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Abstract

Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-

invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement and 

breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to their 

high temporal collinearity with the effect of interest, and attention has to be paid when choosing 

which analysis model should be applied to the data. In this study, we evaluate the performance of 

multiple analysis strategies based on lagged general linear models applied on multi-echo BOLD 

fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-

specific CVR and haemodynamic lag estimates. The evaluated approaches range from conventional 

regression models including drifts and motion timecourses as nuisance regressors applied on single-

echo or optimally-combined data, to more complex models including regressors obtained from 

multi-echo independent component analysis with different grades of orthogonalization in order to 

preserve the effect of interest, i.e. the CVR. We compare these models in terms of their ability to 

make signal intensity changes independent from motion, as well as the reliability as measured by 

voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our results 

reveal that a conservative independent component analysis model applied on the optimally-

combined multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal,

while yielding reliable CVR amplitude and lag estimates, although a conventional regression model 

applied on the optimally-combined data results in similar estimates. This work demonstrate the 

usefulness of multi-echo based fMRI acquisitions and independent component analysis denoising 

for precision mapping of CVR in single subjects based on BH paradigms, fostering its potential as a

clinically-viable neuroimaging tool for individual patients. It also proves that the way in which 

1

5

10

15

20

25

30

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2020. ; https://doi.org/10.1101/2020.08.18.256479doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256479
http://creativecommons.org/licenses/by-nd/4.0/


data-driven regressors should be incorporated in the analysis model is not straight-forward due to 

their complex interaction with the BH-induced BOLD response.

Keywords

Cerebrovascular reactivity, breath-hold, multi-echo fMRI, independent component analysis, 

denoising, precision functional mapping

1 Introduction

Cerebrovascular reactivity (CVR) is a physiological response of the cerebral vessels to vasodilatory 

or vasoconstrictive stimuli. Mapping of the CVR response provides an important indicator of 

cerebrovascular health. In recent years, functional magnetic resonance imaging (fMRI), either based

on the blood oxygenation level-dependent (BOLD) contrast, arterial spin labelling, or a mixture of 

both, has demonstrated its effectiveness as a method to assess CVR. As a result, its use is spreading 

into clinical practice, where its potential as a diagnostic measure is being ascertained in different 

diseases, spanning from vascular diseases (Hartkamp, Bokkers, van Osch, de Borst, & Hendrikse, 

2017; Markus & Cullinane, 2001; Webster et al., 1995; Ziyeh et al., 2005), to stroke and aphasia 

(Krainik, Hund-Georgiadis, Zysset, & Von Cramon, 2005; Van Oers et al., 2018), brain tumors 

(Fierstra et al., 2018; Zacà, Jovicich, Nadar, Voyvodic, & Pillai, 2014), neurodegenerative diseases 

(Camargo et al., 2015; Glodzik, Randall, Rusinek, & de Leon, 2013; Marshall et al., 2014), 

hypertension (Iadecola & Davisson, 2008; Leoni et al., 2011; Tchistiakova, Anderson, Greenwood, 

& Macintosh, 2014), lifestyle habits (Friedman et al., 2008; Gonzales et al., 2014), sleep apnea 

(Buterbaugh et al., 2015; Prilipko, Huynh, Thomason, Kushida, & Guilleminault, 2014), and 

traumatic brain injury or concussions (Churchill, Hutchison, Graham, & Schweizer, 2020; Markus 

& Cullinane, 2001).

CVR measurements are obtained by evoking a vasodilatory response during imaging. This is 

typically done by injecting intravenous acetazolamide, or by exposing the subject to gas challenges 

with computerised dynamic deployment of CO2 and O2. However, acetazolamide is an invasive 

technique not indicated for vulnerable subjects (e.g. elderly or children), while gas challenges 

require dedicated setups and can also cause discomfort in some subjects, which might induce 

anxiety and thus potentially bias CVR measurement (Urback, MacIntosh, & Goldstein, 2017). A 

valid alternative is the use of voluntary respiratory challenges, such as paced deep breathing or 

breath-hold (BH) tasks (Bright, Bulte, Jezzard, & Duyn, 2009; Kastrup, Li, Takahashi, Glover, & 

Moseley, 1998). In fact, it has been shown that CO2 changes in the blood due to breathing tasks 

elicit a CVR response that is equivalent to that of inhaled CO2 (Kastrup, Krüger, Neumann-
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Haefelin, & Moseley, 2001; Tancredi & Hoge, 2013). A BH task can be successfully implemented 

in young children and elderly subjects (Handwerker, Gazzaley, Inglis, & D’Esposito, 2007; 

Thomason, Burrows, Gabrieli, & Glover, 2005), and it is a robust measurement even if subjects are 

not able to hold their breath for as long as instructed (Bright & Murphy, 2013a). Moreover, BH-

induced CVR has been shown to be a reliable measurement across different sessions of MRI, both 

in the short (same day) and long term (Peng, Yang, Chen, & Shih, 2019), in terms of spatial 

reliability (i.e. comparing variability of voxels across multiple sessions in one subject) and general 

reliability (i.e. average CVR value across sessions and within subjects) (Lipp, Murphy, Caseras, & 

Wise, 2015; Magon et al., 2009). Both short and long term reliability of BH-induced CVR were 

found to be comparable to that of other non-invasive means of estimating CVR, such as resting state

fMRI (P. Liu et al., 2017), inhaled gas challenges (Dengel et al., 2017; Evanoff et al., 2020; Leung, 

Kim, & Kassner, 2016), Fourier modelling of a BH task (Pinto, Jorge, Sousa, Vilela, & Figueiredo, 

2016), and a paced deep breathing task (Sousa, Vilela, & Figueiredo, 2014).

However, BOLD fMRI data exhibit signal variation arising from different sources, most of which 

corresponds to hardware-related artefacts and drifts, head motion, confounding physiological 

fluctuations, and other sources of noise (Bianciardi et al., 2009; Jorge, Figueiredo, van der Zwaag, 

& Marques, 2013). It is important that the signal variance associated with these confounding signals

is accounted for and minimized during preprocessing or data analyses (Caballero-Gaudes & 

Reynolds, 2017; T. T. Liu, 2016). The artefacts induced by voluntary and involuntary movement are

a particularly problematic source of noise for task-based fMRI experiments, mainly in block designs

where large head movement leads to bias in estimates of the task-induced activity (Johnstone et al., 

2006) and in particular experimental paradigms, such as in overt speech production where the 

articulation of words makes head movement considerable (Barch et al., 1999; Soltysik & Hyde, 

2006; Xu et al., 2014). This concern with task-induced movement artefacts extends to respiration 

tasks: the experimental design is similar to that of block designs, but the amount of motion 

associated with paced breathing, deep breaths, or “recovery” breaths following a BH task can be 

very prominent and concur with the pattern of the task. Moreover, respiration can perturb the B0 

field due to the change of air in the lungs (Raj, Anderson, & Gore, 2001) and introduce aliasing 

artefacts or pseudo-movement effects in the signal (Gratton et al., 2020; Pais-Roldán, Biswal, 

Scheffler, & Yu, 2018; Power, Lynch, et al., 2019).

