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Abstract 8 

 9 

All motile organisms must search for food, often requiring the exploration of heterogeneous 10 

environments across a wide range of spatial scales. Recent field and laboratory experiments with the 11 

fruit fly, Drosophila, have revealed that they employ different strategies across these regimes, including 12 

kilometer scale straight-path flights between resource clusters, zig-zagging trajectories to follow odor 13 

plumes, and local search on foot after landing. However, little is known about the extent to which 14 

experiences in one regime might influence decisions in another. To determine how a flies’ odor plume 15 

tracking during flight is related to their behavior after landing, I tracked the behavior of individually 16 

labelled fruit flies as they explored an array of three odor emitting, but food-barren, objects. The 17 

distance flies travelled on the objects in search of food was correlated with the time elapsed between 18 

their visits, suggesting that their in-flight plume tracking and on-foot local search behaviors are 19 

interconnected through a lossy memory-like process.  20 

 21 

Introduction 22 

 23 

All moving organisms spend a significant amount of their time and energy searching, be it for food, 24 

mates, or oviposition and nesting sites. Improving our knowledge of the algorithms that animals use 25 

during these search efforts represents a critical step towards understanding how organisms function 26 

by connecting neuroscience, behavior, ecology, and evolution [1]. On the behavior and ecology fronts, 27 

countless field studies have helped shape our understanding of the search behavior exhibited by 28 

mammals, birds, and fish in the context of optimal foraging theory and satisficing [2,3]. In laboratory 29 

environments designed to discover the neural basis underlying these decisions, many efforts have 30 

focused on olfactory search of organisms including mice [4], insects [5], and crustaceans [6] (for a 31 

review, see [7]). To move the field forward, there is a growing push to connect laboratory and field 32 
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experiments. Perhaps surprisingly, the unassuming fruit fly, Drosophila melanogaster, has emerged as a 33 

prime model for bridging this gap. Evidence is mounting that despite their numerically simple nervous 34 

systems, these creatures are capable of forming visual [8,9] and olfactory memories [10–12], and 35 

possess an internal representation of their compass heading with respect to visual cues [13–16]. How 36 

these adaptations are involved in search, however, remains an area of active research.  37 

 38 

Most natural environments consist of a patchwork of potential resources with a fractal-like 39 

distribution, demanding multiple scales of search: long-range, intermediate, local, and nutrient driven. 40 

Long-range search for a Drosophila consists of flying up to 10 km across the desert to find a new oasis 41 

[17,18], initially relying on celestial cues [19,20], as well as vision and wind [21], until it catches an odor 42 

plume to follow [22,23]. Within the oasis a fly begins its intermediate search phase: tracking odor 43 

plumes [5,24–27] and approaching visual cues [22,28], often relying on the integration of the two to 44 

find a fermenting fruit [29,30]. After landing [31], the fly enters its third phase, local search. Now 45 

travelling on foot, the fly continues using odors to navigate the patchiness [32–34], as cracks in the 46 

skin serve as entry points, whereas mold renders portions too toxic [35]. After tasting some nutrients, 47 

the fly enters its final—nutrient driven—search phase, characterized by a so-called “dance” that is 48 

largely driven by idiothetic cues [36–38]. Whether or not the fly finds the nutrients it needs, eventually 49 

it will decide to take flight and leave, only to start the process all over again. While each of these phases 50 

of search has been subject to recent research efforts aimed at understanding both the behavior and 51 

neurobiology, little is known about how these individual phases are connected to one another, and 52 

how memories from one phase might influence the next.  53 

 54 

In this paper I simulate a patchy environment by placing three ethanol-emitting objects in a wind 55 

tunnel. Individually marked fruit flies are allowed to freely explore these objects over the course of an 56 

18 hour period. My results indicate that their search behavior on each individual patch is correlated 57 

with the time elapsed between patch visits, suggesting that the intermediate and local phases of search 58 

are interconnected through a lossy memory-like process.  59 

 60 

Methods 61 

 62 

To discover the relationship between decisions flies make during local and intermediate search 63 

behaviors in patchy landscapes, I placed three food-barren odorous platforms in a wind tunnel (Fig. 64 
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1A-B, [5]). Each platform was set up to constantly emit the attractive odorant ethanol from the center 65 

of the platform by bubbling 60 mL/min of air through a 50% ethanol/water solution. The acrylic 66 

platforms had a perforated area in the center for emitting the odor, and were all identical in size, shape, 67 

color, odor type and concentration. The edge was coated in fluon to prevent the flies from crawling 68 

out of view. 69 

 70 

To keep track of individual flies across all three platforms, I painted a dot of colored nail polish on 71 

their thorax (Fig. 1C). The flies were cold-anesthetized for the painting, and allowed to recover while 72 

being deprived of food, but not water, for 8 hours prior to the experiment start. For each experiment, 73 

