
A Large-scale Comparison of Cortical and Subcortical 

Structural Segmentation Methods in Alzheimer’s Disease: a 

Statistical Approach 

Jafar Zamani1, Ali Sadr1,*, Amir-Homayoun Javadi2,3,4,* 

 

1School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran 
2School of Psychology, University of Kent, Canterbury, UK 
3Institute of Behavioural Neuroscience, University College London, London, UK 
4School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran 

 

Running title: Structural Segmentation in Alzheimer’s Disease  

*Corresponding authors: 

Ali Sadr 

Address:  School of Electrical Engineering, 

Iran University of Science & Technology,  

Narmak, Tehran, Iran 

Phone:  +98 21 7322 5757 

E-Mail: sadr@iust.ac.ir 

 

   Amir-Homayoun Javadi 

Address:  School of Psychology, Keynes College 

University of Kent 

Canterbury, UK 

Phone:  +44 1227 827 770 

E-Mail: a.h.javadi@gmail.com  

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256321doi: bioRxiv preprint 

mailto:sadr@iust.ac.ir
mailto:a.h.javadi@gmail.com
https://doi.org/10.1101/2020.08.18.256321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

Background. Alzheimer’s disease (AD) is a neurodegenerative disease that leads to 

anatomical atrophy, as evidenced by magnetic resonance imaging (MRI). Automated 

segmentation methods are developed to help with the segmentation of different brain areas. 

However, their reliability has yet to be fully investigated. To have a more comprehensive 

understanding of the distribution of changes in AD, as well as investigating the reliability of 

different segmentation methods, in this study we compared volumes of cortical and subcortical 

brain segments, using automated segmentation methods in more than 60 areas between AD and 

healthy controls (HC).  

Methods. A total of 44 MRI images (22 AD and 22 HC, 50% females) were taken from the 

minimal interval resonance imaging in Alzheimer's disease (MIRIAD) dataset. HIPS, volBrain, 

CAT and BrainSuite segmentation methods were used for the subfields of hippocampus, and 

the rest of the brain.  

Results. While HIPS, volBrain and CAT showed strong conformity with the past literature, 

BrainSuite misclassified several brain areas. Additionally, the volume of the brain areas that 

successfully discriminated between AD and HC showed a correlation with mini mental state 

examination (MMSE) scores. The two methods of volBrain and CAT showed a very strong 

correlation. These two methods, however, did not correlate with BrainSuite.  

Conclusion. Our results showed that automated segmentation methods HIPS, volBrain and 

CAT can be used in the classification of AD and HC. This is an indication that such methods 

can be used to inform researchers and clinicians of underlying mechanisms and progression of 

AD. 

 

Keywords: volumetric MRI T1, atrophy, automatic segmentation, dementia, volBrain, CAT, 

BrainSuite, HIPS 
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1 Introduction  

Alzheimer’s disease (AD) is a devasting neurodegenerative disease, contributing to 60-70% of 

dementia cases 1. Currently there are around 50 million people with dementia worldwide. In 

2015, the total global societal cost of dementia was estimated to be US$ 818 billion 2,3. Mainly 

due to increased life-expectancy, the total number of people with dementia is projected to reach 

82 million (64% increase) in 2030, with between 49 and 57 million of these cases being AD 4. 

Whilst several drugs are available to mitigate the symptoms in some cases, no treatments are 

available that prevent progression from the relatively late stage at which the disease is 

diagnosed 5.  

AD is characterised by two main pathological hallmarks: extracellular amyloid deposits, 

composed of insoluble amyloid beta (Aβ) protein, and intra-neuronal neurofibrillary tangles 

(NFTs), containing hyperphosphorylated tau protein 6. AD is also characterised by a significant 

loss of neurons and synapses, resulting in brain shrinkage and atrophy 7,8. Structural changes 

have been shown to be one of the earliest biomarkers that can be used in the diagnosis of AD 

9–11. Much effort has been devoted to find patterns of changes in the structure of different brain 

areas that can be reliably used for diagnosis of AD 12. 

Earlier investigations relied mostly on manual segmentation of brain areas requiring a great 

deal of expertise and time 13–16. Therefore, the majority of the focus has been devoted to 

changes in the hippocampus due to its distinct structure 17. It has been shown that a loss in 

hippocampal volume can be an indication of AD 18,19. Further investigations have looked at 

subfields of the hippocampus, showing a nonuniform rate of neuroplasticity due to their 

specialisation 20–22. For example, it has been shown that NFT begin in the medial temporal 

region and exhibit a characteristic distribution pattern across subfields, starting in the CA1 and 

later spreading to subiculum, CA2, CA3 and CA4/Dentate Gyrus 23–27.  

