (less than 1 year) have received less52

attention. The degree to which near-term weather and climate forecasts improve near-term ecological53

forecasts is currently unclear, and incorporating these forecasts into ecological models can be difficult54

due to computational challenges (Taylor and White, 2020) and substantial uncertainty in the forecasts55

(Dietze, 2017). This uncertainty, coupled with the potentially chaotic nature of some ecological responses56

(Perretti et al., 2013), may limit the effectiveness of integrating these climate and weather forecasts.57

Additionally, population time-series have been shown to be well predicted one time step ahead by simple58

models without climate drivers (Ward et al., 2014). However, many aspects of ecological systems are59

closely tied to weather and climate and should benefit from including these forecasts. For example, Van60

Doren and Horton (2018) showed a bird migration model had ample explanatory value using a 7-day61

weather forecast (R2=0.62), and Carrillo et al. (2018) found that a spring index model had positive skill62

up to a two month lead time by integrating climate forecasts. Exploring how these forecasted drivers, and63

their associated uncertainty, affect performance is an important step in evaluating near-term ecological64

forecasts (Dietze et al., 2018).65

Assimilating the most up-to-date data on these climate drivers prior to forecasting is also likely to in-66

fluence phenology forecasts due to the influence of lagged variables. Plants rely heavily on environmental67

cues throughout the late winter and early spring for the timing of dormancy release (Chuine and Régnière,68

2017; Piao et al., 2019). Therefore, as time passes, and more observed weather data can be assimilated69

into the phenological forecasts should become more accurate. Climate and weather forecasts themselves70

are also more accurate at shorter lead times, thus should provide more accurate phenology forecasts as71

dormancy release draws nearer. From these two processes, improved climate weather forecasts at shorter72

lead times and assimilation of lagged variables, phenological forecasts should improve as spring and the73

growing season progresses. However, there has been little exploration of the relative influence of data74

assimilation and improved weather forecasts on ecological predictions.75

Integrating climate forecasts and assimilating climate data into ecological forecast systems both come76

with development and computational costs (Taylor and White, 2020; Thomas et al., 2020; Welch et al.,77

2019), and they should be rigorously tested to justify inclusion over simpler methods. Comparison against78

a baseline model, such as one based on the long term climatological average, allows the assessment of79

“forecast skill” (Jolliffe and Stephenson, 2003; Harris et al., 2018) which indicates the improvements to80

the model by including detailed forecasts and data on climate.81

Climate forecasts also involve additional uncertainty in the resulting ecological forecasts, and under-82

standing this uncertainty is essential for using forecasts for decision making (Clark, 2001; Dietze, 2017;83

Dietze et al., 2018). Focusing on point estimates alone causes end-users to apply their own, potentially84

inaccurate, uncertainty and lead to less decisive decision making (Joslyn and Savelli, 2010; Savelli and85

Joslyn, 2013). Communicating quantifiably derived uncertainty metrics allows for the best-informed86

decisions and gaining trust in a forecast (Raftery, 2016). Prediction intervals which are overly narrow87

(too confident) or overly wide (not confident enough) can lead to flawed decision making, especially if88

end-users make decisions based on probabilistic values (Zhu et al., 2002). The phenology forecast system89

currently used in production only uses uncertainty associated with climate, but additional uncertainty from90

the phenological model components may be beneficial. Specifically the uncertainty associated with choice91

of phenological model and the model’s parameters may affect the size and proficiency of the prediction92

intervals (Migliavacca et al., 2012).93

Here we evaluated a near-term phenological forecast system which has been online for over 2 years94

(Taylor and White, 2020). We show how integrating current season temperature can improve forecasts95

over a climatological average, and decompose the contribution from observed versus forecasted climate.96

The uncertainty of the forecast system was also evaluated, and partitioned into the respective sources the97

model, model parameters, and climate drivers. Finally we discuss how best to implement these findings98

and the implications to other forecast systems.99
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METHODS100

Detailed description of the phenology forecast system and its models are described in Taylor and White101

(2020). In brief, for each species and phenophase an ensemble of four phenology models was developed102

using data from the National Phenology Network (USA National Phenology Network, 2019) and tempera-103

ture from PRISM (PRISM Climate Group, 2004). At each forecast issue date observed daily temperature104

from the PRISM dataset is combined with downscaled NOAA CFSv2 forecasts (Saha et al., 2014). The105

combined dataset is used with with each of the phenological models to produce a predicted day of year106

(DOY) for the onset of the specified event (ie. budburst, flowering, mature fruit, or fall colors).107