I used six flies. They were placed in the wind tunnel 6 hours prior to their entrained dusk (relative to 74 

a 16:8 light:dark cycle), and allowed to move freely throughout the wind tunnel for 18 hours. When 75 

the flies landed on a platform, they were tracked by a machine-vision tracking system described 76 

previously [5], with one modification. Every 10 seconds, 18 megapixel color dSLR cameras positioned 77 

above each patch photographed the flies. All trajectories were hand-corrected for tracking errors to 78 

guarantee their completeness, and manually associated with the correct color identity from the dSLR 79 

images.  80 

 81 

Results 82 

 83 

In a stereotypical search-bout, flies would spend a significant amount of time near the odor source in 84 

the center of the platform, while also making periodic forays towards the edge, often circling the 85 

perimeter of the object (Fig. 1D). To quantify their behavior, I focused on the distance the flies 86 

travelled during their search, rather than the time they spent as was been done previously [5] (see 87 

Discussion for rationale).  88 

 89 

The first time the flies’ encountered an odor emitting platform, they walked a significantly larger 90 

distance compared to the average of their subsequent encounters, provided that they engaged with the 91 

odor during that first encounter (Fig. 1E-F). These results suggest that flies might maintain some form 92 

of memory about their failure to find food in order to minimize the time wasted on future fruitless 93 

search endeavors. But does this “memory” fade with time? To further investigate this hypothesis, I 94 

analyzed their behavior at a more granular scale by comparing the distance travelled to the time elapsed 95 

before (pre-interval), and after (post-interval), visiting additional platforms (Fig. 2A).  96 
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Most of the flies explored the odorous patches numerous times, often returning to the same patch 97 

several times in a row. Intervals between visits ranged from less than a second, to 16 hours. The 98 

distance the flies travelled on the platform while searching is, on a log-log scale, correlated with the 99 

time elapsed since they last visited a platform (Fig. 2B). Though significant (p=4x10-5), the positive 100 

correlation only explains about 10% of the variance (R2=0.1). The unexplained variance, however, is 101 

positively correlated with the amount of time until their next patch encounter (post-interval) (Fig. 2C). 102 

That is, if flies walk for a smaller distance than predicted based on their pre-interval, then their post-103 

interval is likely small as well, allowing them to make up for the missed opportunities. Relating the 104 

distance travelled on the platform to the mean of the pre- and post-intervals resulted in a stronger 105 

positive correlation than either alone (p=2.6x10-8; R2=0.17) (Fig. 2D). To ensure that no individual 106 

flies played an outsize role in this conclusion, I recalculated the correlation from Fig. 2D in the case 107 

where as many as five (32%) random flies were left out of the analysis. The largest p-value for this 108 

resampling analysis was 4x10-5, indicating that our conclusion is not biased by a small subpopulation.  109 

 110 

There was no correlation between distance travelled and time of day (p=0.38, Supp. Fig. 1A), 111 

indicating that neither hunger nor circadian rhythm were important factors. Instead, these factors 112 

likely determine whether the flies initiate take off and plume tracking. I also did not find a correlation 113 

between pre- and post-interval times (p=0.23, Supp. Fig. B), suggesting there are no consistent 114 

behavioral sequences such as rapidly flitting between platforms.  115 

 116 

Discussion 117 

 118 

My results indicate that search behavior across different search phases—intermediate scale plume 119 

tracking and local search on foot—is inter-connected. These observations raise several discussion 120 

points: (1) what internal mechanism is responsible for giving rise to the time-interval correlation (e.g. 121 

an interval timer, sensory adaptation, or habituation); (2) what mechanism drives flies’ decision to 122 

leave a patch; and (3) in what ecological contexts is their behavior advantageous.  123 

 124 

Mechanisms that could give rise to a measure of time-interval  125 

 126 

Although a number of models for neural encoding of interval-timing have been proposed [39], there 127 

is little experimental evidence for minute to hour scale interval-timing. In rats, extended time sense is 128 
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encoded in the hippocampus [40–42]. However, the accuracy is modulated by drugs, hormones, and 129 

context [43,44]. For insects, the ability to measure time-intervals on the scale of seconds to minutes is 130 

open for debate. Parasitoid wasps are capable of learning time intervals [45,46]. Honeybees, however, 131 

are not [47,48]. Although their cousins, bumblebees, have been shown to learn fixed time intervals 132 

[49], the analysis has been called into question [47]. Instead, their behavior suggests that they may have 133 

learned a different strategy that approximates interval timing.  134 

 135 

The challenges of reliably encoding time in the nervous system suggest that alternate mechanisms are 136 

either wholly, or in part, responsible for giving rise to the observed correlation. One possibility is 137 

sensory adaptation, however, this is unlikely given that peripheral olfactory receptor level adaptation 138 

occurs on much faster time scales (~0.5 second [50]) compared to the observed behavior. Instead, 139 

habituation is a more likely explanation. Prior experiments with ethanol induced startle responses 140 

indicate that habituated responses are attenuated on the time scales of 15-30 minutes [51].  141 