With the development of semi- and fully-automated segmentation methods, however, it has 

now become easier and faster to segment not only the hippocampal area, but also other brain 

areas 28–32. HIPpocampus subfield Segmentation (HIPS) 33, volBrain 34, Computational 

Anatomy Toolbox (CAT) 35,36, BrainSuite 37,38 and FreeSurfer 39 are some of the commonly 

used semi- and fully-automated methods. These methods, however, are yet under development 

40,41. For example, CA1 segmentation in the FreeSurfer v5.3 was partially included in the 

subiculum 18 potentially explaining why the CA1 field was reported to be insensitive to AD 

pathology in some 42,43 but not all 44,45. Similar findings have recently raised questions and 
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concerns regarding the accuracy and consistency of these methods 46–49. Therefore, it is 

important to investigate the accuracy of these methods further 50.  

Benefiting from the computational power of automated methods, analysis of a large number of 

brain images has become more feasible. Large datasets of brain scans such as Minimal Interval 

Resonance Imaging in Alzheimer's Disease (MIRIAD), a public database of Alzheimer's 

magnetic resonance imaging (MRI) 51 , offer a great opportunity to have a more comprehensive 

approach to the underlying mechanism and progression of AD 52–56. It also facilitates multisite 

studies to form a more accurate understanding of the disease 57,58. 

Mini mental state examination (MMSE) is one of the commonly accepted measurements of 

cognitive ability, in particular in clinical settings 59–61. This measure has been widely used in 

classification of AD. For example, MIRIAD classifies participants with score between 12 and 

26/30 as AD and those higher than 26/30 as healthy control. There is huge body of literature 

showing correlation between MMSE score and brain atrophy 62–64.  

The aim of this study was to investigate the reliability of four automated segmentation methods 

of volBrain, CAT and BrainSuite for segmentation of the whole brain, and HIPS for 

segmentation of subfields of hippocampus, which belongs to the same analysis tool as volBrain. 

We used images belonging to MIRIAD. Correlation of the volume of each brain area with 

MMSE scores are also investigated. To investigate the reliability of the three methods volBrain, 

CAT and BrainSuite, the correlation of their common brain areas is also reported.  

2 Material and Methods 

2.1 Subjects 

We used 44 images (22 AD and 22 HC) taken from the Minimal Interval Resonance Imaging 

in Alzheimer's Disease (MIRIAD) dataset 51. Table 1 shows a summary of the descriptives of 

the participants.  

2.2 Magnetic Resonance Imaging (MRI) 

Data was extracted from MIRIAD database. All subjects underwent MRI scanning on a 1.5 T 

Signa scanner (GE Medical Systems, Milwaukee, WI, USA). T1-weighted volumetric images 

were obtained using an inversion recovery prepared fast spoiled gradient echo sequence with 

acquisition parameters time to repetition = 15 ms, time to echo = 5.4 ms, flip angle = 15°, TI = 
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650 ms, a 24-cm field of view and a 256 × 256 matrix, to provide 124 contiguous 1.5-mm thick 

slices in the coronal plane (voxels 0.9735 × 0.9735 × 1.5 mm3) 51.  

2.3 Methods 

HIPS and volBrain; The volumes of Cerebrospinal fluid (CSF), white matter (WM), grey 

matter (GM), brain hemispheres, cerebellum and brainstem were obtained using volBrain 

pipeline 34. This method is based on an advanced pipeline providing automatic segmentation 

of different brain structures from T1 weighted MRI, Figure 1. The preprocessing is based on 

the following procedure: (1) a denoising step with an adaptive non-local mean filter, (2) an 

affine registration in the Montreal Neurological Institute (MNI) space, (3) a correction of the 

image inhomogeneities, and (4) an intensity normalisation. (5) Afterwards, MRI images are 

segmented in the MNI space using non-local patch-based multi-atlas method. Images were 

corrected for intensity inhomogeneity using the N4 algorithm 65, and the images were 

segmented into brain/non-brain using a semi-automated technique (MIDAS). The Non-Local 

Means filter 66 was applied to each pixel of the image by computing a weighted average of 

surrounding pixels using a robust similarity measure that takes into account the neighbouring 

pixels surrounding the pixel being compared. This segmentation method is based on the idea 

of non-local patch-based label fusion technique, where patches of the brain image to be 

segmented are compared with those of the training library, looking for similar patterns within 

a defined search volume to assign the proper label 67,68. HIPS and volBrain are used for 

segmentation of the hippocampus subfields and the rest of the brain, respectively 33.  

CAT; Computational Anatomy Toolbox (CAT) is a powerful package for brain T1-MRI data 

segmentation, Figure 2. It is a voxel base estimation method 69. The CAT preprocessing steps 

are as follows: (1) spatial registration to a template, (2) tissue segmentation into grey, white 

matter and CSF, and (3) bias correction of intensity non-uniformities. (4) Finally, segments are 

extracted by scaling the amount of volume changes based on spatial registration, so that the 

total volume of grey matter in the modulated image remains the same as the original image. 

