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Abstract 

Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and 

digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these 

evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological 

method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds 

(CALB). Our results showed that the ancestral archosaur exhibited a predominant Darwinian selection of 

protein and fat digestion and absorption, whereas the CALB showed a marked enhanced selection of 

carbohydrate and fat digestion and absorption, suggesting a trophic shift from carnivory to herbivory (fruit, 

seed, and/or nut-eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory 

may have essentially made them become a low-level consumer and, consequently, subject to relatively 

high predation risk from potential predators such as gliding maniraptorans, from which birds descended. 

Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved 

not only flapping flight as a possible anti-predator strategy against gliding predatory maniraptorans but 

also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and 

minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of 

birds may have evolved as a result of their tropic shift-associated predation pressure.   

Keywords: Early birds, herbivory, predator avoidance, flapping flight, toothless, crop, gizzard 

Introduction 

Diet plays a fundamental role in the life of an animal. It defines interactions with other organisms and 

shapes their evolution. Modern birds exhibit diverse diet preferences, including herbivory, omnivory, and 

carnivory, while the diet of ancestral birds remains less clear. Fossil evidence shows that ever since the 

origin of birds from the Late Jurassic, they underwent adaptive radiation to diversified dietary niches in 

the Cretaceous, with herbivorous (e.g., fruits and seeds), piscivorous, and insectivorous diets found (Zhou 

and Zhang 2002; Zhou et al. 2003; Benton 2015; Chatterjee 2015; Chiappe and Qingjin 2016; Ksepka et al. 

2019; O'Connor 2019; O'Connor and Zhou 2020). In particular, seed and/or fruit eating are suggested in 

many ancestral bird lineages, such as Jeholornis, Sapeornis, Hongshanornis, and Yanornis (Zhou and Zhang 

2002; Zheng et al. 2011; Benton 2015; Chatterjee 2015; Chiappe and Qingjin 2016; Mayr 2017; Ksepka et al. 

2019; O'Connor 2019; O'Connor and Zhou 2020). This suggests that seed and/or fruit eating may have been 

relatively common during the early evolution of birds and that this herbivorous adaptation may play a vital 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.18.256131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256131
http://creativecommons.org/licenses/by-nc/4.0/


3 

 

role in the early evolution of birds (Zanno and Makovicky 2011; Zheng et al. 2011; Chatterjee 2015; Wang 

et al. 2016a).        

Studies in comparative digestive physiology provide important insights into understanding the molecular 

bases underlying the dietary variation of animals (Karasov et al. 2011; Karasov and Douglas 2013). 

Accumulating evidence has revealed a fundamental pattern that the digestive physiology of animals 

evolves in parallel with their diets (Karasov et al. 2011; Karasov and Douglas 2013; Miller and Harley 2016). 

And the digestion and absorption capability of animals generally reflects their dietary load of different 

nutrient substrates such as carbohydrates, proteins, and fats (Corring 1980; Karasov and Diamond 1988; 

Hidalgo et al. 1998; German et al. 2004; Karasov et al. 2011). The higher the nutrient substrate, the higher 

the expression and activity of its corresponding digestive enzymes and nutrient transporters and vice versa 

(Karasov et al. 2011; Karasov and Douglas 2013). This suggests that the digestion and absorption capability 

of animals is under evolutionary adaptation to approximately match loads of different dietary components 

such as carbohydrates, proteins and fats in their diets (Schondube et al. 2001; Karasov et al. 2011; Karasov 

and Douglas 2013; Wang et al. 2016c; Hecker et al. 2019; Wang et al. 2020). With this in mind, one would 

expect that herbivores and carnivores would tend to present an evolutionary enhancement of the 

digestion and absorption of plant food and meat, respectively. Regarding plant food and meat (including 

both invertebrates and vertebrates), one of the important differences between them is that meat is 

generally high in proteins and fats, while plant food is generally high in carbohydrates (Clinic 2002; Karasov 

et al. 2011; Chen and Zhao 2019; Hecker et al. 2019; Wang et al. 2020) except seeds, particularly nuts, 

which are rich in fat as well (Clinic 2002). Indeed, recent studies on the evolution of digestive system-

related genes have shown that carnivores more likely show an evolutionary enhancement of the genes 

related to the digestion and absorption of proteins and fats, while animals consuming abundant plant 

foods (e.g., herbivores and omnivores) tend to exhibit an evolutionary enhancement of the genes related 

to the digestion and absorption of carbohydrates (Chen and Zhao 2019; Wang et al. 2020; Wu et al. 2020), 

with the exception of parrots, which ingest seeds and nuts and present an evolutionary enhancement of 

the digestion and absorption of fat in addition to carbohydrates (Wu et al. 2020). This may suggest that the 

adaptive evolution of digestive system-related genes is capable of reflecting the dietary variations of 

different animals (Chen and Zhao 2019; Wang et al. 2020; Wu et al. 2020).   

The recent development of a molecular phyloecological approach, which employs the phylogenetic 

evolutionary analyses of the molecular markers indicative of trait states, allows us to reconstruct ancestral 
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traits using molecular data (Wu et al. 2017; Wu et al. 2018; Wu and Wang 2019). The substantial dietary 

differences between carnivores and herbivores in terms of the amounts of dietary components (e.g., 

carbohydrates, proteins, and fats) (Clinic 2002; Karasov et al. 2011; Hecker et al. 2019; Wang et al. 2020), 

and the adaptation of digestive system-related genes to the variations of dietary components of animals 

(Schondube et al. 2001; Karasov et al. 2011; Karasov and Douglas 2013; Wang et al. 2016c; Hecker et al. 

2019; Wang et al. 2020; Wu et al. 2020) may suggest that digestive system-related genes can be used as 

the molecular markers of diets to reconstruct the diets of ancestral animals in the context of molecular 

phyloecology (Wu et al. 2020). In this study, we employed the molecular phyloecological approach using 

digestive system-related genes as molecular markers to infer the diets of the ancestral archosaur and of 

the common ancestor of living birds (CALB). Our results revealed a diet shift from carnivory to herbivory at 

the archosaur-to-bird transition. The molecular findings of the diet shift, coupled with the research 

advance of avian paleontology, provide new insights into understanding the origin of birds.  