There are different ways to account for motion effects on task-based fMRI data analysis. For 

instance, such effects can be reduced during acquisition by implementing an event-related task 

paradigm (Birn, Bandettini, Cox, & Shaker, 1999; Birn, Cox, & Bandettini, 2004). However, in a 

BH task the periods of apnoea are typically between 10 and 20 seconds in duration to achieve a 

robust and reproducible vasodilatory response (Bright & Murphy, 2013a; Magon et al., 2009), and 
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are not readily adapted to a brief event-related design. The most straight-forward approach is then to

include the realignment translation and rotation parameters in the analysis model (Friston, Williams,

Howard, Frackowiak, & Turner, 1996). Treating such timecourses, as well as their derivatives and 

non-linear expansions, as regressors of non-interest in the regression model can account for part of 

the motion-related variance of the signal, thus improving the estimation of the task effects. Another 

widely adopted method to remove motion-related effects, as well as noise in general, is to 

decompose the fMRI data using Principal Component Analysis or Independent Component Analysis

(ICA) in order to identify and remove components that are mostly related to motion or other sources

of noise (Behzadi, Restom, Liau, & Liu, 2007; Griffanti et al., 2014; Muschelli et al., 2014; R. H. R.

Pruim, Mennes, Buitelaar, & Beckmann, 2015; R. H. R. Pruim, Mennes, Rooij, et al., 2015; Salimi-

Khorshidi, Smith, & Nichols, 2011).

Alternatively, noise in fMRI can be reduced by using multi-echo (ME) acquisitions that sample the 

data at multiple successive echo times (TE). A weighted combination of the multiple echoes based 

on each voxel’s T2
٭  value (Posse et al., 1999) or temporal signal-to-noise ratio (Poser, Versluis, 

Hoogduin, & Norris, 2006) can smear out random noise and enhance the sensitivity to the BOLD 

contrast. In fact, compared with single-echo data, this optimal combination can improve the 

mapping of neuronal activity at 3 Tesla (Fernandez, Leuchs, Sämann, Czisch, & Spoormaker, 2017)

and 7T (Puckett et al., 2018), with results comparable to other preprocessing techniques requiring 

extra data such as RETROICOR (Atwi et al., 2018). Optimal combination of multiple echo volumes

can also improve BH-induced CVR mapping sensitivity, specificity, repeatability and reliability 

(Cohen & Wang, 2019).

Furthermore, assuming monoexponential decay, the voxelwise fMRI signal (S) can be expressed in 

signal percentage change as: 

S−S̄
S̄

=Δρ−TE⋅Δ R2
٭
+n , (1)

where Δρ  represents non-BOLD related changes in net magnetisation, Δ R2
٭  represents BOLD-

related susceptibility changes, and n denotes the random noise (Kundu, Inati, Evans, Luh, & 

Bandettini, 2012). As the BOLD-related signal can be expressed as a function of the TE, whereas 

noise-related non-BOLD changes in the net magnetization are independent of TE, the information 

available in multiple echoes can be leveraged for the purpose of denoising. For example, in a dual-

echo acquisition where the first TE is sufficiently short, the first echo signal mainly captures 

changes in Δρ  rather than in Δ R2
٭ . It is then possible to remove artefactual effects, through 

voxelwise regression, from the second echo signal acquired at a longer TE with appropriate BOLD 

contrast (Bright & Murphy, 2013b). Collecting more echoes opens up the possibility of applying 
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ICA and classifying independent components into BOLD-related (i.e. describing Δ R2
٭  fluctuations 

with a linear TE-dependency) or noise (i.e. independent of TE, related to non-BOLD fluctuations in 

the net magnetization Δρ ), an approach known as multi-echo independent component analysis 

(ME-ICA) (Kundu et al., 2013, 2012, 2017). Compared to single-echo data denoising, ME-ICA can 

improve the mapping of task-induced activation (DuPre, Luh, & Spreng, 2016; Gonzalez-Castillo et

al., 2016; Lombardo et al., 2016), for example in challenging paradigms with slow-varying stimuli 

(Evans, Kundu, Horovitz, & Bandettini, 2015) or language mapping and laterality (Amemiya, 

Yamashita, Takao, & Abe, 2019). It also outperforms single-echo ICA-based denoising of resting-

state fMRI data (Dipasquale et al., 2017), which is particularly beneficial more efficient and reliable

functional connectivity mapping in individual subjects (Lynch, Power, Dubin, Gunning, & Liston, 

2020) and in brain regions where traditional single-echo acquisitions offer reduced signal-to-noise 

ratio, such as the basal forebrain (Markello, Spreng, Luh, Anderson, & De Rosa, 2018). 

Furthermore, ME-ICA also enhances the deconvolution of neuronal-related signal changes 

(Caballero-gaudes, Moia, Panwar, Bandettini, & Gonzalez-castillo, 2019). 

However, up to now, the operation of ME-ICA has not been evaluated thoroughly in experimental 

paradigms with unavoidable task-correlated artefacts. Under such scenarios, one question that 

remains open is how to obtain the right trade-off between removing as much noise as possible and 

saving as much signal of interest as possible (Bright & Murphy, 2015; Griffanti et al., 2014). In this 

study, we acquire ME-fMRI data during a BH task in a precision functional mapping experiment 

(Gordon et al., 2017) and assess the efficiency of different nuisance regression models to remove 

artefacts that are highly correlated with the effect of interest, i.e. the CVR response. In particular, 

we compare traditional nuisance regression approaches, applied to single- or multi-echo data, and 

three different ME-ICA denoising approaches ranging from aggressive to conservative. For each 

denoising strategy, we assess the correlation of the cleaned signal with measures of motion, and 

evaluate the amplitude and lag of the CVR signal response in terms of their physiological 

interpretability and inter-session reliability.

2 Material and methods

2.1 Participants

Ten healthy subjects with no record of psychiatric or neurological disorders (5F, age range 24-40 y 

at the start of the study) underwent ten MRI sessions in a 3T Siemens PrismaFit scanner with a 64-

channel head coil. Each session took place one week apart, on the same day of the week and at the 

same time of the day.

All participants had to meet several further requirements, i.e. being non-smokers and refrain from 

smoking for the whole duration of the experiment, and not suffering from respiratory or cardiac 
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health issues. They were also instructed to refrain from consuming caffeinated drinks for two hours 

before the session. Informed consent was obtained before each session, and the study was approved 

by the local ethics committee.