For correction of the orientation and size of the brain, non-linear registration methods are 

applied to the image 70. Projection-based thickness (PBT) method is used for calculation of the 

cortical thickness and central surface 70,71. Spatial-adaptive Non-Local Means (SANLM) and 

classical Markov Random Field (MRF) were used for image Denoising 72. Adaptive Maximum 

a Posterior (AMAP) method was used for segmentation 69. 
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BrainSuite; BrainSuite is an open source software tool that enables largely automated cortical 

surface extraction from MRI of the brain, Figure 3. BrainSuite includes automatic cortical 

surface extraction, bias field correlation, cerebrum labelling, and surface generation features. 

Also, this toolbox is used in tractography and connectivity matrix calculation in diffusion 

imaging data 37. 

2.4 Statistical Analysis 

Independent-sample t-tests are run to compare the volume of different brain areas between the 

AD and HC groups for volBrain, CAT and BrainSuite for the whole brain, and HIPS for the 

hippocampus subfields. Bivariate-correlation analyses are also run to investigate the 

relationship between volume and MMSE scores for all four segmentation methods. 

Correlational analyses are run between the common brain areas in volBrain, CAT and 

BrainSuite to investigate the relationship between the three methods. Bonferroni correction is 

applied to account for multiple comparison.  

3 Results 

Using three automatic segmentation methods CAT, volBrain and BrainSuite, we segmented 

the whole brain, and using HIPS we segmented the hippocampus. Using independent-sample 

t-tests we compared the volumetric data for AD and HC for each segment. Figures 3-6 show 

sample output images for one AD patient and one HC participant. Furthermore, we investigated 

the correlation of volumetric data with MMSE scores in both groups.   

CAT segmentation method returned data for 63 distinct brain areas. This method highlighted 

many brain areas that are significantly different between the two groups, Table 2. In particular 

fusiform gyrus, parahippocampal gyrus, hippocampus, entorhinal cortex, amygdala, temporal 

gyri, thalamus, nucleus accumbens, insula, caudate and precuneus were significantly different. 

Importantly, the size of all these brain areas showed a strong correlation with MMSE scores. 

For further details see supplementary figures 1-3. 

=== Table 2 === 

=== Figure 4 === 

volBrain segmentation method returned data for eight distinct brain areas. In particular the 

amygdala, hippocampus, nucleus accumbens, thalamus and caudate were significantly 
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different between the two groups, Table 3. Again, the size of all these brain areas showed a 

strong correlation with MMSE scores. For further details see supplementary figures 4-6. 

=== Table 3 === 

=== Figure 5 === 

BrainSuite segmentation method returned data for 50 distinct brain areas. In contrast to CAT 

and volBrain, this method highlighted only six brain areas that are significantly different 

between the two groups, Table 4. These brain areas included temporal gyri, third ventricle, 

supramarginal gyrus and angular gyrus. Similar to previous segmentation methods, all these 

brain areas showed strong correlation with MMSE scores. For further details see supplementary 

figures 7-9. 

=== Table 4 === 

=== Figure 6 === 

HIPS segmentation method returned data for the whole hippocampus and five of its subfields: 

CA1, CA2-CA3, CA4/Dentate Gyrus, Subiculum and strata radiatum/lacunosum/moleculare 

(SR-SL-SM). All these areas showed a significant difference between the two groups, Table 5. 

The size of hippocampus and all its subfields showed strong correlation with MMSE scores. 

For further details see supplementary figures 10-12. 

=== Table 5 === 

=== Figure 7 === 

To investigate the relationship between the three whole-brain segmentation methods CAT, 

volBrain and BrainSuite, we ran correlational analysis, Table 6. Seven brain areas were 

common between these methods: nucleus accumbens, amygdala, caudate, globus pallidus, 

hippocampus, putamen and thalamus. CAT and volBrain showed strong correlation for nucleus 

accumbens, amygdala, caudate, hippocampus and thalamus. Two brain areas globus pallidus 

and putamen were not significantly correlated. These brain areas did not show significant 

difference between the two groups either. BrainSuite, however, showed no significant 

correlation with either of the other two segmentation methods.  

=== Table 6 === 
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4 Discussion 

We used HIPS automated method to segment the subfields of hippocampus, and CAT, volBrain 

and BrainSuite automated methods to segment the whole brain using T1 weighted MRI data. 

Our results showed that all subfields of hippocampus in the Alzheimer’s Disease (AD) group 

were significantly smaller than those of the healthy control (HC) group. The atrophy of all 

subcomponents of hippocampus were correlated with the MMSE measure. Quite a large 

portion of cortical and subcortical areas in the brain were also smaller in the AD group as 

compared to the control group, as evident from CAT and volBrain segmentation results. The 

shrinkage in these brain areas mostly showed a strong correlation with MMSE measure. 