Results 

We examined the adaptive evolution of 83 digestive system-related genes (Table S1) in the context of 

sauropsid phylogeny (Fig. 1). The 83 genes came from the three pathways related to carbohydrate 

digestion and absorption (CDA), protein digestion and absorption (PDA), and fat digestion and absorption 

(FDA) (Fig. 2). Following the molecular phyloecological approach to reconstruct ancestral traits (Wu et al. 

2017; Wu et al. 2018; Wu and Wang 2019), we used branch and branch-site models implemented in PAML 

software (Yang 2007) to detect positively selected genes (PSGs) along our target branches, and PSGs were 

found based on branch-site model (Tables S2-3). The evidence of the positive selection of genes may 

suggest a functional enhancement of their corresponding functions in relevant lineages (Wu et al. 2017; 

Wu et al. 2018; Wu and Wang 2019).  

We initially analyzed the positive selection of the digestive system-related genes along the common 

ancestor branch of living birds. Among the 83 genes analyzed, we found 17 PSGs across all three pathways, 

with CDA and FDA showing the most predominant positive selection, and PDA showing the relatively 

weakest positive selection in terms of p values and the number of PSGs (Table S2, Fig. 2).  For CDA, seven 

PSGs (ATP1B3, ATP1B4, HK3, SLC5A1, LCT, SI, and SLC2A5) were found with generally low p values 

compared to those PSGs found in FDA and PDA. Among the seven PSGs found, three genes, SI, LCT, and 

HK3, showed the most predominant positive selection signals. SI encodes sucrase-isomerase and is 

essential for the digestion of dietary carbohydrates, such as starch, sucrose, and isomaltose (Naim et al. 
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1988). LCT shows lactase activity and phlorizin hydrolase activity (Boll et al. 1991). HK3 is involved in 

glucose metabolism (Furuta et al. 1996). Similar to HK3, one positively selected gene, SLC5A1, also plays a 

role in glucose metabolism, functioning as a transporter of glucose in the small intestine (Wright et al. 

2007). Intriguingly, we detected the positive selection of one gene SLC2A5, encoding GLUT5, which is 

known to have an exclusive affinity for fructose (fruit sugar) and is the major fructose transporter in the 

intestines and other tissues, mediating the uptake of dietary fructose (Douard and Ferraris 2008; Cura and 

Carruthers 2012; Mueckler and Thorens 2013). We also detected the positive selection of ATP1B3 and 

ATP1B4, which encode the Na+/K+ ATPase involved in the CDA pathway to maintain ionic homeostasis (Li et 

al. 2011). Besides CDA, we detected PSGs involved in the FDA pathway, and eight PSGs (ABCG5, AGPAT1, 

AGPAT2, APOA1, APOA4, APOB, CD36 and NPC1L1) were found. Of these, CD36 plays an important role in 

the uptake and processing of fatty acids (Pepino et al. 2014). NPC1L1 is involved in the intestinal absorption 

of cholesterol and plant sterols (Izar et al. 2011).  AGPAT1 and AGPAT2 play roles in converting 

lysophosphatidic acid (LPA) into phosphatidic acid (PA) (Takeuchi and Reue 2009). APOA1, APOA4, and 

APOB encode key apolipoproteins to carry fats and fat-like substances in the blood (Mangaraj et al. 2016; 

Qu et al. 2019). Remarkably, we found the positive selection of one gene, ABCG5, which encodes sterolin-1 

and works together with sterolin-2, encoded by gene ABCG8, to form a protein called sterolin. Sterolin is a 

transporter protein and plays an important role in eliminating plant sterols to regulate the whole-body 

retention of plant sterols (Hazard and Patel 2007; Izar et al. 2011), which are mainly present in nuts and 

seeds (Izar et al. 2011). Unlike CDA and FDA, relatively weak positive selection signals were found in PDA 

with only two PSGs (CELA3B and SLC36A1) detected, which are respectively involved in digesting dietary 

proteins and transporting intestinal amino acids (Frølund et al. 2010; Szabó et al. 2016).    

We subsequently examined the positive selection of the digestive system- related genes along the branch 

leading to the common ancestor of living birds and crocodilians, representing the ancestral archosaur. In 

contrast to the CALB, for the ancestral archosaur, we detected the highest number of PSGs in PDA, 

followed by FDA, with the lowest number of PSGs found in CDA (Fig. 2, Table S3). For PDA, eight PSGs were 

found, of which seven PSGs (ACE2, CPB1, DPP4, MEP1A, MEP1B, MME, and XPNPEP2) encode peptidases 

(Yamamoto et al. 1992; Tipnis et al. 2000; Lambeir et al. 2003; Crisman et al. 2004; Erşahin et al. 2005; 

Higuchi et al. 2016), and one gene, SLC15A1, is involved in the intestinal transport of peptide (Liang et al. 

1995). For FDA, we found six PSGs, including APOA4, APOB, CEL, MTTP, SCARB1, and SLC27A4. Of which, 

CEL encodes a bile salt-dependent carboxyl-ester lipase, hydrolyzing dietary fat, and cholesteryl esters in 

the small intestine (Johansson et al. 2018). SCARB1 mediates the uptake of cholesterol and lipids (Shen et 
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al. 2018). SLC27A4 is an important fatty acid transporter in small intestinal enterocytes (Stahl et al. 

1999). MTTP is involved in the transport of triglycerides, cholesteryl esters, and phospholipids (Hussain et 

al. 2012). APOA4 and APOB encode two key apolipoproteins responsive to carrying fats and fat-like 

substances in the blood (Mangaraj et al. 2016; Qu et al. 2019). Unlike PDA and FDA, CDA showed the 

lowest number of PSGs, and only three PSGs (SI, HKDC1, and ATP1B4) were detected. HKDC1 is involved in 

glucose metabolism (Ludvik et al. 2016). ATP1B4 encodes Na+/K+ ATPase to maintain ionic homeostasis (Li 

et al. 2011). SI encodes sucrase-isomerase, digesting dietary carbohydrates including starch, sucrose, and 

isomaltose (Naim et al. 1988).  