2.2 Data acquisition and MRI session

Within the MRI session, subjects performed a BH task while T2*-weighted ME-fMRI data was 

acquired with the simultaneous multislice (a.k.a. multiband, MB) gradient-echo planar imaging 

sequence provided by the Center for Magnetic Resonance Research (CMRR, Minnesota) (Moeller 

et al., 2010; Setsompop et al., 2012) with the following parameters: 340 scans, TR = 1.5 s, TEs = 

10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°, MB acceleration factor = 4, GRAPPA = 2 with 

Gradient-echo reference scan, 52 slices with interleaved acquisition, Partial-Fourier = 6/8, FoV = 

211x211 mm², voxel size = 2.4x2.4x3 mm³, Phase Encoding = AP, bandwidth=2470 Hz/px, 

LeakBlock kernel reconstruction (Cauley, Polimeni, Bhat, Wald, & Setsompop, 2014) and SENSE 

coil combination (Sotiropoulos et al., 2013). Single-band reference (SBRef) images were also 

acquired for each TE. The BH task was preceded by 64 minutes of ME-fMRI scanning, consisting 

of three task-based and four 10-minute resting state acquisitions, which are not part of the current 

study. The BH task always followed a resting state run.. A pair of Spin Echo echo planar images 

(EPI) with opposite phase-encoding (AP or PA) directions and identical volume layout (TR = 2920 

ms, TE = 28.6 ms, flip angle = 70°) were also acquired before each functional run in order to 

estimate field distortions. A T1-weighted MP2RAGE image (Marques et al., 2009) (TR = 5 s, TE = 

2.98 ms, TI1 = 700 ms, TI2 = 2.5 s,, flip angle 1 = 4°, flip angle 2 = 5°, GRAPPA = 3, 176 slices, 

FoV read = 256 mm, voxel size = 1x1x1 mm³, TA = 662 s) and a T2-weighted Turbo Spin Echo 

image (Hennig, Nauerth, & Friedburg, 1986) (TR = 3.39 s, TE = 389 ms, GRAPPA = 2, 176 slices, 

FoV read = 256 mm, voxel size = 1x1x1 mm³, TA = 300 s) were also collected at the end and at the 

beginning of each MRI session, respectively.

During the fMRI acquisition runs exhaled CO2 and O2 levels were monitored and recorded using a 

nasal cannula (Intersurgical) with an ADInstruments ML206 gas analyser unit and transferred to a 

BIOPAC MP150 physiological monitoring system where scan triggers were simultaneously 

recorded. Photoplethismography and respiration effort data were also measured via the BIOPAC 

system, but these physiological signals were not used in the current study. All signals were sampled 

at 10 kHz.

2.3 Breath-hold task

Following Bright and Murphy (2013a), the BH paradigm consisted of eight repetitions of a BH trial 

composed of four paced breathing cycles of 6 s each, an apnoea (BH) of 20 s, an exhalation of 3 s, 

and 11 s of “recovery” breathing (unpaced) (i.e. total trial duration of 58 s) (Figure 1). Subjects 
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were instructed prior to scanning about the importance of the exhalations preceding and following 

the apnoea. Without these exhalations providing CO2 measurements, the change in systemic CO2 

levels achieved by each BH cannot be robustly estimated; as a result, CVR (%BOLD/mmHg CO2 

change) cannot be estimated quantitatively. Participants were instructed textually throughout the 

task through a mirror screen located in the head coil.

2.4 MRI data preprocessing

The DICOM files of the MRI data were transformed into nifti files with dcm2nii (Li, Morgan, 

Ashburner, Smith, & Rorden, 2016) and formatted into Brain Imaging Data Structure (Gorgolewski 

et al., 2016) with heudiconv (Halchenko et al., 2019).

MRI data were minimally preprocessed with custom scripts based mainly in FSL (Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012), AFNI (Cox, 1996), and ANTs (Tustison et al., 

2014). In brief, the T2-weighted image was skull-stripped and co-registered to the MP2RAGE 

image along with the brain mask. The latter was applied to the MP2RAGE image, that then was 

segmented into gray matter (GM), white matter and cerebrospinal fluid tissues (Avants, Tustison, 

Wu, Cook, & Gee, 2011). The MP2RAGE image was normalised to an asymmetric version of the 

MNI152 6th generation template at 1 mm resolution (Grabner et al., 2006), while the T2-weighted 

volume was co-registered to the skull-stripped single-band reference image (SBRef) of the first 

echo. The first 10 volumes of the functional data were discarded to allow the signal to achieve a 

steady state of magnetisation. Image realignment to the SBRef was computed on the first echo, and 

the estimated rigid-body spatial transformation was then applied to all other echoes (Jenkinson, 

Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001). A brain mask obtained from the 

SBRef volume was applied to all the echoes. The different echo timeseries were optimally 

combined (OC) voxelwise by weighting each timeseries contribution by its T2
٭  value (Posse et al., 

1999). Next, ME-ICA decomposition was performed with tedana (DuPre et al., 2019) using the 

minimum description length criterion for estimation of the number of components (Harris, 1978; Li 

et al., 2016). The independent components (ICs) were then manually classified by SM and CCG 

into two categories (rejected or accepted components) based on temporal, spatial, spectral and TE-
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Figure 1: Schematic of Breath-Hold trial. Apnoea was preceded and followed by exhalations.
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dependence features of each component (Griffanti et al., 2017) (see Supplementary materials). 

Finally, a distortion field correction was performed on the OC volume using Topup (Andersson, 

Skare, & Ashburner, 2003), and the BOLD timeseries was converted in signal percentage change. 

For comparison, the dataset acquired at the second echo time (TE2 = 28.6 ms) was used as a 

surrogate for standard single-echo (SE) acquisitions. This volume followed the same preprocessing 

steps as the OC volume, except for the optimal combination and the ICA decomposition.

2.5 CO2 trace processing and CVR estimation

The files exported from the AcqKnowledge software were transformed and formatted into BIDS 

with phys2bids (The phys2bids developers et al., 2019). Then, the CVR estimation followed the 

same steps as those reported in Moia, Stickland, and colleagues (2020).

The CO2 timecourse was processed using custom scripts in Python 3.6.7. Briefly, the CO2 

timecourse was downsampled to 40 Hz to reduce computational costs. The end-tidal peaks were 

automatically and manually individuated, then the amplitude envelope was demeaned and 

convolved with a canonical HRF to obtain the PETCO2hrf trace. In order to account for measurement

delay, the PETCO2hrf trace was shifted to maximise the cross-correlation with the average 

timecourse of an eroded version of the GM mask (bulk shift) (Yezhuvath, Lewis-Amezcua, 

Varghese, Xiao, & Lu, 2009). This step was performed on both OC and the SE data (see 

Supplementary figure 1).