BrainSuite failed to discriminate between the two groups. While CAT and volBrain shows a 

strong correlation, BrainSuite did not show any significant correlation with CAT and volBrain.  

With the advancement of computational methods, fine-grain analysis of the brain areas is more 

feasible 73–75. Earlier methods relied heavily on manual segmentation of the brain areas, which 

was extremely time demanding and also required a great level of expertise. Therefore, the 

majority of the analysis was limited to brain areas with more distinct structure, such as the 

hippocampus. Many semi- and fully-automated segmentation methods have been developed. 

While these methods have been used more commonly in recent years, the reliability and 

accuracy of these methods was yet to be fully studied. We used four pipelines of HIPS 33, 

volBrain 34, CAT 35,36 and BrainSuite 37. In this study we evaluated their reliability by looking 

at their ability to discriminate between AD and HC groups, whether a correlation existed 

between them, their correlation with MMSE scores, and comparing their results with past 

literature. Our results showed strong reliability of HIPS, volBrain and CAT. These methods 

have been successfully applied to brain images from those with AD 76–79.  

BrainSuite, however, underperformed greatly. For example, it failed to accurately segment the 

hippocampus, thalamus and amygdala to show a significant difference between the two groups. 

While this automatic segmentation method has been used frequently in past research 80, its 

application has been mostly limited to the processing of brains with no atrophy 81,82, as well as 

detection of gross segments such as tumours 83. This highlights the importance of validation 

studies such as ours to gain a greater understanding of the applications and limitations of 

different methods 84–87. 

The volume of the hippocampus is considered as an important biomarker for AD and has been 

included in recently proposed research diagnostic criteria 88,89. It has been shown that the 
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hippocampal atrophy estimated on anatomical T1 weighted MRI can help in classifying the 

different stages of AD 90–92. Confirming past literature, our results showed that the 

hippocampus volume significantly differed between AD and the control group.  

Histological studies have shown that lesions are not uniformly distributed within the 

hippocampus 91,93. Neuronal loss results in a reduction of the thickness of the layers richer in 

neuronal bodies, while the loss of synapses results in the reduction of the layers poorer in 

neuronal bodies 94–97 and these changes are stage-dependent 98,99. Our results, however, failed 

to differentiate the contribution of these subfields in AD; they all showed significant reduction 

in size, compared to the control group. This effect could be because our AD group consisted 

of those with later stages of AD. The contribution of different subfields of the hippocampus is 

more visible in those with mild cognitive impairment 100–102. Therefore, in future studies it 

would be informative to include participants with different stages of AD to investigate the 

contribution of different subfields of the hippocampus in AD. 

While the contribution of atrophy in the hippocampus has been widely studied, the role of 

atrophy in the rest of the brain in AD is less clear 40.  An important contributing factor is that 

the boundaries of the hippocampus are easier for human operators or automated algorithms to 

recognise than other brain areas such as the amygdala, entorhinal cortex or thalamus 40. Due to 

methodological advances, however, it is now possible to measure atrophy across the entire 

cortex with good precision 103.  Our results from CAT and volBrain methods showed strongly 

significant differences between many brain areas such as the amygdala, thalamus, nucleus 

accumbens, insula and caudate. These findings are in-line with past literature showing similar 

differences in these brain areas 40,104–106.  

There is a growing body of literature showing a correlation between cognitive decline and brain 

atrophy 62,107,108. For example, it has been shown that basal forebrain changes are correlated 

with cognitive decline in MCI and AD patients, as measured with recall task and MMSE 109,110, 

as well as healthy participants that later progressed to AD 111. Atrophy of other brain areas such 

as lateral and medial parietal cortex, as well as lateral temporal cortex have also been shown to 

have a correlation with cognitive decline 112. Our results showed a strong correlation between 

brain atrophy and cognitive decline as measured by MMSE. All brain areas that were 

significantly different between the AD and the control group showed a significant correlation 

with MMSE, except for the caudate (CAT p = 0.001155, volBrain p = 0.005091, Bonferroni 

corrected statistic not significant). While the effect of shrinkage of the caudate in AD is not 

very clear 113, there is some evidence that caudate volume has a correlation with MMSE 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256321doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256321
http://creativecommons.org/licenses/by-nc-nd/4.0/


measures, although not as strongly as other brain areas such as the thalamus 63,114. An important 

consideration is that atrophy in the left caudate has a stronger role in AD, as compared to the 

right caudate 113,115. Our analysis combined both the left and right caudate, which may have led 

to this inconsistency between our results and previous literature.  