Our positive selection analyses described above demonstrated that the CALB showed a predominant 

Darwinian selection of the genes related to carbohydrate and fat digestion and absorption, whereas the 

ancestral archosaur exhibited a marked Darwinian selection of the genes related to protein and fat 

digestion and absorption, indicating substantial selection differences between them (Fig. 2, Tables S2-3). To 

further know the possible selection differences between the CALB and the ancestral archosaur, we then 

used the program RELAX (Wertheim et al. 2015) to examine the selection intensity changes of the digestive 

system-related genes of the CALB relative to those of the ancestral archosaur (Table S4). Our results 

showed that FDA-related genes exhibited the most intensified selection, followed by CDA-related genes, 

while PDA-related genes showed the relatively weakest selection intensification. For FDA, eight genes 

(ABCA1, AGPAT1, CD36, FABP1, MTTP, NPC1L1, GOT2, and SCARB1) exhibited a relative intensified 

selection. Among the eight genes, five (AGPAT1, CD36, MTTP, NPC1L1, and SCARB1), as mentioned above, 

are mainly related to the transport or conversion of lipids, while the other three genes, ABCA1, FABP1, and 

GOT2, are mainly involved in the transport of lipids. Specifically, ABCA1 mediates cellular cholesterol and 

phospholipid efflux (Wang and Tall 2003), FABP1 regulates lipid transport and metabolism (Wang et al. 

2015), and GOT2 is involved in fatty acid transport (Tousignant et al. 2019). Besides FDA, three CDA-related 

genes, PIK3CB, SLC37A4, and CACNA1D, showed selection intensification as well. PIK3CB encodes the 

catalytic subunit of phosphoinositide 3-kinase (PI3K), which plays a role in regulating the activity of GLUT5, 

a major fructose transporter (Cui et al. 2005). SLC37A4 acts as a transporter of glucose 6-phosphate 

(Cappello et al. 2018). CACNA1D encodes a subunit of a calcium channel (CaV1.3) (Fig. 2). For PDA, only one 

gene, CELA3B, which encodes pancreatic serine proteinases (Szabó et al. 2016), was subject to selection 

intensification. In addition to these selection-intensified genes, several genes showed relative selection 

relaxation in the CALB compared to the ancestral archosaur, including two genes (ABCG5 and APOB) of FDA, 

one gene (CTRL) of PDA and one gene (SLC5A1) clearly involved in CDA.   
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Discussion 

Diet shift (carnivory to herbivory) at the archosaur-to-bird transition  

Comparative digestive physiology studies demonstrate that the evolution of digestive system molecules 

adapts for the amounts of nutrient components (e.g., carbohydrates, fats and proteins) in the diets of 

animals (Karasov et al. 2011; Karasov and Douglas 2013). Our results showed that the ancestral archosaur 

exhibited a marked selection of the genes related to protein and fat digestion and absorption, while the 

CALB presented a predominant selection of the genes involved in carbohydrate and fat digestion and 

absorption (Fig. 2, Table S2-4). Especially for the ancestral archosaur, our positive selection analyses 

revealed the highest number of PSGs in PDA, followed by FDA, with the lowest number of PSGs found in 

CDA (Fig. 2). This may suggest that the diet of the ancestral archosaur was characterized by a high amount 

of proteins, followed by fats, with a minimum load of carbohydrates. This nutrient profile is highly 

consistent with the presumable carnivory of ancestral archosaurs (Nesbitt 2011) since meats are generally 

rich in proteins, followed by fats, with the minimum amount of carbohydrates (Clinic 2002). Contrary to the 

ancestral archosaur, for the CALB, our results based on two different methods (PAML and RELAX) 

consistently demonstrated that it showed the most predominant selection in carbohydrate and fat 

digestion and absorption-related genes, with the weakest selection found in PDA-related genes (Fig. 2, 

Table S2). This may suggest that the diet of the CALB is characterized by high amounts of carbohydrates 

and fats, with a relatively minimal amount of proteins, representing a high-energy diet. This seems to be 

more consistent with herbivory compared to carnivory, considering that plant foods are rich in 

carbohydrates, whereas meats are particularly high in proteins (Clinic 2002). In particular, most PSGs 

involved in CDA (SI, SLC5A1, SLC2A5, HK3, and LCT) found in the CALB center on the digestion and 

absorption of sugars (e.g., glucose, sucrose and fruit sugar), indicating its high-sugar diet. A high-sugar diet 

may suggest their eating of fruits, which are characterized by relatively high amounts of sugars among 

plant foods (Schondube et al. 2001; Clinic 2002; Yahia 2018). In particular, one positively selected gene, 

SLC2A5, found in the CALB is mainly involved in the transports of fruit sugar (Douard and Ferraris 2008; 

Cura and Carruthers 2012; Mueckler and Thorens 2013). These lines of evidence may suggest that the CALB 

involved fruits in its diet. On the other hand, for the PSGs found in FDA, one gene, ABCG5, plays a critical 

role in the transport of plant sterols, which are mainly found in nuts and seeds (Hazard and Patel 2007; Izar 

et al. 2011). This may suggest that the CALB ingests seeds and/or nuts as well, which are rich in fat (Clinic 

2002). The predominant selection of the CALB in FDA is similar to parrots, which consume considerable 
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amounts of seeds and nuts and are found to present a strong Darwinian selection in FDA as well with four 

PSGs found, of which three (ABCG5, APOA4, and APOB) are shared with the CALB (Wu et al. 2020). In all, 

our molecular study suggests that the ancestral archosaur is probably a carnivore, while the CALB is more 

likely an herbivore, ingesting fruits, seeds, and/or nuts (Fig. 1).   

Our molecular results are highly consistent with the fossil evidence showing that ancestral archosaurs are 

generally typically meat eaters (Nesbitt 2011), and a great number of ancestral Mesozoic birds, including 

the basal birds, such as Jeholornis, Confuciusornis and Sapeornis, show features or gut contents indicating 

that they ate fruits and/or seeds (Zhou and Zhang 2002; Chatterjee 2015; Chiappe and Qingjin 2016; Mayr 

2017; Ksepka et al. 2019; O'Connor 2019; O'Connor and Zhou 2020). Particularly, for the herbivory of the 

CALB found in this study, it is consistent with the widespread herbivory observed in many living bird 

lineages across bird phylogeny (Fig. 1). In line with this, one previous study shows evidence of seeds as an 

important dietary component of the CALB using maximum likelihood reconstruction (Larson et al. 2016). 