Evaluation of Point Forecasts108

The current archived operational phenological forecasts hold a point value and uncertainty based only on109

climate. Therefore, to allow detailed evaluation of all sources of uncertainty we retroactively performed110

hindcasts every four days from Dec. 1 to May 30 2018. For each issue date we obtained the five most111

recent climate forecasts available prior to the issue date, downscaled them according to the methods112

described in Taylor and White (2020), and applied the phenology models to produce a phenology hindcast.113

We used the same four-model ensemble (Linear, Alternating, ThermalTime, Uniforc) described in Taylor114

and White (2020), with the exception that the ensemble is unweighted and each of the four models was fit115

50 times using bootstrapping of the data. This allows us to estimate both model and parameter uncertainty.116

For evaluation we obtained all USA-NPN observations from the 2018 growing seasons (Jan. 1 to June117

1, 2018) and filtered them following protocols in Taylor and White (2020). Using the coordinates of each118

observation we extracted the hindcasts for each issue date. Thus for each observation there are hindcasts119

from 48 issue dates throughout the prior winter and spring. For each issue date we calculated the RMSE120

and coverage (see below) of all observations. We also calculated the RMSE for the four most abundant121

taxon (three distinct species and one species complex) observed in the spring of 2018.122

Evaluation of Uncertainty123

We evaluated the uncertainty in our forecast system by calculating the coverage, which is the fraction124

of observations that fall within the prediction interval. For a forecast with uncertainty based on a 95%125

prediction interval perfect coverage is obtained when 95% of the observations fall within those intervals.126

A coverage below 95% signifies the forecast is too confident, and above 95% not confident enough (Harris127

et al., 2018). Uncertainty in our phenological forecasts can come from three sources: 1) uncertainty in128

forecasted climate, 2) uncertainty in selecting the true phenological model that represents the underlying129

mechanisms, and 3) uncertainty in the parameters fit for the selected models (Dietze, 2017). We looked130

at the additive contribution of uncertainty from these three sources by calculating the coverage on three131

different posterior distributions for each hindcast prediction at each issue date. The first represents climate132

uncertainty and is the standard deviation of the mean prediction for each climate ensemble member. The133

second is climate and model uncertainty and is the standard deviation of the mean prediction for each134

phenology model within each climate ensemble member. The third combines all sources (climate, model,135

and parameter) and is the standard deviation of the full posterior among all climate members, phenology136

models, and bootstrapped parameter sets (see Fig. S1).137

Evaluating Changes in Forecast Accuracy With Issue Date138

Forecast accuracy is expected to decrease as the lead time (or forecast horizon) of the forecast increases139

(i.e., forecasts further into the future are generally less accurate; Petchey et al. (2015)). Calculating the140

forecast horizon is complicated for large scale phenology forecasts because the response variable itself141

is a date that varies across space, confounding the traditional concept of lead time. For example, given142

a forecast issued on Feb. 1, a prediction of leaf onset happening Feb. 15 could be a 15 day lead time.143

At a higher latitude the same Feb. 1 forecast may predict a leaf onset of March 2, resulting in a 30144

day lead time. This is different from standard forecast horizon analyses which analyze predictions for145

the value of a non-time response a fixed number of days into the future. Given these complexities, we146

analyze forecast accuracy at different issue dates rather than lead times. This provides information on the147

overall accuracy of phenology forecasts made on different dates for the United States. We explored other148

approaches including calculating lead time as the difference between issue date and forecast date of the149

phenological event, but all of these solutions introduced complexities that made interpretation difficult.150

Future development of methods for analyzing lead time of date predictions would improve research on151

phenology forecasts.152
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Influence of data assimilation and near-term temperature forecasts on forecast skill153

To evaluate and compare the contribution to forecast skill derived from near-term temperature forecasts and154

data assimilation of observed temperatures, we compared three distinct approaches to generating future155

temperatures for the phenological forecasts (Fig. 1). The first method combines both data assimilation of156

observed temperature (from PRISM) up to the issue date and near-term temperature forecasts from five157

member climate forecast ensemble (Method 1, Fig. 1A). For each phenological model this produces five158

predictions (one for each climate ensemble member) which are used to produce an average prediction date159

along with associated climate uncertainty from the variance among the five climate ensemble members.160

This is the method currently implemented in the automated forecasting system. The second method161

uses data assimilation but replaces near-term forecasts with historical information on temperature to162

provide a baseline to assess the value of near-term forecasts. This is done by assimilating observed163

temperature up to the specified issue date and replacing the five near-term temperature forecasts from164

NOAA with historic observed temperature time series from each of the last 20 years. For example for165

an issue date of Feb. 1, 2018 the prediction uses the observed temperature from PRISM for Nov. 1,166