Although AD commonly presents as an amnestic syndrome, there is significant heterogeneity 

across individuals 116, which is accompanied by different atrophy patterns 64,117–119. For 

example, while those with more language difficulties might exhibit greater atrophy in temporal 

or parietal regions 120,121, those with more visual difficulties might have greater atrophy in 

posterior cortical regions 122,123. Availability of the automated systems offers many 

opportunities, such as the ability to analyse a large number of brain images with reasonable 

time and expertise. This is in particular very appealing, considering the increased number of 

large datasets such as MIRIAD. Automated systems can go through the collection and 

aggregate data from a wide range of participants, healthy and patients to gain a greater 

understanding of AD. This is important considering the heterogeneity of the disease and its 

progression 124.  

Another application of automated systems is in clinical settings. By the time of diagnosis, rapid 

ongoing atrophy is already far advanced 125,126. Early diagnosis of AD can help with 

deceleration of the progression of the disease 21,127,128. This is particularly important as there 

are modifiable factors that can help with brain health129–131. Therefore, a massive effort has 

been devoted to the development of diagnostic methods to enable researchers and clinicians to 

detect AD and cases with potential progression to AD, as early as possible 132,133. For the 

development of preventive strategies, it is important to predict future brain atrophy, as this may 

aid in identifying which individuals with normal cognition are more susceptible of progressing 

to later stages of AD 134–136. Automated systems provide additional information to clinicians, 

enabling them to have a greater understanding of the progression of the atrophy 12,137. Some of 

these methods have already received approval from different licensing bodies such as CE 

(European conformity) and FDA (food and drug administration, USA) approval 138. These 

methods, however, come with some limitations such as speed of processing, expensive 

licences, or requirement of other specialised software. This study is another step to evaluate 

freely available analytical tools to achieve an ideal analysis pipeline, suitable for researchers 

and clinicians.  

Availability of the reliable automated segmentation methods enables researchers and clinicians 

to have a greater understanding of the underlying mechanisms and the progression of the AD. 
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This will allow them to attempt to prevent or decelerate the progression of the disease more 

effectively. Future research can look at the rate of atrophy to predict the progression of disease 

139–142. This rate can be helpful to have a more informed understanding whether an individual 

with MCI will later progress to AD or not 105,143,144. The output of automated segmentation 

methods can also be used in training of intelligent classification methods such as those using 

artificial neural networks and support vector machines, which has shown promising results 145–

154. 

The purpose of this article was not to identify the superiority of any particular automatic 

segmentation method over another, but to solely highlight possible limitations and applications 

of four commonly used segmentation methods. We proposed that CAT, volBrain and HIPS are 

methods that can robustly operate on brain images with significant atrophy and can be used in 

research and clinical settings. BrainSuite, however, should be used with caution for brain 

images with atrophy.  
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Table 1. Comparison between Alzheimer’s disease (AD) and healthy controls (HC). 

Measure Alzheimer’s Disease Healthy Control p 

n 22 22 - 

Female (n [%]) 11 [50] 11 [50] - 

Age (mean [SD]) 70.64 [5.55] 70.61 [7.54] 0.916 

MMSE (mean [SD]; min-max) 17.272 [5.461]; 5-26 29.087 [1.083]; 27-30 < 0.001 
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Table 2. Summary of the independent-sample t-tests comparing volumetric data between the 

participants with Alzheimer’s disease and healthy controls and the correlation of the data with MMSE 

scores using CAT method. 

