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ABSTRACT 1 

The assembly of microbial communities and functions emerge from a complex and dynamic web 2 
of interactions. A major challenge in microbiome engineering is identifying organism 3 
configurations with community-level behaviors that achieve a desired function. The number of 4 
possible subcommunities scales exponentially with the number of species in a system, creating 5 
a vast experimental design space that is challenging to even sparsely traverse. We develop a 6 
model-guided experimental design framework for microbial communities and apply this method 7 
to explore the functional landscape of the health-relevant metabolite butyrate using a 25-member 8 
synthetic human gut microbiome community. Based on limited experimental measurements, our 9 
model accurately forecasts community assembly and butyrate production at every possible level 10 
of complexity. Our results elucidate key ecological and molecular mechanisms driving butyrate 11 
production including inter-species interactions, pH and hydrogen sulfide. Our model-guided 12 
iterative approach provides a flexible framework for understanding and predicting community 13 
functions for a broad range of applications.  14 

INTRODUCTION 15 

Microbial communities carry out pivotal chemical transformations in nearly every environment on 16 
Earth1. Many of these processes critically impact human health and environmental sustainability, 17 
including oceanic CO2-fixation2, production of growth-promoting molecules in the plant 18 
rhizosphere3, and degradation of indigestible dietary substrates4. Microbial community dynamics 19 
and functions are determined by complex and dynamic interactions between constituent 20 
community members and their environment. Developing the capabilities to engineer microbiome 21 
properties holds promise to address grand challenges facing human society5 and methods to 22 
predict microbiome functions are needed to enable microbiome engineering efforts.  23 

A bottom-up approach to build and characterize synthetic microcosms has key 24 
advantages including reduced complexity compared to natural systems, ability to manipulate 25 
environmental parameters and community membership and achieve a high temporal resolution. 26 
Previous studies have leveraged synthetic microcosms of bacteria isolated from the human gut6 27 
or soil7 to demonstrate that dynamic models based on pairwise interactions are predictive of multi-28 
species community assembly. In addition, modeling community assembly using pairwise 29 
interactions has provided a deeper understanding of the effects of environmental factors including 30 
pH8, dilution9, nutrient availability10, toxins11, and temperature12 on microbial community 31 
behaviors.   32 

A key challenge for predicting microbiome properties is mapping community composition 33 
to community-level metabolic functions. Genome-scale metabolic models have been used to 34 
predict collective metabolic outputs of microbial communities, an approach 35 

s and stringent assumptions13. Bottom-up assembly of 36 
microbial consortia coupled to mathematical modeling has been used to interrogate how the 37 
production or consumption of molecules changes in a community context relative to individual 38 
species11,14,15. However, computational frameworks to predict both community dynamics and 39 
functional outputs for high-dimensional communities that mirror the complexity of natural 40 
microbiomes are needed to harness the potential of microbiome engineering for diverse 41 
applications.  42 

A detailed and quantitative understanding of microbial interaction networks would enable 43 
the design of microbial consortia with robust target functions from the bottom up. While model-44 
guided design16 has been used to identify gut microbial communities that elicit a target immune 45 
response in mouse models, the complexity of the host system and the low-throughput of mouse 46 
studies limits the observability of system parameters and a comprehensive understanding of 47 
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ecological factors shaping microbiome behaviors. Here, we use a data-driven approach to build 48 
a model of butyrate production by complex in vitro communities of human-associated intestinal 49 
isolates. Butyrate production is a major function of the gut microbiome associated with protection 50 
from a wide range of human diseases, including arthritis17, diet-induced obesity18–20, colitis21,22, 51 
opportunistic pathogen infection23, diabetes24, and colorectal cancer25. Our approach leverages 52 
data-driven models to quantify interactions impacting the growth dynamics of functional 53 
organisms and interpretable statistical models to quantify interactions impacting metabolic 54 
activities (functional yield of butyrate per unit biomass). By modeling these two interaction types 55 
separately, we demonstrate that in some contexts, accurate prediction of functional organism 56 
abundance can predict function, while in other community contexts containing metabolically 57 
flexible ecological driver species, interactions modifying metabolic modes must be captured to 58 
predict function. We use these models to design communities of up to 25 species with a broad 59 
range of butyrate production capabilities and analyze our model as well as the metabolic profiles 60 
and environmental modification of designed consortia to provide key insights into metabolic 61 
interactions impacting butyrate production. 62 