2017 thru Jan. 31, 2018 and the future temperatures are modeled as historic temperature from Feb. 1 -167

Aug. 1, 2018 for each historic year from 1996-2015. For each phenological model this produces twenty168

predictions (one for each year from 1996-2015) at each issue date, which are used to produce a mean169

prediction date along with associated climate uncertainty from the variance among the 20 different years170

(Method 2, Fig. 1B). This method allows us to discern the contribution of observed versus forecast171

temperature to phenology forecast performance. The final method uses neither climate data assimilation172

nor near-term temperature forecasts. This is done by replacing both observed temperatures up to the issue173

date and forecast temperatures beyond the issue date with historic observed temperature time series from174

1996-2015. For each phenological model this produces twenty predictions (one for each from 1996-2015),175

which are used to produce a mean prediction along with associated climate uncertainty from the variance176

among the twenty different historical time series (Method 3, Fig. 1C).177

Software packages used throughout the evaluation include, for the R language, ggplot2 (Wickham,178

2016) , prism (Hart and Bell, 2015), tidyr (Wickham and Henry, 2018), lubridate (Grolemund and179

Wickham, 2011). From the python language we also utilized xarray (Hoyer and Hamman, 2017), dask180

(Dask Development Team, 2016), scipy (Virtanen et al., 2020), numpy (Oliphant, 2006)], and pandas181

(McKinney, 2010). All code described is available on a GitHub repository (https://github.com/182

sdtaylor/phenology_forecasts). The code as well as 2018 hindcasts and observations are also183

permanently archived on Zenodo (https://doi.org/10.5281/zenodo.3990010).184

RESULTS185

For early issue dates (predictions for spring events made in December through March), average point186

estimate predictions (across species and locations) made using both data assimilation of observed temper-187

ature and near-term climate forecasts (Method 1) had larger errors that those based on data assimilation188

of observed temperature alone (Method 2) and those using only climatology (no data assimilation or189

near-term forecasts, Method 3) (Fig. 2A). Climatology and data assimilation only forecasts had very190

similar point estimate errors during this period (Fig. 2A). All three methods underestimated uncertainty191

during this period, with the assimilation+forecast method generally having the worst uncertainty estimates192

(Fig. 2B).193

Beginning around April 1, average point estimates based on assimilation-only and assimilation+forecast194

methods produced similar errors that were lower than the errors from climatology alone (Fig. 2A). How-195

ever uncertainty estimates were better (higher coverage) for the climatology based predictions during this196

period (Fig. 2B). For a short period from the beginning of March to mid-April coverage from observed197

temperature and climatology was the worst overall.198

We also explored patterns within individual species by focusing on the four taxon with the most199

data in the National Phenology Network dataset (Fig. 3). Acer rubrum showed similar patterns to the200

across species average. Forsythia spp. had similar errors for all three methods for early issue dates,201

the best performance by the assimilation+forecast method for intermediate issue dates, and equivalent202

performance by assimilation+forecast and assimilation-only methods for late issue dates (with worse203

predictions by the climatology method). Prunus serotina showed a pattern similar to Forsythia spp., but204

with the assimilation+forecast method performing slightly worse than the other method for early issue205

date forecasts. For Cornus florida the errors were highest for the assimilation+forecast method until the206
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last few issue dates.207

Across all three methods, incorporating all sources of uncertainty (climate, model, and parameter)208

led to the best coverage at approximately 80% of observed data points falling within the 95% prediction209

interval (Fig. 4). When prediction intervals were derived using only climate uncertainty, then coverage210

decreased to nearly 0 by the end of the forecast period, meaning that failing to account for other sources211

of uncertainty would have resulted in dramatically overconfident predictions. When prediction intervals212

were derived using only climate and model uncertainty coverage decreased slightly and was consistently213

worse than using all three uncertainty sources together.214

DISCUSSION215

We evaluated a near-term species level plant phenology forecast system to explore the importance of data216

assimilation, near-term climate forecasts, and uncertainty propagation in the performance of the forecasts.217

Evaluation is an important step as it gives users a quantitative understanding of forecast performance.218

Our analysis showed that plant phenology forecasts for 2018 were skillful (better than the long-term219

average) starting in mid-April on average. Most of the skill came from assimilating observed temperature220

data prior to making the forecast, not from using forecasted temperature. While overall performance221

across all species was not improved by incorporating climate forecasts, several species did benefit from222

them. Uncertainty in forecasts, though slightly overconfident, was best when propagating all three223

sources of uncertainty (climate, model, and parameter) (Dietze et al., 2018). These results illustrate the224

central importance of assimilating continuously updated climate data into automated systems for making225

ecological forecasts and suggests that further exploration into the best ways to integrate near-term climate226

forecasts into phenological prediction is necessary.227

While several studies have shown ecological forecasting can be aided by weather and climate forecasts228