 Comparison between groups Correlation with MMSE 

Brain Area t p↑ d r2 p 

Fusiform Gyrus 10.793 < 0.000001* 3.413 0.723 < 0.000001* 

Parahippocampus Gyrus 9.936 < 0.000001* 3.142 0.536 < 0.000001* 

Hippocampus 9.753 < 0.000001* 3.084 0.460 0.000001* 

Entorhinal Cortex 9.717 < 0.000001* 3.073 0.476 < 0.000001* 

Amygdala 9.043 < 0.000001* 2.860 0.445 0.000001* 

Inferior Temporal Gyrus 8.939 < 0.000001* 2.827 0.653 < 0.000001* 

Middle Temporal Gyrus 7.632 < 0.000001* 2.413 0.619 < 0.000001* 

Temporal Pole 7.185 < 0.000001* 2.272 0.491 < 0.000001* 

Basal Forebrain 6.658 < 0.000001* 2.105 0.453 0.000001* 

Thalamus  6.344 < 0.000001* 2.006 0.471 0.000001* 

Angular Gyrus 5.808 0.000001* 1.837 0.507 < 0.000001* 

Accumbens 5.275 0.000005* 1.668 0.289 0.000236* 

Inferior Occipital Gyrus 5.228 0.000006* 1.653 0.527 < 0.000001* 

Superior Temporal Gyrus 5.186 0.000007* 1.640 0.513 < 0.000001* 

Supramarginal Gyrus 5.101 0.000009* 1.613 0.498 < 0.000001* 

Anterior Insula 4.955 0.000014* 1.567 0.346 0.000043* 

Occipital Fusiform Gyrus 4.519 0.000054* 1.429 0.472 0.000001* 

Middle Occipital Gyrus 4.515 0.000055* 1.428 0.417 0.000004* 

Posterior Insula 4.447 0.000068* 1.406 0.338 0.000054* 

Planum Polare 4.232 0.000131* 1.338 0.349 0.000038* 

Anterior Cingulate Gyrus 4.225 0.000134* 1.336 0.362 0.000025* 

Superior Parietal Lobule 4.131 0.000179* 1.306 0.423 0.000003* 

Caudate 3.959 0.000301* 1.252 0.234 0.001155 

Subcallosal Area 3.847 0.000420* 1.217 0.299 0.000180* 

Middle Frontal Gyrus 3.796 0.000490* 1.200 0.328 0.000073* 

Medial Orbital Gyrus 3.739 0.000579* 1.182 0.278 0.000331* 

Inferior Frontal Gyrus 3.691 0.000666* 1.167 0.373 0.000017* 

Precuneus 3.633 0.000788* 1.149 0.349 0.000038* 

Superior Medial Frontal Gyrus 3.543 0.001023 1.120 0.312 0.000120* 

Putamen 3.525 0.001077 1.115 0.203 0.002822 

Temporal 3.489 0.001195 1.103 0.340 0.000051* 
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Anterior Orbital Gyrus 3.413 0.001484 1.079 0.244 0.000894 

Posterior Orbital Gyrus 3.272 0.002203 1.035 0.255 0.000643* 

Lingual Gyrus 3.263 0.002262 1.032 0.304 0.000158* 

Posterior Cingulate Gyrus 3.226 0.002506 1.020 0.314 0.000117* 

Central Operculum 3.116 0.003388 0.985 0.372 0.000018* 

Frontal Operculum 2.999 0.004638 0.948 0.265 0.000479* 

Supplementary Motor Cortex 2.969 0.005032 0.939 0.310 0.000128* 

Exterior Cerebellum 2.934 0.005513 0.928 0.163 0.007986 

Superior Frontal Gyrus 2.870 0.006523 0.908 0.199 0.003066 

Parietal Operculum 2.864 0.006637 0.906 0.320 0.000095* 

Middle Cingulate Gyrus 2.734 0.009272 0.865 0.269 0.000432* 

Gyrus Rectus 2.660 0.011190 0.841 0.143 0.013603 

Optic Chiasm 2.531 0.015401 0.800 0.066 0.101456 

Lateral Orbital Gyrus 2.427 0.019841 0.767 0.158 0.009194 

Temporal Transverse Gyrus 2.345 0.024056 0.742 0.189 0.003960 

Superior Occipital Gyrus 2.290 0.027347 0.724 0.245 0.000849 

Medial Precentral Gyrus 2.250 0.030015 0.712 0.196 0.003321 

Cuneus 2.091 0.042968 0.661 0.187 0.004135 

Inferior Frontal Orbital Gyrus 2.063 0.045679 0.652 0.123 0.022887 

Postcentral Gyrus 1.687 0.099402 0.533 0.142 0.013747 

Frontal Pole 1.603 0.116854 0.507 0.067 0.098513 

Occipital Pole 1.596 0.118311 0.505 0.127 0.020199 

Inferior Frontal Angular Gyrus 1.518 0.136864 0.480 0.134 0.017041 

Cerebellum White Matter 1.319 0.194795 0.417 0.079 0.071875 

Precentral Gyrus 1.196 0.238644 0.378 0.124 0.022441 

Medial Postcentral Gyrus 1.061 0.294904 0.336 0.070 0.090174 

Brainstem -0.875 0.386852 0.277 0.005 0.640175 

Cerebellar Vermal Lobules VI-VII 0.699 0.488487 0.221 0.024 0.325448 

Cerebellar Vermal Lobules VIII-X 0.617 0.541029 0.195 0.015 0.434774 

Cerebellar Vermal Lobules I-V 0.218 0.828189 0.069 0.016 0.430517 

Globus Pallidus -0.212 0.832833 0.067 0.001 0.860265 

Calcarine Cortex 0.198 0.843964 0.063 0.013 0.473158 

Notes: ↑ rows are sorted based on the p values for the t-test; * p < 0.000793 Bonferroni corrected for 

multiple comparison; d represents Cohen’s d effect size; MMSE: mini mental state examination 
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Table 3. Summary of the independent-sample t-tests comparing volumetric data between the 

participants with Alzheimer’s disease and healthy controls and the correlation of the data with MMSE 

scores using volBrain method. 