RESULTS 63 

Identifying highly functional microbial communities from the bottom-up is a major challenge 64 
because the number of sub-communities exponentially increases with the system dimension26. 65 
To explore community design space, we develop a modeling framework to guide iterative design 66 
of experiments (Figure 1a,b). Ecosystem functions can be modulated by selection effects, 67 
defined as changes in function correlated with changes in the abundance of functional species, 68 
or complementarity effects, defined as changes in the functional yield per unit biomass for each 69 
functional species27–29. We implement a dual module modeling framework to determine the 70 
contributions of microbe-microbe interactions to each of these effect types. A community dynamic 71 
model, referred to as the generalized Lotka-Volterra model (gLV), predicts community assembly 72 
and the function model predicts a functional activity from community composition (Figure 1a). 73 
The gLV model is an ordinary differential equation model that captures the temporal change in 74 
species abundances due to monospecies growth parameters and inter-species interactions and 75 
has been used to predict and analyze multi-species community assembly based on 76 
measurements of lower-order communities6. Our function model consists of a regression model 77 
with interaction terms mapping species abundance at a specific time point to the concentration of 78 
an output metabolite. The inter-species interaction terms in the gLV model represent selection 79 
effects (i.e. how one species impacts the growth of another) and the interaction terms in the 80 
regression model represent complementarity effects (i.e. deviations from constant yield of a 81 
function per unit biomass15) (Figure 1a,c). For the gLV model, we use Bayesian parameter 82 
inference techniques to determine the uncertainty in our parameters based on biological and 83 
technical variability in the experimental data30. The composite gLV and statistical models predict 84 
the probability distribution of the functional activity given an initial condition of species abundances 85 
(Figure 1a, Methods).  86 

Due to significant interest in development of defined bacterial therapeutics for human 87 
health applications31 and the beneficial role of butyrate produced by gut microbiota on a myriad 88 
of health outcomes17–25,32, we sought to apply our modeling framework to understand how 89 
community composition impacts butyrate production in synthetic communities of prevalent and 90 
diverse human gut microbes. Butyrate production is a specialized function of a subset of species 91 
in the gut (~10-25% of microbial genomes are predicted to harbor this pathway in healthy 92 
individuals33). By contrast, the production of other metabolic byproducts such as acetate and 93 
lactate are distributed more broadly across members of the gut microbiome. Thus, studying 94 
butyrate production allows us to investigate how ecological forces shape a function performed 95 
only by a specific subset of the community. Indeed, predictably modulating a specific function 96 
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performed by a subset of organisms constitutes a core goal of microbiome engineering across 97 
different environments34–36. 98 

To develop a system of microbes representing major metabolic functions in the gut, we 99 
selected 25 highly prevalent bacterial species from all major phyla in the human gut microbiome37. 100 
This community contained 5 butyrate producing Firmicutes which have been shown to play 101 
important roles in human health and protection from diseases (Figure 2a, Table S1). These 5 102 
Firmicutes have the capability to ferment sugars and/or transform acetate to butyrate, allowing 103 
the recovery of NAD+ for further energy generation38. Additionally, Anaerostipes caccae (AC) can 104 
ferment lactate and acetate to butyrate, generating a modest amount of energy39. However, each 105 
of these species can alternatively produce acetate and/or lactate as fermentation products 106 
depending on the environmental context (Figure 2b). 107 

Due to lack of defined media that universally support growth of gut microbes, most in vitro 108 
studies use rich media, making it difficult to interrogate the effects of unknown components on 109 
community behaviors40. To maximize our knowledge of the substrates available to the 110 
communities in our experiments and to simplify the metabolite quantification, we developed a 111 
single chemically defined medium that supports the growth of all species in monoculture with the 112 
exception of Faecalibacterium prausnitzii (FP) (Methods). We measured time-resolved growth of 113 
each species and constructed a gLV null model that assumed no inter-species interactions. Our 114 
results demonstrated a wide variety of growth dynamics within each phylum, including disparate 115 
growth rates and carrying capacities (Figure 2c). Using this system, we implemented an iterative 116 
design, test, learn (DTL) cycle (Figure 1b) to explore a vast community design space and explore 117 
an ecosystem functional landscape. 118 