Considering that ancestral birds lived in a conifer-dominated ecosystem (Zhou et al. 2003; Matsukawa et al. 

2014), the seeds that they ate might partly come from conifers (Zheng et al. 2011). Indeed, the seeds of 

many conifers (e.g., pines) are relatively rich in lipids (Wolff et al. 2000; Wolff et al. 2002), which might 

have led to the evolutionary enhancement of FDA of the CALB found in this study. Additionally, previous 

studies show that the Late Jurassic/Early Cretaceous radiation of more advanced birds temporally coincides 

with that of angiosperm plants (Friis et al. 2011), and it is likely that the fruit- and/or seed-eating habitat of 

ancestral birds may have partly helped for their dispersal of seeds (Mayr 2017). The herbivory of the CALB 

is also consistent with the occurrence of ceca observed in the majority of living birds, including the basal 

lineages (e.g., ratites), which is generally considered to be helpful for cellulose digestion and fermentation 

linked to herbivory (Clench and Mathias 1995; Miller and Harley 2016). The dietary shift of the CALB to 

herbivory is also consistent with the observation of reductions in both teeth and biting force across the 

theropod-bird transition, which is considered to have resulted from the dietary shift from carnivorous to 

herbivorous diets (Zanno and Makovicky 2011; Li et al. 2020). The similar transition from carnivory to 

herbivory occurs multiple times in theropods (Zanno et al. 2009; Zanno and Makovicky 2011; Barrett 2014). 

The causes underlying the evolutionary shift to the herbivory of the CALB are not clear, but the possible 

competition from carnivorous theropods and pterosaurs is proposed as a possible candidate (Wang et al. 

2016a; Li et al. 2020). The finding of the herbivory of the CALB ingesting fruits, seeds, and/or nuts, which 

characterize seed plants adapted to dry land environments (Cowen 2013), may strongly suggest that the 

CALB mainly occurred in terrestrial habitats rather than an aquatic environment, as hypothesized 
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previously (You et al. 2006). These findings are consistent with the fact that the phylogenetically most basal 

extant neornithine birds—that is, Palaeognathae and Galloanseres—are predominantly herbivorous or 

omnivorous and mainly occur in terrestrial habitats (Mayr 2017).  

Trophic shift of ancestral birds as low-level consumers 

Our results suggest an evolutionary shift of the CALB to an herbivorous diet (fruit, seed and/or nut eater) 

(Fig. 1). Evolutionarily, birds are widely believed to be derived from a group of small maniraptoran 

theropods, including dromaeosaurids and troodontids (Xu et al. 2014; Benton 2015; Chatterjee 2015; Mayr 

2017). Among these maniraptoran theropods, many of them, including most dromaeosaurids and derived 

troodontids, show carnivory (Zanno et al. 2009; O'Connor et al. 2011; Xu et al. 2011; Zanno and Makovicky 

2011; Brusatte 2012; Han et al. 2014; Chatterjee 2015; Button et al. 2017; Mayr 2017; O'Connor 2019; 

O’Connor et al. 2019; O'Connor and Zhou 2020) (Fig. 3). However, unlike their maniraptoran relatives, 

many bird lineages, including the basal bird lineages, such as Jeholornis and Sapeornis, may have evolved to 

exploit herbivorous niches, as evidenced by both the molecular (Fig. 1) and fossil evidence mentioned 

above (Zhou and Zhang 2002; Zanno and Makovicky 2011; Zheng et al. 2011; Benton 2015; Chatterjee 2015; 

Chiappe and Qingjin 2016; Mayr 2017; Ksepka et al. 2019; O'Connor 2019; Li et al. 2020; O'Connor and 

Zhou 2020) (Fig. 3). The dietary shift from carnivory to herbivory may suggest a shift of the trophic niche of 

bird ancestors from that of a high-level consumer to a low-level consumer as a primary and/or secondary 

consumer (Matsukawa et al. 2014; O’Connor et al. 2019). This is consistent with the marked reduction or 

loss of teeth along with the evolution of birds (Benton 2015; Chatterjee 2015), a feature indicative of low-

level consumers rather than high-level consumers (e.g., top predators), which would otherwise show a 

predation feature of well-developed teeth (Farlow and Holtz 2002; Brusatte 2012). Moreover, though 

diverse diets (e.g., seeds, fish, and insects) among ancestral bird lineages have been found, there is no 

direct fossil evidence indicative of their preying on terrestrial vertebrates (O'Connor 2019), strengthening 

their ecological niches as low-level consumers. Ancestral birds were abundant in Mesozoic terrestrial 

ecosystems (Matsukawa et al. 2014), occurring globally and representing a potential food source for 

carnivores. Becoming a low-level consumer, ancestral birds may be under increased predation risk. This is 

particularly the case for ancestral birds since they evolve toward miniaturization suitable for powered flight 

(Benson et al. 2014; Lee et al. 2014), and their small body size may be particularly vulnerable to predators. 

More importantly, their evolution of endothermy and powered flight requires much more energy and, 

consequently, frequent foraging (Chatterjee 2015; O’Connor and Zhou 2015; O'Connor 2019; Wu and Wang 
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2019). Frequent foraging may have most often exposed them to predators, hence leading to their high 

predation risk. In support of this, fossil evidence shows that ancestral birds, such as enantiornithines and 

Confuciusornis, have a precocial development style (Chatterjee 2015; Chiappe and Qingjin 2016), which is 

generally considered to be an anti-predation strategy for facing historically strong predation pressure 

(Arendt 1997; Jackson et al. 2009). Moreover, one recent study shows that the CALB was probably 

cathemeral (i.e., active in both day and night) and that it may have evolved an enhanced visual capability to 

detect motion (Wu and Wang 2019). Cathemerality is considered to be linked to high predation risk 

(Colquhoun 2006; Maor et al. 2017), and the promoted motion detection ability of the CALB may mainly 

help to detect approaching predators given its herbivory. Therefore, the dietary shift may have made 

ancestral birds become the prey of high-level consumers, possibly leading to their high predation risk.   