 Comparison between groups Correlation with MMSE 

Brain Area t p↑ d r2 p 

Amygdala 10.217 < 0.000001* 3.231 0.428 0.000001* 

Hippocampus 6.58 < 0.000001* 2.081 0.256 0.000395* 

Accumbens 5.813 0.000001* 1.838 0.339 0.000027* 

Thalamus 4.422 0.000065* 1.398 0.317 0.000057* 

Caudate 4.149 0.000154* 1.312 0.169 0.005091 

Cerebellum 2.063 0.045216 0.652 0.094 0.041135 

Globus Pallidus -1.103 0.276245 0.349 0.026 0.287427 

Putamen 0.846 0.402030 0.268 0.019 0.366267 

Notes: ↑ rows are sorted based on the p values for the t-test; * p < 0.0038 Bonferroni corrected for 

multiple comparison; d represents Cohen’s d effect size; MMSE: mini mental state examination;  
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Table 4. Summary of the independent-sample t-tests comparing volumetric data between the 

participants with Alzheimer’s disease and healthy controls and the correlation of the data with MMSE 

scores using BrainSuite segmentation method. 

 Comparison between groups Correlation with MMSE 

Brain Area t p↑ d r2 p 

Inferior Temporal Gyrus 7.245 < 0.000001* 2.184 0.677 0.000001* 

Middle Temporal Gyrus 4.738 0.000029* 1.429 0.697 < 0.000001* 

Third Ventricle -4.354 0.000094* 1.313 -0.522 0.000468* 

Superior Temporal Gyrus 3.944 0.000323* 1.189 0.507 0.000722* 

Supramarginal Gyrus 3.698 0.000668* 1.115 0.509 0.000683* 

Angular Gyrus 3.632 0.000809* 1.095 0.52 0.000498* 

Middle Occipital Gyrus 3.543 0.001043 1.068 0.536 0.000303* 

Pars Opercularis 2.958 0.005237 0.892 0.45 0.003137 

Inferior Occipital Gyrus 2.663 0.011206 0.803 0.383 0.013402 

Accumbens -2.64 0.011866 0.796 -0.481 0.001457 

Superior Parietal Gyrus 2.534 0.015392 0.764 0.434 0.004538 

Superior Colliculus -2.532 0.015481 0.763 -0.338 0.030512 

Parahippocampal Gyrus 2.447 0.019029 0.738 0.428 0.005294 

Cingulate Gyrus -2.374 0.022629 0.716 -0.356 0.022147 

Fusiform Gyrus 2.269 0.028864 0.684 0.155 0.334311 

Insula 2.133 0.039251 0.643 0.255 0.107583 

Globus Pallidus -1.995 0.053041 0.602 -0.231 0.146663 

Cerebellum 1.979 0.054949 0.597 0.191 0.232289 

Basal Forebrain -1.909 0.063590 0.576 -0.243 0.126172 

Anterior Orbito-Frontal Gyrus 1.856 0.070973 0.560 0.234 0.140158 

Subcallosal Gyrus -1.847 0.072330 0.557 -0.207 0.194909 

Pars Orbitalis 1.82 0.076458 0.549 0.275 0.081327 

Lingual Gyrus -1.809 0.078196 0.545 -0.316 0.043952 

Middle Frontal Gyrus 1.807 0.078496 0.545 0.284 0.071904 

Lateral Geniculate Nucleus 1.78 0.082929 0.537 0.253 0.109970 

Middle Orbito-Frontal Gyrus 1.744 0.089100 0.526 0.142 0.374241 

Temporal Pole 1.591 0.119752 0.480 0.022 0.892295 

Post-Central Gyrus 1.501 0.141345 0.453 0.315 0.044533 

Hippocampus -1.241 0.221958 0.374 -0.162 0.311495 

Transverse Temporal Gyrus 1.138 0.261864 0.343 0.268 0.090858 

Transvers Frontal Gyrus 1.099 0.278660 0.331 0.272 0.085861 
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Thalamus 0.968 0.339074 0.292 0.087 0.586936 