Butyrate production impacted by selection and complementarity 119 

For the first cycle of our iterative DTL approach, we sought to decipher interactions impacting 120 
butyrate production in pairwise communities, with the goal of understanding how these 121 
interactions combine to shape community assembly and butyrate production in higher complexity 122 
communities. We grew each pairwise community containing at least one butyrate producer (the 123 
focal species of our system41) and measured species abundance and the concentrations of 124 
organic acid fermentation products (including butyrate, lactate, succinate and acetate) after 48 125 
hours. Based on previous studies using pairwise communities to predict higher complexity 126 
community behaviors6,14,42, we hypothesized that these measurements would provide a highly 127 
informative dataset to develop an initial model that captured inter-species interactions shaping 128 
selection and complementarity effects in the system.  129 

Based on our data, we first considered to what extent butyrate production was impacted 130 
by selection effects and complementarity effects using a model-free approach (Figure 2d). For 131 
each pairwise community, the selection effect was computed as the difference between the 132 
expected butyrate concentration assuming constant butyrate yield and the monoculture butyrate 133 
concentration (Figure S1). The complementarity effect was defined as the difference between the 134 
measured butyrate concentration of the community and the expected butyrate concentration 135 
assuming constant yield (Figure S1, Methods). Negative selection effects influenced all butyrate 136 
producers except FP, which did not grow in monoculture (Figure 2d, inset). Compared to the 137 
other butyrate producers, Roseburia intestinalis (RI) exhibited the largest negative selection 138 
effects, while AC tended to display positive complementarity effects. In sum, both selection and 139 
complementarity can modulate butyrate production, highlighting the utility of a building a 140 
composite model that captures both types of effects (Figure 1a). Further, the model-free 141 
approach to determining the contributions of selection and complementarity effects cannot be 142 
applied to communities containing multiple butyrate-producers. Therefore, our modeling approach 143 
can elucidate the selection and complementarity effects in communities with functional 144 
redundancy, representing real systems33. 145 
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To enable prediction of butyrate concentration in higher complexity communities, we used 146 
the data from the monoculture and pairwise community experiments to train our model (M1). The 147 
inferred gLV inter-species interaction network showed many negative interactions, including 148 
strong negative interactions impacting the growth of RI, consistent with the dominance of negative 149 
selection effects in our model-free analysis of RI pairwise communities (Figure 2e). A network 150 
representation of the parameters in the regression model indicated that AC had significantly more 151 
pairwise interaction terms than the other butyrate producers, consistent with the major role of 152 
positive complementarity effects in our model-free analysis of AC pairwise communities (Figure 153 
2f). 154 

Model trained on pairwise consortia predicts 3-5 species community behaviors 155 

To test our model’s ability to predict function in communities with an incremental increase in 156 
complexity, we implemented a second DTL cycle with the goal of mapping the functional 157 
landscape of 3-5 member communities. Model M1 was informed only by pairwise communities 158 
that contained at least one butyrate producer and was thus naïve to all interactions between non-159 
butyrate producers. Therefore, we needed to make some assumptions to enable prediction of 160 
multi-species consortia containing combinations of non-butyrate producers. Based on patterns 161 
observed in previous gLV model parameter sets6, we hypothesized that unmeasured interactions 162 
could be estimated based on the trends in measured interactions across phylogenetic 163 
relatedness. Therefore, we used a matrix imputation method to estimate interaction parameters 164 
for unmeasured interactions in the gLV model (Methods). The resulting model was used to predict 165 
the probability distributions of butyrate production for all 3-5 species communities containing at 166 
least one butyrate producer (46,588 communities). The predicted butyrate production varied 167 
substantially between the combinations of butyrate-producer groups (F ). To evaluate the 168 
ability of our model to predict the behaviors of butyrate producers in a variety of community 169 
contexts, we experimentally characterized 156 communities that spanned a broad range of 170 
predicted butyrate concentrations a (Figure 3a). The model 171 
prediction exhibited good agreement with the rank order of butyrate production (Spearman 172 
rho=0.84, p=9*10-43), though moderately overpredicted the magnitude on average (Figure 3b).  173 