A lagged general linear model (L-GLM) approach was adopted in this study for CVR estimation 

(Moia, Stickland, et al., 2020) in order to model temporal offsets between the PETCO2 recording and 

the CVR response across voxels that occur due to measurement and physiological delays (Donahue 

et al., 2016; Geranmayeh, Wise, Leech, & Murphy, 2015; Murphy, Harris, & Wise, 2011; Sousa et 

al., 2014; Tong, Bergethon, & Frederick, 2011). Sixty shifted versions of the PETCO2hrf trace were 

created, ranging between ±9 s from the bulk shift, with a shift increment of 0.3 s (fine shift). This 

temporal range was based on previous literature, which rarely reports haemodynamic lags over ±8 s 

in healthy individuals (Bright et al., 2009; Donahue et al., 2016; Sousa et al., 2014). For each shift, 

a GLM was defined with a design matrix comprised of the shifted PETCO2hrf  timecourse as the 

regressor of interest, and different combinations of nuisance regressors (see below) in order to 

examine their efficiency in modelling artefactual signals of the voxel timeseries that might degrade 

CVR estimates. The simultaneous fitting of the nuisance regressors and the regressor of interest (i.e.

the shifted PETCO2hrf trace) is preferable, rather than denoising via nuisance regression prior to the 

analysis (Jo et al., 2013; Lindquist, Geuter, Wager, & Caffo, 2019; Moia, Stickland, et al., 2020).

Five different modelling strategies were evaluated, varying which nuisance regressors were 

included in the design matrix or how they were derived from ME-ICA:
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1. A L-GLM model on the SE data where the design matrix includes the motion parameters 

and their temporal derivatives (denoted as Mot), Legendre polynomials of up to the fourth 

order (denoted as Poly), together with the PETCO2hrf trace (SE-MPR):

Y SE=PET CO2 hrf +Mot+Poly+n  (2)

2. The same model applied on the OC data (OC-MPR):

Y OC=PET CO2 hrf +Mot+Poly+n (3)

3. An aggressive model applied on the OC data (ME-AGG) in which the design matrix also 

includes the timecourses of the ME-ICA rejected components (denoted as ICrej ) added to 

the design matrix of the L-GLM, orthogonalised with respect to the motion parameters, their

temporal derivatives, and Legendre polynomials of up to the fourth order. This 

orthogonalisation step was performed to maintain a low Variance Inflation Factor in this 

model, and thus not bias the CVR estimation, without altering the relative variance 

explained by the original nuisance regressors and the regressor of interest (Mumford, Poline,

& Poldrack, 2015): 

Y OC=PET CO2 hrf +Mot+Poly+[ ICrej⊥(Mot , Poly)]+n (4)

4. A moderate model applied on the OC data (ME-MOD) in which the timecourses of the ME-

ICA rejected components are also orthogonalised with respect to the PETCO2hrf trace (i.e. the

regressor of interest describing the CVR response):

Y OC=PET CO2 hrf +Mot+Poly+[ ICrej⊥(PET CO2hrf , Mot ,Poly )]+n (5)

5. A conservative model applied on the OC data (ME-CON) in which the timeseries of the 

ME-ICA rejected components are orthogonalised with respect to the PETCO2hrf  trace and 

the ME-ICA accepted components (denoted as ICacc ):

Y OC=PET CO2 hrf +Mot+Poly+[ ICrej⊥(PET CO2hrf , ICacc , Mot , Poly )]+n (6)

In the models above, Y SE  and Y OC  are the SE and OC voxel timeseries respectively and n  

denotes the random noise.

For each modelling strategy and each of the sixty shifted PETCO2hrf traces, the corresponding L-

GLM was fitted via orthogonal least squares using AFNI. Then, for each voxel, the beta coefficient 

(i.e. weight) of the best fine-shifted PETCO2hrf trace, corresponding to the L-GLM model with 

maximum coefficient of determination (R²), was selected. Finally, the beta coefficients expressed in 

BOLD signal percentage change over Volts (BOLDSPC/V) were rescaled to be expressed in BOLD 
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percentage over millimetres of mercury (%BOLD/mmHg) as indicated by the gas analyser 

manufacturer1.

In this way, a lag-optimised CVR map and a t-value map were obtained, together with the 

associated lag map representing the voxelwise delay from the bulk shift, for each analysis pipeline. 

To account for sixty comparisons computed in the L-GLM approach (one per lagged regressor), the 

CVR and lag maps were thresholded at p<0.05 adjusted with the Šidák correction (Bright, Tench, &

Murphy, 2017; Šidák, 1967), and the voxels that were not statistically significant were excluded. 

The maps were further thresholded on the basis of the lag: those voxels in which the optimal lag 

was at or adjacent to the boundary (i.e. |lag|≥ 8.7 s ) were considered  not truly optimised and not 

readily physiologically plausible in healthy subjects and therefore masked in all maps (Moia, 

Stickland, et al., 2020).

2.6 Evaluation of motion removal

For each type of L-GLM analysis, 4-D volumes representing the modelled noise variance were 

reconstructed by multiplying the optimised beta coefficient maps of the regressors of non-interest 

by their timeseries using 3dSynthesize in AFNI. Then, they were subtracted from the OC or the SE 

data to obtain five different denoised datasets. DVARS, the root of the spatial mean square of the 

first derivative of the signal (Smyser et al., 2010), was computed on each denoised dataset as: 

DVARSt=√ ⟨[I t(x )−I t−1(x)]2
⟩ , (7)

where I t (x)  is the image intensity of voxel x  and at time t  and ⟨⋯⟩  indicates the spatial 

average over the whole brain. These DVARS timeseries were compared with the Framewise 

Displacement (FD) time courses (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), computed 

using the realignment parameters estimated during preprocessing using the fsl_motion_outliers tool 

as: 

FD t=|Δdx|+|Δd y|+|Δdz|+|Δα|+|Δβ|+|Δ γ| , (8)

where t  denotes the time, dx , d y , dz  are the translational displacements along the three axes, α ,

β , γ  are the rotational displacements of pitch, yaw, and roll, and Δd x=d x, t−1−dx ,t  (and similarly

for the other parameters). DVARS was also computed on the SE volume before preprocessing (SE-

PRE) to serve as a reference, as its relationship with FD should be at its maximum prior to the 

effects of motion being removed.