Inferior Colliculus 0.94 0.352768 0.283 0.102 0.526091 

Pars Triangularis 0.911 0.367812 0.275 0.216 0.174328 

Claustrum 0.87 0.389785 0.262 0.163 0.308227 

Caudate -0.863 0.393478 0.260 -0.122 0.448542 

Pre-Central Gyrus 0.859 0.395408 0.259 0.242 0.128116 

Paracentral Lobule 0.858 0.395895 0.259 0.128 0.424284 

Superior Occipital Gyrus 0.858 0.395943 0.259 0.169 0.291590 

Cuneus 0.843 0.404153 0.254 0.106 0.510235 

Putamen 0.653 0.517714 0.197 -0.001 0.995473 

Lateral Orbitofrontal Gyrus -0.548 0.586738 0.165 -0.071 0.658410 

Gyrus Rectus -0.516 0.608533 0.156 -0.123 0.442668 

Medial Geniculate Nucleus -0.505 0.616072 0.152 -0.122 0.448980 

Mamillary Body 0.492 0.625193 0.148 0.125 0.436896 

Precuneus -0.49 0.627078 0.148 -0.007 0.967476 

Posterior Orbito-Frontal Gyrus 0.445 0.658856 0.134 0.02 0.901794 

Brainstem 0.209 0.835439 0.063 -0.015 0.925512 

Superior Frontal Gyrus 0.202 0.840699 0.061 0.132 0.411455 

Amygdala 0.145 0.885584 0.044 -0.109 0.497327 

Notes: ↑ rows are sorted based on the p values for the t-test; * p < 0.001000 Bonferroni corrected for 

multiple comparison; d represents Cohen’s d effect size; MMSE: mini mental state examination 
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Table 5. Summary of the independent-sample t-tests comparing volumetric data between the 

participants with Alzheimer’s disease and healthy controls and the correlation of the data with MMSE 

scores using HIPS segmentation method. 

 Comparison between groups Correlation with MMSE 

Brain Area t p↑ d r2 p 

SR-SL-SM 8.990 < 0.000001* 2.843 0.393 0.000004* 

Hippocampus 8.619 < 0.000001* 2.726 0.388 0.000005* 

CA4/Dentate Gyrus 8.248 < 0.000001* 2.608 0.402 0.000003* 

CA1 6.308 < 0.000001* 1.995 0.256 0.000389* 

Subiculum 5.121 0.000007* 1.619 0.229 0.000873* 

CA2-CA3 5.025 0.000009* 1.589 0.288 0.000142* 

Notes: ↑ rows are sorted based on the p values for the t-test; * p < 0.008333 Bonferroni corrected for 

multiple comparison; d represents Cohen’s d effect size; MMSE: mini mental state examination; SR-

SL-SM: strata radiatum/lacunosum/moleculare  
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Table 6. Correlation of the size of common brain areas reported by the three segmentation methods 

  CAT  volBrain  

 Brain Area r2 p r2 p 

BrainSuite Accumbens -0.227 0.159813 -0.277 0.078996 

 Amygdala 0.240 0.136249 0.029 0.858460 

 Caudate 0.169 0.298015 0.090 0.577545 

 Globus Pallidus -0.118 0.469153 0.184 0.249666 

 Hippocampus -0.162 0.318747 -0.275 0.081327 

 Putamen 0.328 0.039077 -0.186 0.243349 

 Thalamus 0.188 0.245249 0.177 0.268448 

volBrain Accumbens 0.633 0.000007*   

 Amygdala 0.632 0.000007*   

 Caudate 0.470 0.001678*   

 Globus Pallidus -0.245 0.118543   

 Hippocampus 0.637 0.000006*   

 Putamen 0.020 0.898315   

 Thalamus 0.541 0.000214*   

Notes: * p < 0.002380 Bonferroni corrected for multiple comparison 
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Figures’ Caption 

Figure 1. Processing pipeline for volBrain and HIPS adapted from Manjón and Coupé (2016) 

34 under the terms of the Creative Commons Attribution License (CC BY). 

Figure 2. Processing pipeline for CAT 

Figure 3. Processing pipeline for BrainSuite 

Figure 4. Subcortical structures in an AD patient and a HC participant using CAT segmentation 

method. The histograms show the volume of each brain area 

Figure 5. Cerebellum MRI-T1 brain segmentation in an AD patient and a HC participant using 

volBrain segmentation method. 

Figure 6. Cerebellum MRI-T1 brain segmentation in an AD patient and a HC participant using 

BrainSuite segmentation method. 

Figure 7. Left and right hippocampus subfield segmentation in an AD patient and a HC 

participant 
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Figure 1. Processing pipeline for volBrain and HIPS adapted from Manjón and Coupé (2016) 34 under 

the terms of the Creative Commons Attribution License (CC BY). 
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Figure 2. Processing pipeline for CAT. 
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Figure 3. Processing pipeline for BrainSuite. 
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Alzheimer’s Disease Healthy Control 

  

Figure 4. Subcortical structures in an AD patient and a HC participant using CAT segmentation method. 

The histograms show the volume of each brain area. 
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Figure 5. Cerebellum MRI-T1 brain segmentation in an AD patient and a HC participant using volBrain 

segmentation method. 
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Figure 6. Cerebellum MRI-T1 brain segmentation in an AD patient and a HC participant using 

BrainSuite segmentation method. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256321doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256321
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Alzheimer’s Disease Healthy Control 

Left Hippocampus  

  

Right Hippocampus  

  

Figure 7. Left and right hippocampus subfield segmentation in an AD patient and a HC participant using 

HIPS segmentation method. 
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