 142 

Mechanisms driving the decision to leave 143 

 144 

In ecology, the process of search has been dominated by the field of optimal foraging theory, namely, 145 

the Marginal Value Theorem [2] [52] [53] and satisficing [3]. Neither model, however, provides an 146 

explanation for the underlying neural mechanisms. A number of “rules of thumb” have been proposed 147 

[54,55]. One example is the Threshold Giving Up Time (TGUT) strategy [56] [57]), which states that 148 

an animal should continue searching for food in a patch for an amount of time proportional to the 149 

quality of the patch. However, because maintaining an accurate sense of time elapsed is challenging, a 150 

more likely strategy for insects is to leave after some Threshold Giving Up Distance-travelled (TGUD) 151 

has been reached, given the behavioral and neural evidence for insects’ ability to count steps [37,58]. 152 

Assuming some variability, a TGUD algorithm should result in a unimodal distribution of distances 153 

travelled, but the shape of that distribution could be either normal, or something with a heavier tail 154 

such as a lognormal, or levy distribution. An even simpler heuristic for  deciding when to leave a patch 155 

was proposed in the context of jumping spiders, termed Fixed Probability of Leaving (FPL) [59], 156 

where the animal does not need to keep track of time (or distance) and instead leaves with a fixed 157 

probability at each time step (or physical step). An FPL strategy would result in an exponential 158 

distribution, where the likelihood of leaving after a short distance travelled is very high, falling off 159 

exponentially.  160 
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 161 

Can flies’ decision to leave be modeled by either the TGUD or FPL strategy? A close look at the 162 

distribution of distance travelled suggests that although their behavior is not consistent with an 163 

exponential distribution it is consistent with both gamma and lognormal distributions, with parameters 164 

that vary as a function of the intervals between visits (Fig. 2E-F). At first glance, these results appear 165 

to favor the TGUD model, however, a gamma distribution is equivalent to a sum of exponential 166 

distributions. Thus, a simple alternative is that the fly has multiple FPL-like processes operating 167 

together, which I term Gamma Probability of Leaving (GPL). To distinguish between the TGUD and 168 

GPL models will require connecting the behavior with neural activity.  169 

 170 

Ecological context for time-interval correlated search 171 

 172 

What advantages might a correlation between intermediate and local search behaviors confer? I 173 

propose two hypotheses. First, the fly might form a memory, associating the odor with a low likelihood 174 

of finding food, thereby improving search efficiency. However, these relationships might change with 175 

the environment and season, so it would make sense for such a memory to revert to an innate value 176 

over time. The second hypothesis is that their behavior optimizes search in non-homogeneous 177 

environments, where potential resources are clustered in groups separated by larger distances. In this 178 

case, it would make sense to tailor search time relative to the ease with which a new potential food 179 

source can be found. Distinguishing between the memory and unpredictable environment hypotheses 180 

will require experiments that manipulate the memories formed by providing food rewards or 181 

manipulating the release of neuromodulators such as dopamine.  182 

 183 

  184 
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Figures 185 

 186 

 187 
Fig. 1 | Flies explore odorous objects longer on their first encounter. (A) Photograph of experimental arrangement 188 
of three odor emitting platforms inside a 60x60x120 cm3 wind tunnel. Above each platform was a machine vision camera 189 
to track the flies’ walking trajectories, and a digital SLR to image their markings. (B) Top down diagram of experimental 190 
arrangement, red shading indicates approximate region where ethanol odor was emitted, see [5]. (C) Representative 191 
photographs of flies indicating their identifying color spots painted on with nail polish. (D) Representative trajectory on 192 
one platform. (E) Distance travelled on the platform by individual flies, shading indicates 95% confidence interval about 193 
the mean of all visits after the first one. (F) When flies approached the odor on their first visit, they covered more ground 194 
than on average during their subsequent visits (paired T-test; t=4.56; p=0.001).  195 
 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 
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 205 
 206 
Fig. 2 | When flies explore an odorous, but food-barren, object, the distance they travel on the object is 207 
proportional to the time elapsed since their last visit to a similar object. (A) Cartoon of a hypothetical sequence of 208 
visits to three odor emitting patches. (B) Distance flies travel on the platform as a function of the time elapsed since their 209 
last visit to the same, or different, platform. Black and white colored dots indicate flies that either approached, or did not 210 
approach, the odor during that particular visit, respectively. Blue line shows the linear regression, including all data. 211 
Excluding flies that did not approach the odor does not change the statistics in any meaningful way. (C) Post-interval time 212 
as a function of the difference between the data and linear regression from B. (D) Relating distance travelled to the mean 213 
of the pre- and post-intervals improves the strength of the correlation, plotted as in B. The data in D is well modelled by 214 
either a gamma (E), or lognormal (F) distribution, with shape and scale parameters that vary with the abscissa.  215 
 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.18.256289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256289


 9 

 229 
Supp. Fig. 1 (A) Distance travelled on the platform is not correlated with time of day (p=0.38). (B) Pre- and post-intervals 230 
are not correlated with one another (p=0.23). Black and white colored dots indicate flies that either approached, or did 231 
not approach the odor during that particular visit.  232 
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