(Carrillo et al., 2018; Van Doren and Horton, 2018), climate forecasts with a lead time of 1 year or less are229

still rarely used in ecology, likely because of the associated computational challenges (Taylor and White,230

2020). Our species level analyses show some potential value for incorporating these climate forecasts,231

which produced increases in skill for two of the most common plants in our forecast system, Forsythia232

spp. and Prunus serotina, midway through the spring of 2018. These were the exception though, as233

overall climate forecasts provided little improvement over the assimilation of observed temperature, which234

provided most of the increase in skill. This is surprising since temperature plays such a fundamental role235

in the timing of phenological events (Chuine and Régnière, 2017; Piao et al., 2019).236

The minimal gains from including temperature forecasts are due in part to the high uncertainty present237

in near-term temperature forecasts more than a week into the future (Dietze, 2017). Our system uses238

temperature forecasts obtained from the CFSv2 global climate model, which makes better predictions239

than climatological temperature only 20% of the time from January to June (Saha et al., 2014). This240

uncertainty in the climate forecasts places a hard limit on how much better the resulting phenological241

forecasts can perform than a climatology only method. However, disregarding climate forecasts entirely242

is likely not desirable, as assimilating observed temperature alone exhibited increased errors midway243

thru spring. This increase in error was even more pronounced at the species level. This was likely due244

to improbable temperature profiles from combining observed and historic temperature (Fig. 1C, Fig.245

S2) resulting in increasingly inaccurate predictions. In these cases the integration of climate forecasts is246

advantageous.247

Improvements could be made to the climate forecast integration, such as improved downscaling248

methods or the addition of alternative global climate models. Carrillo et al. (2018) found a large increase249

in skill by using a post-hoc ensemble bias correction with a long training time series, and a similar250

bias correction could be applied to in our system. There are other abiotic drivers which are important251

for phenology, such as precipitation and daylength (Diez et al., 2012). Integrating other drivers from252

climate forecast models may not be advantageous though as they generally have low skill at the needed253

scales. For example precipitation has very low skill in the CFSv2 (Saha et al., 2014). One option may be254

utilizing teleconnections, or large-scale climatic indices. The CFSv2 has very high skill in forecasting the255

El Niño 3.4 Index. Thus, correlative models using large scale indices, as opposed to localized process256

based models, may be more suitable for ecological forecasts when integrating upstream climate forecasts257

(Hallett et al., 2004).258

With the current limitations of integrating different climate data there are several potential paths259

forward. One option is to focus the forecasts on the data assimilation only model (Method 2) and260

5/12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.18.256057doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256057
http://creativecommons.org/licenses/by/4.0/


disregard the climate forecasts. This model performs best overall with reasonable predictions at all261

issue dates. However, it does yield the worst predictions for some species at intermediate issue dates262

(Fig. 2B). Therefore, an alternative would be to disregard current year data entirely, and use only the263

climatological method (Method 3). This would essentially mean a static prediction representing the264

long term average and variation. This simple approach provides stable predictions with relatively low265

RMSEs (ca. 2 weeks), and providing this information at the species level across the entire range for 78266

species provides actionable information for decision making. This highlights the fact that even baseline or267

unskillful models can be useful if all that is needed are accurate predictions (Harris et al., 2018). However,268

we know that for later season forecasts data assimilation and, in some cases, temperature forecasts can269

improve predictions. So, an immediate solution would be an ensemble of two methods (climatology only270

and observed temperature assimilation plus forecasted temperature) weighted by species and time of271

year. The inclusion of temperature forecasts should not make phenology predictions worse on average,272

so the decrease in performance of this model reflects variance from the average in the evaluation year.273

Ensembling this model with the climatology method, and shifting the weight from the climatology method274

to the assimilation+forecast method as spring progresses, could provide the best aspects of all different275

approaches.276

We tested different combinations of uncertainty from three sources: a climate ensemble, a phenological277

model ensemble, and variation around phenological model parameters. Using only uncertainty derived278

from climate is not sufficient as it leads to overly confident prediction intervals, especially when climate279

uncertainty is low in late spring (Fig. S3). Integrating the other two sources of uncertainty allowed for280

more reliable, though still overconfident, prediction intervals throughout the spring. Incorporating other281

sources of uncertainty, such as from an observation or process model component, are future avenues for282

improving the reliability of phenology forecasts (Dietze, 2017). Alternatively, methods which improve283

the point forecasts, thereby shifting the prediction interval, will also improve forecast uncertainty.284