1 https://www.adinstruments.com/support/knowledge-base/it-possible-measure-expired-gasses-partial-pressure-mmhg-rather-
percentage. We used the formula CO2[mmHg ]=(Patm−Pvap)[mmHg]⋅10⋅CO2[V ]/100 [V ] , where CO2[V ]  is the 

original CO2 timeseries, Patm
 is the atmospheric pressure in the laboratory at the moment of acquisition, and Pvap

 is the water 

vapour pressure associated with expired air. The values of Patm=759  and Pvap=47  were used for all the sessions. 
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In order to visualise the CVR responses to a BH trial, the average timeseries within GM was 

extracted from each denoised dataset from each model SE-PRE, SE-MPR, OC-MPR, ME-AGG, 

ME-MOD, ME-CON, as well as from SE-PRE. These timeseries were transformed to BOLD 

percentage signal change, then the response to individual BH trials from each session were 

extracted using the timing of the third paced breathing cycle as a reference onset, and averaged 

together for each subject. The DVARS and FD timeseries followed the same process, except that the

FD timeseries were not expressed in percentage.

Finally, we compared how many BH trials were necessary in each pipeline to achieve a robust 

estimation of the BH response. The Manhattan distance from a pool of a gradually increasing 

number of trials to the average BOLD response over all BH trials (across the ten sessions, 80 trials 

in total) was also computed for each analysis model and subject.

2.7 Reliability and variability analysis

In order to assess the reliability of each analysis model, the thresholded CVR, t-value and lag maps 

of each session were normalised with a nearest neighbour interpolation to the MNI152 template 

(Grabner et al., 2006). Then, the intraclass correlation coefficient (ICC) was computed voxelwise on

the CVR and lag maps using a regularized multilevel mixed effect model in 3dICC, in order to take 

into account the standard error of CVR and lag for each session in the ICC estimation (Chen et al., 

2018). ICC assesses the reliability of a metric by comparing the intersubject, intrasubject, and total 

variability of that metric:

ICC(2,1)=ρ2=
σ subj

2

σ subj
2

+σ sess
2

+σn
2 (9)

which is equivalent to:

ρ̂2=
MSsubj−MSn

k
n
(MSsess−MSn)+ MSsubj+(k−1)MSn

(10)

where MSsubj , MSsess , and MSn  are the mean squares of the effects of subjects, sessions, and 

residuals respectively, k  is the number of sessions, and n  the number of subjects (Chen et al., 

2018; Mcgraw & Wong, 1996; Shrout & Fleiss, 1979). ICC(2,1) was chosen since both subjects and

sessions were considered random effects. High ICC scores indicate high reliability, where the 

intrasubject variability is lower than the intersubject variability.

2.8 Methods and data availability

In order to guarantee the replication of methods and results, all the code has been prepared to be run

in a Singularity container based on a Ubuntu 18.04 Neurodebian OS. The container is publicly 
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available at https://git.bcbl.eu/smoia/euskalibur_container, the methods pipeline is available at 

https://github.com/smoia/EuskalIBUR_dataproc, while all of the MRI images, physiological data, 

and manual classification used in this study are available in OpenNeuro (EuskalIBUR dataset).

3 Results

Three subjects were excluded due to poor performance of the BH task, mainly due to inadequate 

execution of the exhalations preceding and following the apnoea which prevented accurate 

determination of the PETCO2hrf traces (see Supplementary Materials). Hence, seven subjects were 

used for subsequent analyses (4F, age 25-40y).

3.1 Motion removal across pipelines

Figure 2a illustrates the relationship between FD and DVARS in the raw data (SE-PRE) and after 

removing the reconstructed noise of each analysis model from the SE or OC volume for a 

representative subject; each point represents a timepoint and each line represents the linear 

regression between both timeseries in one session. The corresponding figures for the remaining 

subjects are available as Supplementary Material (supplementary figure 2). Figure 2b shows the 

same plot considering all the subjects and sessions. The optimal combination (OC-MPR) of ME 

data reduces DVARS compared to single-echo (SE-MPR), although a similar relationship is 

observed between DVARS and FD in both approaches. This relationship is mitigated in the 

moderate (ME-MOD) and conservative (ME-CON) denoising approaches, which show similar 

modulatory effects on it. Note that this similarity is common, but not the same for all the subjects; 

for instance, ME-MOD showed higher impact than ME-CON for two subjects (subject 003 and 

007), while the opposite pattern was observed in two other subjects (subject 004 and 009) (see 

Supplementary figure 2). The aggressive strategy (ME-AGG) is the most successful in reducing 

motion-related effects described by FD on DVARS.

Figure 3a plots the average percentage DVARS (left column) and average GM percentage BOLD 

response (central column) of all the BH trials across all of the sessions of a representative subject. 

The FD trace features a clear peak right after the end of the apnoea (highlighted in grey), likely 

associated with large head movement arefacts caused by the recovery breaths following the apnoea 

period. The percentage DVARS curves of the SE-PRE, SE-MPR and OC-MPR denoised timeseries 

reflect this peak in FD, which is absent in the ME-ICA based denoising timeseries, indicating a 

strong influence of movement on the signal intensity changes. All DVARS curves present a peak at 

a later time (between timepoints 25 and 30) that, as DVARS is akin to the first derivative of the 

BOLD signal changes, may agree with the return to the baseline seen in the BOLD response. The 

percentage BOLD signal change curves feature a delayed peak compared to the FD trace, reflecting 

a delayed CVR response compared to instantaneous head movements associated with respiration. 
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However, they also feature a modulation in the BOLD signal change in correspondence with the 

peak in the FD trace, with the exception of ME-MOD and ME-AGG. The flattened DVARS and 

BOLD responses seen for ME-AGG indicate that the inclusion of the ME-ICA rejected components 

substantially removes part of the true CVR response, compared with the OC-MPR time courses. 

The average percentage DVARS and percentage BOLD response of the other subjects can be found 

in the Supplementary Materials (Supplementary figure 3).

Figure 3b plots the Manhattan distance between the average of N trials and the average of all 80 BH

trials as N increases from 1 to 80. ME-AGG tends to be more similar to the total average compared 

to all the other timeseries. For most of the subjects, SE-MPR, OC-MPR and ME-MOD have a 

similar behaviour and need more trials than SE-PRE, ME-CON and ME-AGG to converge to the 

total average. Note that the convergence to the analysis-specific ‘ground truth’ BH response is not 

monotonic and fluctuates across trials of the same session and across sessions, indicating that the 

convergence does not depend only on the number of BH trials, but also on their quality and possible

physiological variability in the CVR response across trials and sessions.
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Figure 2: (A) Relation between the DVARS of the denoised data following different analysis 
pipelines and FD for a representative subject. Each point represents a timepoint, each line the 
linear regression between both timeseries in a session. In general, OC-MPR shows lower DVARS 
than SE-MPR, but similar modulation of the DVARS-FD relationship. All the ICA denoising 
solutions performs better in reducing motion-related effects described by FD on DVARS. Between 
the ICA solutions, ME-AGG performs the best in reducing this relationship, while ME-MOD and 
ME-CON seem to be equivalent. (B) DVARS vs. FD for all the subjects. Each transparent line 
represents a session, the solid line represents the estimation across subjects and sessions. Similar 
patterns to the representative subject are shown. SE-PRE: raw data; SE-MPR: single-echo; OC-
MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: conservative. 
The relation between DVARS and FD of the other subjects can be found in the Supplementary 
Material (Supplementary figure 2).
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3.2 CVR maps and reliability of the pipelines