The quality of these predictions demonstrated that our initial dataset was sufficient to build 174 
a model predicting broad trends in butyrate production but suggested that additional data was 175 
required to predict specific outliers. To understand the factors contributing to deviations between 176 
predicted and measured butyrate concentrations, we updated our models to decipher key inter-177 
species interactions that model M1 failed to capture yielding model M2. The gLV model from M2 178 
contained many new negative interaction parameters (46 new negative interactions, 15 conserved 179 
negative interactions) and sparse positive interactions (3 new and 2 conserved positive 180 
interactions) out of 386 possible observed interspecies interaction parameters in the designed 181 
set, primarily between non-butyrate producers (Figure 3c, ). The regression model in 182 
M2 highlighted significant complementarity effects in the 3-5 member communities, with strong 183 
negative interactions between Desulfovibrio piger (DP)-AC and AC-Eubacterium rectale (ER) 184 
consistent with model M1 (Figur 2 ). We used the regression model with the experimental 185 
abundance measurements to quantify the magnitude and variability of each complementarity 186 
interaction across the experimentally measured communities due to differences in species 187 
growth. These data showed that some interactions consistently modified butyrate production in 188 
the presence of the species pair (e.g. DP-AC), whereas the contributions of other interactions to 189 
butyrate production varied across communities (e.g. ER-RI, Clostridium asparagiforme (CG)-AC) 190 
(Figure 3d). Equipped with this updated model, we set out to explore our model’s experimental 191 
design capabilities for communities of even greater complexity (i.e. >10 species). 192 
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Model-guided exploration of complex community design space 193 

One approach to determining the contributions of constituent community members to ecosystem 194 
behaviors involves characterization of the full and all single-species dropout consortia6,26. In our 195 
system, all 24 and the 25 member communities exhibited similar low butyrate production (~10-15 196 
mM Butyrate), except for a moderate increase of butyrate in the DP-lacking community (~22 mM 197 
Butyrate) and a large decrease in the AC-lacking community (~2 mM Butyrate) (Figure S3). Many 198 
of the 3-5 member communities displayed higher butyrate production than the highest complexity 199 
communities (Figure 3b), suggesting that high complexity communities may trend towards an 200 
undesired low butyrate producing state. Additionally, the concentrations of all measured organic 201 
acids spanned a much smaller range in the 24 and 25 member communities than the low 202 
complexity (1-5 member) assemblages (Figure S3b), further supporting the notion that 203 
communities of increasing complexity may trend toward a similar functional state. Indeed, a key 204 
challenge in engineering microbial communities is the tendency to assemble to compositional 205 
attractors and resist change, due to a multitude of abiotic and biotic interactions43–46. In our 206 
system, implementing a standard approach of analyzing the highest complexity set of consortia 207 
failed to elucidate diverse community metabolic states, highlighting the utility of the model to 208 
design sub-communities that span the functional space. 209 

To address this challenge, we used our model M2 to design complex communities (>10 210 
species) that deviated from the observed trend towards low butyrate production. Since the human 211 
gut microbiome exhibits functional redundancy in butyrate pathways33, we used model M2 to 212 
simulate the assembly of all communities containing all five butyrate producers to map species 213 
abundance to butyrate concentration (1,048,575 communities). Based on the hypothesis that 214 
high-complexity communities may trend towards low butyrate production, we found it useful to 215 
consider the full community as a reference frame, representing a potential compositional attractor 216 
state, when visualizing the relationship between community composition and butyrate production. 217 
Consistent with this notion, the model predicted the full community to have butyrate production 218 
similar to the average of all communities, with other communities diverging from this average 219 
behavior with increasing distance in composition (Euclidean distance between endpoint 220 
abundances) from the full community (Figure 4a). The landscape of communities was partitioned 221 
into two large clusters based on the presence or absence of the prevalent sulfate-reducing 222 
Proteobacteria DP47. Corroborating these results, DP had the strongest negative complementarity 223 
interaction with AC and CC in the regression model of M2 as well as a significant negative impact 224 
on butyrate production in the single-species dropout consortia (Figure 3d, Figure S3a). This 225 
inferred complementarity effect and predicted shift in the butyrate production landscape suggests 226 
that the presence of DP may substantially alter the metabolic activities shaping butyrate 227 
production.  228 