Main predators of ancestral birds—gliding maniraptorans  

Arboreal theory proposes that birds evolved from a group of arboreal and gliding maniraptorans and that 

ancestral birds may be primarily arboreal and capable of gliding flight though they spent some time on the 

ground as well (Xu et al. 2000; Zhou and Zhang 2002; Xu et al. 2003; Benton 2015; Chatterjee 2015; 

Chiappe and Qingjin 2016). Given the possible arboreality and gliding lifestyle of ancestral birds, while 

there are many potential predators, such as carnivorous theropods, carnivorous mammals (e.g., 

Repenomamus), snakes (e.g., Sanajeh) and crocodylomorphs, in the Mesozoic terrestrial ecosystem 

(Brusatte 2012; Matsukawa et al. 2014), four lines of evidence may suggest that one group of carnivorous 

theropods—maniraptorans (e.g., dromaeosaurids)—is likely one of the main predators of ancestral birds, 

as proposed previously (Gong et al. 2010; O'Connor et al. 2011; Chatterjee 2015).  Primarily, a wealth of 

small feathered maniraptorans, such as Aurornis, Anchiornis, Bambiraptor, Buitreraptor, Changyuraptor, 

Eosinopteryx, Jinfengopteryx, Microraptor, Rahonavis, and Xiaotingia, are found to have hallmark 

anatomical characteristics indicative of their capability of gliding flight or even some forms of powered 

flight (Han et al. 2014; Xu et al. 2014; Benton 2015; Chatterjee 2015; Chiappe and Qingjin 2016; Mayr 2017; 

Sullivan et al. 2017; Pei et al. 2020), and many of these volant maniraptorans, such as Microraptor, 

Anchiornis, and Changyuraptor, show predatory features (Zanno et al. 2009; Gong et al. 2010; O'Connor et 

al. 2011; Xu et al. 2011; Zanno and Makovicky 2011; Brusatte 2012; Han et al. 2014; Button et al. 2017; 

Mayr 2017; O'Connor 2019; O’Connor et al. 2019; O'Connor and Zhou 2020), representing one of the 

potential aerial predators of ancestral birds. The predation pressure from these aerial predators may be 

more significant than those ground predators given the arboreality and gliding lifestyle of ancestral birds. 
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On the other hand, both ancestral birds and gliding maniraptorans have a relatively small body size among 

dinosaurs known (Turner et al. 2007; Brusatte 2012; Benson et al. 2014; Lee et al. 2014), suggesting that 

ancestral birds may be suitable prey for them.  This is because there is a general positive correlation of 

body size between predators and their target prey, and small predators tend to prey on small prey 

(Gittleman 1985; Vézina 1985; Carbone et al. 1999; Radloff and Du Toit 2004). Moreover, previous studies 

show that, among theropods, non-avian maniraptorans show a relatively high metabolic level (e.g., 

endothermy) comparable to birds (Seebacher 2003; Rezende et al. 2020), suggesting that they possibly had 

a relatively high activity level. The high activity level of maniraptorans supports the feasibility of their 

predation on ancestral birds. Finally, and more importantly, there is already direct fossil evidence indicative 

of the predation of ancestral arboreal bird (adult enantiornithine bird) by arboreal and gliding predatory 

maniraptorans, such as Microraptor, which is known from hundreds of specimens, despite the extreme 

scarcity of preserved fossils (O'Connor et al. 2011). Additionally, the possible predation of ancestral birds 

by another predatory maniraptoran, Sinornithosaurus, which might be capable of gliding flight (Chatterjee 

and Templin 2004), has also been proposed previously (Gong et al. 2010).  These lines of ecological and 

fossil evidence suggest that the predation pressure of ancestral birds during their early evolution may, at 

least partly, mainly have come from those arboreal and gliding maniraptorans.   

Flapping flight as a possible anti-predator strategy against gliding maniraptorans 

Different theories have been proposed to account for the origin of the powered flight (e.g., flapping flight) 

of birds (Benton 2015; Chatterjee 2015). And arboreal theory invokes a natural transition of powered flight 

via gliding flight (Xu et al. 2000; Zhou and Zhang 2002; Xu et al. 2003; Benton 2015; Chatterjee 2015), but a 

basic question remains: what was the selection pressure for the natural transition (Hedenström 1999)? 

While gliding flight is common among both living and extinct animals, powered flight is rare and only 

known in insects, pterosaurs, birds, and bats (Dudley et al. 2007), suggesting that powered flight may less 

likely occur without certain selection pressures. This is particularly true for birds since their powered flight 

demands high energy and substantial evolutionary alternation (e.g., keeled sternum and flight muscles) 

compared to gliding flight, a simple and cheap way of flying (Chatterjee 2015). Early birds, such as 

Archaeopteryx and Jeholornis, are believed to be primarily arboreal and capable of gliding flight, which are 

believed to be descended from maniraptorans that had already evolved gliding flight (Xu et al. 2003; 

Benton 2015; Chatterjee 2015). Indeed, many maniraptorans possess asymmetric flight feathers to 

generate lift, and in particular, the discovery of many bird-like paravians, such as Microraptor, Anchiornis, 
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Xiaotingia, and Aurorornis, is the most unusual in developing four wings, suggesting their possible high 

performance of gliding flight (Benton 2015; Chatterjee 2015; Pei et al. 2020). However, given the diet 

divergence between non-avian maniraptorans and ancestral birds, and particularly that many of gliding 

maniraptorans (e.g., Microraptor and Sinornithosaurus) were potential predators of early birds (Gong et al. 

2010; O'Connor et al. 2011; Chatterjee 2015), it is plausible that early birds may have then evolved 

powered flight (e.g., flapping flight) based on their gliding flight to escape from gliding predatory 

maniraptorans. The predation pressure from gliding predatory maniraptorans may have worked as a driver 

to stimulate the evolution of powered flight of their arboreal prey. And the flapping flight of birds may be 

critical to flee from those gliding predators. Fossil evidence shows that ever since the evolutionary 

divergence of early birds from their maniraptoran relatives, the evolution of birds has shown a major trend 

in the improvement of flight, such as from gliding to flapping and maneuvering flight with the acquisition of 

flight-related characteristics such as a shortening of the tail and a keeled sternum (Xu et al. 2014; Benton 