Figure 4 and 5 show CVR and lag maps respectively, for all analysis strategies and all sessions of a 

representative subject (subject 002). The CVR maps were masked to exclude the voxels that were 

not statistically significant or whose lag is at the boundary of the explored range and might not be 

truly optimised or physiologically plausible. SE-MPR features more spatial variation and speckled 

noise in CVR and lag estimates of voxels within the same brain region compared to ME approaches

like OC-MPR or ME-CON. In general, the ME-AGG and ME-MOD approaches do not yield CVR 

maps with as much clear distinction between brain tissues or delineation of the cortical folding and 

subcortical structures (e.g. see putamen and caudate nucleus) as obtained with the OC-MPR and 

ME-CON models. Among the ICA-based approaches, the adoption of an aggressive (ME-AGG) or 

moderate (ME-MOD) modelling strategy results in lag maps without anatomically defined patterns, 

as well as a higher rate of voxels with a lag estimation that is not within physiologically plausible 

range, and in CVR maps with lower responses and fewer significant voxels. ME-AGG also 

produces CVR maps with a higher percentage of negative values than any other analysis model, and

a reduced CVR response in voxels near the posterior part of the superior sagittal and transverse 

15

Figure 3: (A) Average GM %DVARS and %BOLD response of all BH trials across ten sessions for 
the same representative subject. The apnoea period is highlighted in grey. Each transparent line is 
a trial, the solid line is the average across all the trials. (B) Manhattan distance between the 
average of N trials and the average of all 80 BH trials as N increases from 1 to 80 for each subject. 
Each vertical line divides the number of trials in each session. SE-PRE: raw data; SE-MPR: single-
echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: moderate; ME-CON: 
conservative. The average %DVARS and %BOLD response of the other subjects can be found in the
Supplementary Material (Supplementary figure 2)
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sinuses. The CVR and lag maps of other subjects are available in the Supplementary Material 

(Supplementary figure 4 and 5).

In order to assess the reliability of each model, we computed voxelwise ICC(2,1) maps for both 

CVR and haemodynamic lag. Figure 6 depicts the ICC(2,1) maps for all analysis strategies for both 

CVR and lag maps, as well as their distributions. High ICC scores indicate that the intra-subject 

variability is lower than the inter-subject variability, hence the estimations of CVR or 

haemodynamic lag can be considered consistent across sessions. Conversely, low ICC scores 

indicate that the inter-subject variability is low compared to the intra-subject variability, hence the 

estimations of CVR and haemodynamic lag cannot be considered consistent across sessions. 

Following the classification given by Cicchetti (2001), an ICC score lower than 0.4 is considered 

poor, lower than 0.6 fair, lower than 0.75 good, and equal or higher than 0.75 excellent.

In terms of whole brain CVR reliability, the ME-CON demonstrated excellent reliability (spatial 

average across the whole brain of 0.86 ± 0.16) as well as the highest among all methods tested, 

closely followed by the OC-MPR (excellent, 0.85 ± 0.16), SE-MPR (excellent, 0.81 ± 0.19), and 

ME-MOD (excellent, 0.79 ± 0.19), while ME-AGG had a fair reliability (0.46 ± 0.22). If only 

voxels in GM are considered, the ICC of all approaches increases slightly (0.88 ± 0.14, 0.87 ± 0.15, 

0.85 ± 0.17, 0.82 ± 0.17, and 0.49 ± 0.22 for ME-CON, OC-MPR, SE-MPR, ME-MOD, and ME-

AGG respectively). It can be observed that ME-AGG exhibits a considerable number of voxels with

poor reliability (ICC below 0.4). These voxels are mostly located in white matter, and they also 

exhibit lower ICC values in the other analyses. In terms of whole-brain lag reliability, OC-MPR 

performed the best (good reliability, 0.67 ± 0.21), closely followed by ME-CON (good reliability, 

0.66 ± 0.21). SE-MPR, ME-MOD, and ME-AGG demonstrated fair lag reliability (0.6 ± 0.22 and 

0.42 ± 0.19, 0.41 ± 0.20, respectively). Considering only GM voxels, the reliability of all the 

approaches increases minimally (0.68 ± 0.21, 0.67 ± 0.21, 0.61 ± 0.21, 0.43 ± 0.19, 0.42 ± 0.20, for 

OC-MPR, ME-CON, SE-MPR, ME-MOD, and ME-AGG respectively). The reliability of CVR lag 

estimates was lower than that of CVR amplitude estimates, even though certain cortical regions, 

such as the visual and motor cortices, also show excellent ICC values with OC-MPR and ME-CON.

Interestingly, it can be observed that ME-MOD offers excellent ICC values for the CVR response 

amplitude in grey matter voxels, whereas they are poor for the lag estimates.
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Figure 4: CVR map obtained with the different lagged-GLM analysis for all the sessions of a 
representative subject (subject 002). Note the low CVR response in ME-AGG, depicting numerous 
voxels with a negative values, as well as the increased amount of masked voxels in SE-MPR, ME-
AGG and ME-MOD. SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; 
ME-MOD: moderate; ME-CON: conservative. The CVR maps of other subjects are available in the
supplementary materials.
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Figure 5: CVR lag map obtained with the different lagged-GLM analysis, for all the sessions of a 
representative subject (same as figure 4). These lag maps represent the delay between the best 
shifted version of the PETCO2hrf trace and the bulk shift (i.e. the best match between average grey 
matter signal and PETCO2hrf trace). The scale from -5 to +5 represents earlier to later 
hemodynamic responses. Note the lack of anatomically informative patterns in ME-MOD and ME-
AGG. SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: aggressive; ME-MOD: 
moderate; ME-CON: conservative. The lag maps of other subjects are available in the 
supplementary materials.
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4 Discussion

In this study, we compared five different analysis strategies based on a lagged-GLM model (Moia, 

Stickland, et al., 2020) to simultaneously remove motion-related effects and non-BOLD artefacts in 

the BOLD fMRI signal while estimating CVR and haemodynamic lag in order to identify the best 

modelling approach for BH paradigms in which prominent task-correlated artefacts coexist with the

effect of interest.