Evaluation of forecast performance is an important step in developing reliable and trustworthy285

ecological forecast infrastructure (Dietze et al., 2018). Here we showed that an automated continental286

scale forecast system can produce skillful forecasts starting in mid-spring on average, and earlier for some287

species. Though most of the skill comes from assimilating observed, as opposed to forecasted, temperature.288

Future improvement in the forecast system can focus on better modelling and ensemble methods or289

integrating large scale climate indices such as sea surface temperature. Forecast prediction intervals290

should include all possible sources of uncertainty to improve reliability. After changes are implemented291

future evaluations should confirm any improvement to forecast skill using the latest observations. This292

continuous cycle of open evaluation and improvement will facilitate a reliability and trustworthy plant293

phenology forecast system.294
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Diez, J. M., Ibáñez, I., Miller-Rushing, A. J., Mazer, S. J., Crimmins, T. M., Crimmins, M. A., Bertelsen,313

C. D., and Inouye, D. W. (2012). Forecasting phenology: from species variability to community314

patterns. Ecology Letters, 15(6):545–553.315

Grolemund, G. and Wickham, H. (2011). Dates and times made easy with {lubridate}. Journal of316

Statistical Software, 40(3):1–25.317

Hallett, T. B., Coulson, T., Pilkington, J. G., Clutton-Brock, T. H., Pemberton, J. M., and Grenfell, B. T.318

(2004). Why large-scale climate indices seem to predict ecological processes better than local weather.319

Nature, 430(6995):71–75.320

Harris, D. J., Taylor, S. D., and White, E. P. (2018). Forecasting biodiversity in breeding birds using best321

practices. PeerJ, 6:e4278.322

Hart, E. M. and Bell, K. (2015). prism: Download data from the oregon prism project.323

http://github.com/ropensci/prism.324

Hoyer, S. and Hamman, J. J. (2017). xarray: N-d labeled arrays and datasets in python. Journal of Open325

Research Software, 5.326

Jolliffe, I. T. and Stephenson, D. B., editors (2003). Forecast verification: a practitioner’s guide in327

atmospheric science. John Wiley and Sons, Ltd.328

Joslyn, S. and Savelli, S. (2010). Communicating forecast uncertainty: public perception of weather329

forecast uncertainty. Meteorological Applications, 17(2):180–195.330

McKinney, W. (2010). Data structures for statistical computing in python. In Proceedings of the 9th331

Python in Science Conference, pages 51–56, Austin, Texas, USA. SciPy.332

Migliavacca, M., Sonnentag, O., Keenan, T. F., Cescatti, A., O’Keefe, J., and Richardson, A. D. (2012).333

On the uncertainty of phenological responses to climate change, and implications for a terrestrial334

biosphere model. Biogeosciences, 9(6):2063–2083.335

Oliphant, T. (2006). A guide to NumPy. Trelgol Publishing, Provo, UT.336

Pearlstine, L. G., Beerens, J. M., Reynolds, G., Haider, S. M., McKelvy, M., Suir, K., Romañach, S. S.,337
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Figure 1. Simulated example showing the three different approaches to climate data integration for both
observed (pre-issue date) and forecast (post-issue date) temperatures. The dotted vertical line indicates
the issue date. Black lines indicate observed temperatures from the year of the forecast up to the issue
date is used. Method 1 (A) uses 5 climate forecast members (purple lines) each integrated with observed
temperature. Method 2 (B) uses 20 historic climate members for forecasts (green lines; historic data from
from 1996-2015), which are each integrated with observed temperature up to the issue date. Method 3 (C)
uses only data on historic climate, using 20 historical time series of observed temperature for both the
observed and forecast temperatures.
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Figure 2. The root mean square error (RMSE) and coverage of all forecasts using the three
methodologies for data assimilation. Horizontal orange lines indicate the RMSE from using the long-term
climatological average. Coverage was calculated using all three sources of uncertainty (climate, model,
and parameter).
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Figure 3. The root mean square error at different issue dates for the four taxon with the most observed
data points in USA-NPN network dataset in the spring of 2018.
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Figure 4. The average coverage for all forecasts. The dashed line indicates perfect coverage, 0.95, when
using a 95% prediction interval. Panels indicate the three methods for climate data integration; current
year observed temperature and forecast temperature (Method 1; A), current year observed temperature
and climatology (Method 2; B), and climatology only (Method 3; C). Colors indicate the coverage when
different sources of uncertainty are propagated.
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