2015; Chatterjee 2015; Mayr 2017) (Fig. 3). The continuous evolutionary enhancement of the flight of 

ancestral birds may essentially help for an increase of speed and maneuverability of locomotion, both of 

which are considered to be crucial for escape success (Clemente and Wilson 2016). This may be the case 

particularly for birds since they could not become large in body size, a potential antipredator strategy 

observed in many animals (Caro 2005), to evade predators due to their miniaturization constraints in favor 

of flight. Indeed, for many birds, flying is an important means used to escape from predators (Van den Hout 

et al. 2010; Chatterjee 2015), suggesting predation is an important selection pressure for powered flight 

(Dudley et al. 2007; Chatterjee 2015). This is consistent with the observation that birds frequently become 

flightless in predator-free islands (Wright et al. 2016). Possibly, there was some form of coevolution 

between ancestral birds and those gliding predatory maniraptorans. And the predation pressure from 

gliding predatory maniraptorans may be an important candidate contributing to the evolutionary shift from 

gliding flight to powered flight at the theropod-to-bird transition, though it remains unknown as to 

whether there were gliding predators other than maniraptorans contributing to the evolution of powerful 

flight of birds as well.    

Specialized digestive system of birds responsive to predation pressures 

Living birds are toothless, and they swallow their food whole, which is temporally stored in their crop and 

then grinded up by their muscular gizzard. Fossil evidence shows that the specialization of the digestive 

system occurs in multiple lineages of ancestral birds (Zhou et al. 2010; Zheng et al. 2011; Zheng et al. 2014; 
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Chiappe and Qingjin 2016; Wang et al. 2016b; O'Connor 2019; O'Connor and Zhou 2020) (Fig. 3). A recent 

genomic study shows that modern birds lost their teeth since their common ancestor about 116 million 

years ago (Meredith et al. 2014).  Regarding the evolutionary specialization of the digestive system of birds, 

its adaptive significance is, however, less clear. Previous studies indicate that the loss of teeth in birds 

seems to be linked to an herbivorous diet, which is consistent with the herbivory of the CALB found in this 

study, but the underlying mechanism remains unknown (Zanno and Makovicky 2011; Zheng et al. 2011; 

Barrett 2014; Chatterjee 2015). Optimal foraging theory states that predation has a profound influence on 

the foraging strategies of animals, and animals must trade off two conflicting demands of maximizing 

foraging efficiency and minimizing predation risk (Lima 1985; Lima et al. 1985; Verdolin 2006). In light of 

this optimal foraging theory, for the evolutionary specialization of the digestive system of birds, we 

propose here that herbivores (e.g., ancestral birds) are low-level consumers and, consequently, at relatively 

high risk to predators. Under high predation risk, the time needed to acquire and process food using teeth 

may be limited, but the evolutionary specialization of the digestive system of birds may allow them to 

gather more food as fast as possible (maximizing foraging efficiency) as food can be stored in their crop 

without expending too much time processing it using their teeth, and then they can seek a safe place to 

process their food via their gizzard (minimizing predation risk). Consequently, the reduced reliance on 

teeth for the processing of food as a result of predator avoidance may have then led to the selection 

relaxation of teeth, leading to their subsequent reduction or loss thereof. This may be particularly true for 

early birds that would necessarily demand frequent foraging (O'Connor 2019) and much time for the oral 

processing of their food (e.g., hard seeds) (O'Connor and Zhou 2020) if no gizzard were available under 

relatively high predation risk (including both aerial, arboreal, and ground predators), while the evolution of 

the bird-like digestive system may help to maximize foraging efficiency and minimize their exposure to 

predators. Indeed, direct fossil evidence, for instance, the preservation of intact seeds or whole fish in the 

alimentary canal of ancestral birds, demonstrates that ancestral birds seem not to have used their teeth to 

process food; rather, their teeth, if any, were mainly used for the acquisition of food (Zhou and Zhang 2002; 

Zheng et al. 2011; Zheng et al. 2014; O’Connor and Zhou 2015; Li et al. 2020).  

Regarding the reduction or loss of the teeth of birds, it is traditionally attributed to lightening the body for 

flight (Zhou et al. 2010; Zheng et al. 2011). This, however, cannot explain the occurrence of numerous 

toothed Mesozoic birds (e.g., Enantiornithes and Ichthyornis) (Zhou et al. 2010; Yang and Sander 2018; 

O'Connor 2019), and hence teeth were probably not a limiting factor for flight (O’Connor and Zhou 2015; 

Chiappe and Qingjin 2016; Mayr 2017; Zhou et al. 2019). Alternatively, teeth reduction or loss is considered 
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to be partly due to the functional replacement by the muscular gizzard (Louchart and Viriot 2011; Zheng et 

al. 2014; O'Connor 2019). However, this raises a new question: given that teeth and muscular gizzard have 

a similar function, why the teeth got lost rather than muscular gizzard? One possibility is that it must 

expend considerable time processing food using teeth without a gizzard during foraging, which may then 

largely increase their predation risk. In line with this reasoning, the crop is also suggested to help to gather 

more food quickly to avoid competitors and/or predators (Zheng et al. 2011; Zheng et al. 2014; Miller and 

Harley 2016), though an alternative explanation exists (O’Connor and Zhou 2015; O'Connor 2019). Given 

the possible importance of predation, we argue that the evolution of digestive system characteristics of 

birds, including teeth reduction or loss, crop and gizzard, are not independent; rather, their evolution is 

probably mutually dependent. The integrative and/or collective evolution of these characteristics may be a 

result of both maximizing foraging efficiency and minimizing predation risk. Predation pressure is also 

believed to be a potential selection pressure for the evolutionary specialization of the digestive system (e.g., 

four-chambered stomach) of ruminants (Randall et al. 1997; Miller and Harley 2016). Besides birds, teeth 

reduction or loss is frequently observed in many other tetrapod lineages as well (e.g., toads and turtles) 

(Davit‐Béal et al. 2009; Louchart and Viriot 2011; Barrett 2014). It appears that all the tetrapod lineages 

with teeth reduction or loss tend to be low-level consumers (e.g., herbivores and insectivores), at least 

during their early evolution, as exemplified by ancestral birds, and hence may have been faced with 

relatively high predation pressures. This may imply that high predation pressure might be a common force 

in facilitating the reduction or loss of teeth. Of course, there are many low-level consumers (e.g., 

herbivorous dinosaurs) that still retained their teeth. This might be partly attributed to their lineages’ 

specific low-level predation pressures due to their, for instance, efficient anti-predator strategies (e.g., 

large body size).  In addition to predation pressure, the possible effects of other ecological factors on the 

evolution of teeth may exist, such as, food types that may determine the reliance of food acquisition and 

processing on teeth. Most likely, the evolutionary dynamic of teeth may partly reflect a tradeoff between 

the selections to maintain or strengthen teeth (e.g., acquiring and processing food) and the selections to 

reduce teeth as a by-product of accelerating feeding to avoid predators.  