Among all possible modelling strategies, the five presented here were included in our analysis for 

different reasons. The optimal combination of ME fMRI data, with subsequent motion and 

Legendre polynomial regression (MPR), was expected to remove more noise and improve 

reliability of the CVR estimation compared to MPR on single-echo data, which is the standard 

approach for BH CVR estimation (Cohen & Wang, 2019). ICA-based approaches are known to 

19

Figure 6: ICC(2,1) maps of CVR (left) and haemodynamic lag (right) for each analysis 
pipeline. The maps are thresholded at 0.4 since scores lower than it indicate poor reliability . A
high ICC score indicates that the inter-subject variability is higher than the intra-session 
variability, while a low ICC score suggest that the variability across sessions is the same as the
one across subjects. The bottom rows depict the whole brain distribution of ICC scores across 
voxels. Note how OC-MPR and ME-CON have generally higher ICC scores than the other 
approaches, and are very similar to each other, while ME-AGG has the lowest ICC scores for 
both CVR and lag maps. SE-MPR: single-echo; OC-MPR: optimally combined; ME-AGG: 
aggressive; ME-MOD: moderate; ME-CON: conservative. The distribution of ICC scores 
across GM voxels only is available in the Supplementary Material (Supplementary figure 6).
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outperform traditional MPR in typical denoising fMRI data, possibly because they can identify and 

separate artefactual sources in the data in a data-driven and non-linear manner (Griffanti et al., 

2014; R. H. R. R. Pruim et al., 2015; Salimi-Khorshidi et al., 2014). We did not apply ICA to single-

echo data because it has already been demonstrated that ICA-based denoising applied to OC data 

outperforms ICA denoising applied to single-echo data (Dipasquale et al., 2017) and the ICs 

estimated from OC data might not have matched ICs obtained from single-echo data, making such 

comparison less straight forward than the one based on MPR.

Spatial ICA decomposition is applied to fMRI data more often than temporal ICA decomposition, as

the latter requires many more samples in time than normally available. Having many sessions for 

each subject, temporal ICA could have been leveraged in this study. In fact, temporal ICA could be 

more appropriate than spatial ICA to estimate a proper decomposition of timeseries sources (Smith 

et al., 2012), improving the modelling of temporal noise (Glasser et al., 2018), and potentially 

leading to better disentanglement of noise from CVR effects. However, we decided to apply spatial 

ICA in order to maintain the independence of each session, both to simulate a more common 

denoising approach to fMRI data, and to be able to capture session-specific noise contributions that 

could have been missed otherwise. Further studies could compare temporal and spatial ICA 

denoising for CVR mapping when many temporal samples have been collected in the same session, 

for instance reducing the TR by acquiring fewer echoes. Here, our decision to acquire five echoes, 

instead of conventional multi-echo protocols with three or four echoes, was made to facilitate and 

improve the classification of the ICs based on their TE-dependence.

The choice of comparing different levels of orthogonalisation of only the ICA-based nuisance 

regressors compared to regressors of interest might seem in contrast with previous literature, that 

suggests that orthogonalisation of collinear confounding factors could lead to misinterpreted results 

(Mumford et al., 2015). Our results clearly demonstrated that using the original (e.g., non 

orthogonalised) rejected ICs as nuisance regressors in the analysis (ME-AGG) removes the CVR 

effect of interest (see Figures 3, 4, 5 and 6). To decide which regressors should be orthogonalised, 

and with respect to what, we considered the different origin of the nuisance regressors. While 

Legendre polynomials and motion parameters can be considered adequate models of noise sources 

in the data, intrinsic data-driven regressors may well contain variance related to the effect of 

interest, especially as spatial ICA was adopted and because of the high collinearity between the 

PETCO2hrf, motion, physiological adaptations to vascular dilation (e.g. cerebrospinal fluid flows), or

changes in the magnetisation related to breathing (Raj et al., 2001). In these scenarios, it becomes 

more important to understand how to properly implement ICA denoising in order to preserve the 

effect of interest. For these reasons, three different ICA-based approaches were selected, from an 
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aggressive strategy to a conservative approach, to assess if they preserved the BOLD effects related 

to the CVR response happening at different lags.

As hypothesized, all of the ME-based solutions outperformed the SE-MPR model in their ability to 

account for the effect of motion, summarized in terms of FD, on the fMRI signal intensity changes, 

described in terms of DVARS (see Figure 2). Furthermore, all of the ICA-based strategies 

outperformed traditional MPR, and within ICA-based strategies, the aggressive one (ME-AGG) 

showed the best performance. However, observing the average DVARS and BOLD responses 

(Figure 3) and the CVR and lag maps (Figures 4 and 5) it becomes evident how aggressive and 

moderate approaches result in lower estimates of CVR responses, even compared to the SE-MPR 

approach. Similarly, these two approaches result in the estimated haemodynamic lag hitting the 

boundaries of a physiologically plausible lag range in healthy adults. The substantial reduction in 

the CVR estimates in the aggressive approach (Figures 3 and 4) occurs because the effect of interest

can also be explained as a linear combination of the timecourses of rejected ICs related to motion, 

vascular effects or large susceptibility changes due to chest expansions and contractions while 

performing the BH task (Caballero-Gaudes & Reynolds, 2017; Griffanti et al., 2017). As for the 

moderate approach, the lower estimates of CVR could be due to the fact that orthogonalising data-

driven nuisance regressors w.r.t. the PETCO2hrf trace per sé is not sufficient to save all the variance 

associated to real CVR. The PETCO2 trace can only be estimated during exhalations, hence it is 

unable to capture local dynamic signal changes that are captured by ICs timeseries. Furthermore, 

CVR has a sigmoidal non-linear relation with the PETCO2hrf trace (Bhogal et al., 2014), and the 

local BH-induced BOLD response has a complex shape, in terms of response amplitude and 

temporal delays, due to multiple physiological factors (Magon et al., 2009) that must be accounted 

for in order to improve its estimation. Our results demonstrate that these local complexities might 

be adequately captured by the linear combination of the accepted ICs timecourses, and not 

removing this variance from the rejected ICs when they are included as nuisance regressors in the 

model is detrimental (as observed with ME-MOD and ME-AGG approaches). In other words, only 

a conservative approach (ME-CON) that preserves the BOLD variance associated with local CVR 

responses performs well, while also reducing motion-related effects more than with the 

conventional MPR models.

To further explore the benefit of different modelling strategies, we assessed the reliability of the 

resulting CVR and haemodynamic lag maps over the course of two and a half months (ten sessions)

using ICC(2,1). To our knowledge, this was the first time that CVR reliability was tested over the 

course of ten sessions in individual subjects, and the first time that intersession haemodynamic lag 

reliability was tested. The ME-CON and OC-MPR strategies featured the greatest reliability for 
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CVR and lag estimation, while the ME-AGG and ME-MOD approaches produced lower reliability 

values than even the simple SE-MPR model. 