Conclusion 

Our molecular phyloecological study shows that ancestral birds (e.g., CALB) underwent a dietary shift to be 

low-level consumers (e.g., fruit, seed, and/or nut eaters), which may have then made them become the 

prey of potential predators such as gliding maniraptorans (e.g., dromaeosaurids and troodontids), from 
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which ancestral birds descended. Under this predation pressure, the ancestral birds with inherited gliding 

flight from their immediate gliding maniraptoran predecessors may have then evolved not only powered 

flight (e.g., flapping flight) as an anti-predator strategy against gliding predatory maniraptorans but also a 

specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing 

their exposure to predators (including both gliding and non-gliding predators). Our results suggest that 

dietary shift-associated predation pressure may have facilitated the evolutionary origin of birds.  

Materials and methods 

Taxa used 

We mainly included 95 species in this study. Of the 95 species, 73 species are birds, belonging to 36 orders,  

representing the majority of living bird orders (36/39) (Gill and Donsker 2018); 22 species are relatives of 

birds, including five crocodilians, six turtles, and 11 squamates (Fig. 1). For the 73 bird species included, the 

majority come from Neognathae, with relatively little species of Palaeognathae. For the Palaeognathae 

species included, the GenBank sequences of many of our focal genes were missing upon our initial 

sequence analyses, especially for the ostrich (Struthio camelus) and the emu (Dromaius novaehollandiae), 

and thus we selected the two species for transcriptome sequencing.  

Sampling, RNA isolation and cDNA library construction 

One ostrich (three months old) and one emu (six months old) were used for sampling. The two individuals 

were the same two individuals used in one of our previous studies (Wu and Wang 2019). And the methods 

of RNA isolation and cDNA library construction were almost identical to those of that study (Wu and Wang 

2019). Briefly, the two active individuals of an artificial breeding company (Quanxin, Daqing) were 

transported to the laboratory with vegetables and water provided. The two individuals were sacrificed 

after 24 hours, and an approximately equal amount of tissue from the liver, pancreas, stomach 

(proventriculus), and small intestine (duodenum) were obtained and mixed. The mixed tissues were 

preserved in RNA-locker (Sangon Biotech, Shanghai), flash frozen in liquid nitrogen, and then transferred to 

a −80 °C refrigerator until further processing. The experimental procedures were carried out following an 

animal ethics approval granted by Northeast Normal University. All experimental procedures in this study 

were approved by the National Animal Research Authority of Northeast Normal University, China (approval 

number: NENU-20080416), and the Forestry Bureau of Jilin Province of China (approval number: 

[2006]178).   

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2020. ; https://doi.org/10.1101/2020.08.18.256131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256131
http://creativecommons.org/licenses/by-nc/4.0/


16 

 

We isolated the total RNA of the two samples using TRIzol Reagent (Invitrogen Life Technologies), following 

the manufacturer’s protocol and instructions. We monitored the RNA degradation and contamination on 

1% agarose gels. We checked the RNA purity using the NanoPhotometer® spectrophotometer (IMPLEN, CA, 

USA). We measured RNA concentration using the Qubit® RNA Assay Kit in a Qubit®2.0 Flurometer (Life 

Technologies, CA, USA). We assessed the RNA integrity using the RNA Nano 6000 Assay Kit of the Agilent 

Bioanalyzer 2100 system (Agilent Technologies, CA, USA). We constructed the cDNA library using 

NEBNext®Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) according to the manufacturer’s protocol. 

Accordingly, mRNA was purified using poly-T oligo-attached magnetic beads. The enriched mRNA was 

fragmented into small pieces and was then used for the syntheses of the cDNA strands. The cDNA was 

purified and size-selected using the AMPure XP system (Beckman Coulter, Beverly, MA, USA). Then, PCR 

was performed, and the PCR products were purified (AMPure XP system). Library quality was assessed on 

the Agilent Bioanalyzer 2100 system. Paired-ending sequencing was performed using Illumina HiSeq X-ten 

(Biomarker Technology Co., Beijing). 

Data filtering and de novo assembly 

We generated 10.47G bases and 10.45G bases for the ostrich and emu, respectively. We filtered the raw 

data by removing reads containing adapters, reads containing ploy-N, and low quality reads. Clean reads 

were assembled using the de novo assembly program Trinity (v2.5.1) (Grabherr et al. 2011) with default 

parameters. Unigenes were generated, and unigenes longer than 200 bp were retained for subsequent 

analyses. The transcriptome sequencing data were deposited into the National Center for Biotechnology 

Information Sequence Read Archive database under accession numbers (SRR12237019-20).  

Genes, sequence abstraction and alignment 

The genes annotated in three KEGG digestive system pathways, including carbohydrate digestion and 

absorption (map04973), protein digestion and absorption (map04974), and fat digestion and absorption 

(map04975), were used in this study (Fig. 2, Table S5). For these digestive system-related genes, we 

abstracted their sequences from the studied ostrich and emu. For this, we downloaded the coding 

sequences of our target genes of Gallus gallus from GenBank and used them as query sequences to blast 

against the unigene pools of the two species using Blastn software. We subsequently annotated these 

unigene sequences returned by blasting against the NCBI nr/nt database using the online Blastn, and we 

kept only the unigene sequences with the same gene annotation as that of the query sequences for 
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subsequent analyses. Besides the two species, we also downloaded our target gene sequences from all 

birds and reptiles with gene sequences available in GenBank (Table S1). For five genes (e.g., CPA2, G6PC, 

PLA2G2E, SLC2A5, and SLC36A1), their sequences of the reptile relatives of birds were unavailable, and 

thus their sequences from mammals and amphibians were used. For our focal genes, those genes (e.g., 

amylase genes) with sequences unavailable or available for only few bird species were excluded from our 

analyses, and eventually, 83 genes were retained for subsequent analyses. We aligned gene sequences 

using webPRANK (http://www.ebi.ac.uk/goldman-srv/webprank/), and individual sequences with long 

indels and/or lengths that were too short were removed or replaced by other relevant transcript variants. 

After this pruning, the translated protein sequences of these genes were blasted against the non-

redundant protein sequence database to confirm the correctness of the sequence cutting.  

Positive selection analyses 

We performed positive selection analyses of genes using branch and branch-site models implemented in 

the Codeml program of PAML (Yang 2007). For this, an unrooted species tree (Fig. 1) was constructed 

following published studies (Jønsson and Fjeldså 2006; McKay et al. 2010; Oaks 2011; Guillon et al. 2012; 

Pyron et al. 2013; Crawford et al. 2015; Wu and Wang 2019) and the Tree of Life Web Project 

(http://tolweb.org/tree/), with the phylogenetic relationships among bird orders following one genome-

level study (Jarvis et al. 2014). We estimated the ratio of non-synonymous to synonymous substitutions per 

site (dN/dS or ω) and employed likelihood ratio tests (LRT) to determine statistical significance. Positive 

selection is determined by the value of ω > 1 with a statistical significance.  

Branch model. We performed positive selection analyses of genes along our focal branches using a two-

rate branch model. Upon analysis, we labeled our focal branches as foreground branches and the rest were 

used as background branches. For this model, ω is assumed to be different between foreground branches 

and background branches, and its goodness of fit was analyzed using the LRT by comparing it with the one-

rate branch model that assumes a single ω value across all branches. If a statistically significant value of 

ω > 1 was detected in a foreground branch, the two-ratio branch model was further compared with the 

two-ratio branch model with a constraint of ω = 1 of the foreground branch to further determine whether 

the value of ω > 1 of the foreground branch was supported with statistical significance.   

Branch-site model. We also used a branch-site model (Test 2) to detect positive selection genes for our 

focal branches. The branch-site model assumes four classes of sites, with site class 0 and site class 1 
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respectively representing evolutionarily conserved (0 < ω0 < 1) and neutral codons (ω1 = 1) across branches, 

and site classes 2a and 2b representing evolutionarily conserved (0 < ω0 < 1) and neutral (ω1 = 1) codons for 

background branches, yet allowed to be under positive selection (ω2 > 1) for the foreground branches. The 

goodness of fit of this model was analyzed by using the LRT by comparing a modified model A with a null 

model with ω = 1 constrained. Positively selected sites were analyzed by an empirical Bayes method.  

Selection intensity analyses 

The selection intensity changes of genes were evaluated using RELAX (Wertheim et al. 2015), which is 

available from the Datamonkey webserver (http://test.datamonkey.org/relax). For the selection intensity 

analyses, a parameter k value and its statistical significance were estimated given a priori partitioning of 

test branches and reference branches in a codon-based phylogenetic framework. Intensified selection is 

indicated by k >1 and is expected to exhibit ω categories away from neutrality (ω = 1), while a relaxed 

selection is indicated by k < 1 and is expected to exhibit ω categories converging to neutrality (ω = 1). The 

statistical significance of the k value was evaluated by comparing an alternative model to a null model 

using LRT, with the former assuming different ω distributions of the test and reference branches, and the 

latter assuming k = 1 and the same ω distribution of both test and reference branches.    
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Fig.1 Phylogeny and the diets of modern birds. Phylogenetic relationships of taxa used follow published 

studies (Jønsson and Fjeldså 2006; McKay et al. 2010; Oaks 2011; Guillon et al. 2012; Pyron et al. 2013; 

Crawford et al. 2015; Wu and Wang 2019) and the Tree of Life Web Project (http://tolweb.org/tree/). 

Dietary categories of each bird species follow one published study (Wilman et al. 2014) and are shown in 

different colors, and the bird species without dietary information available are shown in black. The dietary 

categories of avian clades based on the dietary data of a total of 9993 extant bird species are shown in pet 

charts. PlantSeed (plant and seeds), FruiNect (fruits and nectar), Invertebrate (invertebrates), VertFishScav 

(vertebrates and fish and carrion) and Omnivore (score of <= 50 in all four categories).  
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Fig.2 Digestive system pathways and positively selected genes. The digestion and absorption of 

carbohydrates (A), proteins (B) and fats (C) are shown. The proteins with their corresponding genes in 

parentheses under positive selection are highlighted in red (ancestral archosaur) and green (ancestral bird).   

The three digestive system pathways are modified from corresponding KEGG pathways with accession 

numbers (map04973, map04974, and map04975).  
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Fig. 3 Schematic representation of the predation hypothesis underlying the origin of birds proposed in this 

study. The predation of gliding predatory maniraptorans on ancestral birds in the context of the arboreal 

theory is shown (please see text for details). Maniraptoran phylogeny with digestive system characteristics 

(gastric mill, crop, and tooth) is based on one previous study (O'Connor 2019). The dietary information 

follows published studies (Zanno et al. 2009; Zanno and Makovicky 2011; O'Connor 2019). The silhouettes 

of flight-related anatomical features (wings, fused tail, and keeled sternum) along phylogeny are modified 

from one published study (Brusatte et al. 2015). The progressive enhancement of flight performance from 

gliding to soaring, flapping flight and maneuvering flight within Aves is based on published literature 

(Chatterjee 2015). Species silhouettes corresponding to each of phylogenetic taxa used are from 

phylopic.org and designed by (from left to right): Others (Maniraptora) (Hanyong Pu, Yoshitsugu Kobayashi, 
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Junchang Lü, Li Xu, Yanhua Wu, Huali Chang, Jiming Zhang, Songhai Jia & T. Michael Keesey), Troodontidae 

(Scott Hartman), Dromaeosauridae (Scott Hartman (modified by T. Michael Keesey)), Archaeopteryx (Dann 

Pigdon), Jeholornis (Matt Martyniuk), Confuciusornis (Scott Hartman), Sapeornis (Matt Martyniuk), 

Enantiornithes (Matt Martyniuk) and Ornithuromorpha (Juan Carlos Jerí).  The tree silhouettes at the top of 

the image are modified based on published literature (Chatterjee 2015).   
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