The lag maps are computed as the temporal offset related to the bulk shift, which is obtained by 

aligning the average GM BOLD response with the PETCO2hrf trace. If the bulk shift computation is 

misestimated this would create a systematic bias in the estimated lag maps, potentially reducing the 

apparent intersession reliability. While the CVR reliability should not be affected by this issue, due 

to the use of a lagged-GLM approach that can overcome bulk shift misestimation (see session 4 of 

subject 007 in Supplementary figure 4 and 5), the true lag map reliability might be higher than 

reported here.

Regarding CVR reliability, the whole-brain average reliability of SE-MPR was comparable to long-

term reliability (days or weeks apart) found in previous studies of CVR induced by BH (Peng et al., 

2019), by paced deep breathing (Sousa et al., 2014), or by gas challenges (Leung et al., 2016), and 

higher than that reported in other studies on BH induced CVR estimated with a non-lagged 

optimized PETCO2hrf trace (Lipp et al., 2015) or with Fourier modelling (Pinto et al., 2016), and by 

gas challenges (Dengel et al., 2017; Evanoff et al., 2020). Consequently, the reliability of CVR 

estimates obtained with the optimal combination dataset and conservative ME-ICA modelling 

approaches were found higher than those previously reported in the literature. However, all 

strategies produced a reliability that was lower than the short-term (within-session) reliability 

reported in BH induced CVR (Peng et al., 2019), resting state based CVR (P. Liu et al., 2017), and 

gas challenge induced CVR (Leung et al., 2016), although lower intersession reliability in gas 

challenges has also been reported (Dengel et al., 2017; Evanoff et al., 2020). Note that the reliability

observed in this study seems to be globally higher and spatially less variable than that reported in 

previous studies (Lipp et al., 2015; Sousa et al., 2014). However, discrepancies in the reliability 

measurements might be related to the different methods used to compute the CVR maps and the 

ICC score itself.

Using ICC to test reliability has the drawback that higher scores might be related to the presence of 

residual task-correlated motion effects that artificially stabilise the CVR estimation and reduce 

intrasubject variability compared to intersubject variability. In fact, recent studies have shown that 

individuals have particular movement patterns during fMRI sessions that may be a stable 

characteristic of a person (Bolton et al., 2020) related to stable physical characteristics, such as body

mass index (Ekhtiari, Kuplicki, Yeh, & Paulus, 2019), and could even be a heritable characteristic 

(Couvy-Duchesne et al., 2014; Hodgson et al., 2017). If subjects have similar motion patterns 

across the 10 repeated sessions, fMRI responses might appear more similar than they truly are, and 

the ICC might be inflated by such effects. Moreover, higher spatial reliability does not necessarily 

mean higher accuracy: a denoising strategy might be systematically misestimating CVR or 
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haemodynamic lag. The fact that both optimal combination with traditional nuisance regressio and 

the conservative ME-ICA denoising approaches resulted in similar CVR and lag spatial patterns and

exhibited higher reliability than the single-echo model, while at the same time reduced the apparent 

effect of motion on the data variance, suggests that such drawbacks are mitigated in our data. 

However, further studies could compare different BH analysis strategies with a CVR estimation 

based on an independent computerised gas delivery protocol.

Another possibility would be to assess CVR in resting state fMRI, either measuring resting 

fluctuations in exhaled CO2 levels (Golestani, Wei, & Chen, 2016; Lipp et al., 2015), or by using a 

band of the power spectrum of the global signal as a regressor of interest (P. Liu et al., 2017). Such 

method might be more robust to motion collinearity, as the amount of movement in each breath is 

less pronounced and not consistently time-locked to the paradigm cues. At the same time, the lower 

amplitude of intrinsic CO2 fluctuations relative to BH CO2 change might also make this approach 

more susceptible to general motion effects and other sources of variance (e.g. neural or artefactual) 

unrelated to CO2. Moreover, previous work has shown that the optimal temporal shift between 

BOLD and PETCO2 is hard to reliably identify in resting state data alone, in contrast to BH datasets 

where the temporal shift can be reliably identified (Bright et al., 2017; Stickland, Ayyagari, 

Zvolanek, & Bright, 2020). Resting state fMRI methods may therefore be inappropriate to use with 

the lagged-GLM approach that we have applied here. Either way, the analyses presented in this 

study can be easily implemented in other CVR assessment pipelines to mitigate the dependence of 

the response on motion. Beyond BH-based CVR studies, similar conclusions might be applicable to 

other experimental paradigms that present high collinearity between the expected task induced 

activity and artefactual sources, such as in overt speech production with long trial durations (Birn et

al., 1999, 2004; Gracco, Tremblay, & Pike, 2005), that aim to use (ME-) ICA-based nuisance 

regressors as part of the model.

Note that MPR and ICA denoising are not the only viable options to reduce motion effects on fMRI 

and BH-induced CVR in particular: advanced setups can be used to reduce motion during the 

acquisition itself. For instance, subject specific moulded head casts can be used to reduce head 

motion (Power, Silver, et al., 2019). Mounting an MRI compatible camera or tracker in the scanner 

enables prospective motion correction techniques (Faraji-Dana, Tam, Chen, & Graham, 2016; 

Maziero, Rondinoni, Marins, Stenger, & Ernst, 2020; Parkes, Fulcher, Yücel, & Fornito, 2018; 

Schulz et al., 2014; Zaitsev, Akin, LeVan, & Knowles, 2017), or concurrent field monitoring 

enables the dynamic correction of field distortions dynamically (Vannesjo et al., 2015; Wilm et al., 

2015), in order to effectively reduce effects of motion and magnetic field susceptibility changes. 

However, such advanced setups are not always available.
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A limitation of this study is that the results are influenced by the manual classification of the ICA 

components performed by two of the authors. Despite being based on the automatic classification 

made by tedana, we adopted a manual approach because often multiple ICs clearly exhibiting CVR-

related timeseries and spatial maps were misclassified as noise. This manual classification was 

made with a cautious approach: if an IC seemed to be temporally and spatially related to the CVR 

response, it was accepted. Manual classification is still considered the gold standard for the 

classification of ICA components when performed by experts, despite the introduction of automatic 

classification algorithms (Griffanti et al., 2017), calling for further improvements in the automatic 

classification of (ME-)ICA components for BH tasks.

5 Conclusion

Breath Holding (BH) is a non-invasive, robust way to estimate cerebrovascular reactivity (CVR). 

However, due to the task-correlated movement introduced by the BH task, attention has to be paid 

when choosing an appropriate modelling strategy to remove movement-related effects while 

preserving the effect of interest (PETCO2). We compared different multi-echo (ME) independent 

component analysis (ICA) based denoising strategies to the standard data acquisition and analysis 

procedure, i.e. single-echo motion parameters regression. We found that a conservative ICA-based 

approach best removes motion-related effects while obtaining reliable CVR and lag responses, 

although a simple optimal combination of ME data with motion parameters regression provides 

similar improvements in reliability compared to single-echo data acquisition.
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