We evaluated the capability of our model to guide broader exploration of the functional 229 
landscape and identify infrequent communities that deviate from the typical behavior by designing 230 
28 low- and 54 high-butyrate communities each with 11-17 members and containing all 5 butyrate-231 
producers. In addition, we randomly selected 82 communities with the same complexity 232 
constraints to evaluate whether our model-guided design procedure could elucidate a set of 233 
communities that spanned a broader range of metabolic states, scored by the variance in butyrate 234 
concentration (Figure 4a). The 82 designed communities exhibited a higher variance in mean 235 
butyrate production than the 82 random communities (designed communities s.d.=11 mM, 236 
random communities s.d.=8 mM, Levene test, p=0.043), demonstrating a major advantage of the 237 
model-guided approach for designing communities to broadly explore regions of the functional 238 
landscape (F ). Consistent with our model predictions, communities containing DP 239 
exhibited lower butyrate compared to communities excluding DP in both the designed and the 240 
randomly chosen communities (Figure 4c). While the model predicted the rank order of butyrate 241 
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concentrations in these communities moderately well (Spearman rho=0.67, p=3*10-25), some of 242 
the highest butyrate production communities were underpredicted by the model (Figure 4c). 243 

Selection effects dominate in high complexity communities lacking AC 244 

In microbial consortia, the contributions of individual members to a given function can be broadly 245 
distributed, wherein key driver species can exhibit a substantially larger contribution to 246 
community-level functions than the other members6,11,14. In our system, the 24-member 247 
community lacking AC exhibited 1.9±1.0 mM butyrate (mean±s.d., n=8), substantially lower than 248 
any observed complex (>10 species) community containing AC and qualitatively consistent with 249 
our model which predicted no butyrate (Figure 4b, Figure S3b). Therefore, AC was a driver of 250 
butyrate production in complex communities. There are large interpersonal differences in gut 251 
microbiota composition due to environmental factors and host-microbe interactions48. Thus, some 252 
species such as AC may be not be present in certain individuals49. To evaluate the capability of 253 
our model to steer systems from low to high butyrate producing states independent of the 254 
presence of particular species, we designed high butyrate producing complex communities 255 
lacking the driver species AC.  256 

To do so, we used model M2 to simulate all communities containing the four butyrate 257 
producers excluding AC (1,048,575 communities) to forecast species abundance and butyrate 258 
production. Similar to the 5 butyrate-producer case, we used the 24-member community lacking 259 
AC as a reference frame for quantifying deviations from a potential compositional attractor. While 260 
most communities were predicted to have low butyrate production, butyrate production increased 261 
with the distance from the 24-member community (Figure 4b). To explore this design space and 262 
evaluate whether our model could identify communities with low or high butyrate activity, we 263 
experimentally assembled 84 communities containing 11-19 members that were predicted to 264 
display a broad range of butyrate production capabilities (Figure 4b). Mirroring our model 265 
prediction, distance from the 24-member community in species composition was positively 266 
correlated with butyrate production (Spearman rho=0.56, p=3*10-8) as well as butyrate producer 267 
abundance (Spearman rho=0.85, p=1*10-24) (Figure 4b, inset). However, the model substantially 268 
overpredicted butyrate production (Figure 4d). Therefore, we sought to continue the DTL 269 
paradigm by training our model on the new data.  270 

Updated model predicts butyrate production in high complexity communities 271 

The discrepancies between our model predictions and experimental measurements in complex 272 
communities were either due to missing information about certain pairwise interactions (i.e.  poor 273 
parameter estimates due to unobservable interactions) or higher-order interactions that could not 274 
be captured by our pairwise model (i.e. model structure fails to represent system behaviors). To 275 
distinguish between these possibilities, we updated our model by training on a subset of high-276 
complexity communities: the random set of communities containing all butyrate producers (82 277 
communities) and a randomly sampled half of the communities lacking AC (42 communities) 278 
(Fi ). Notably, the updated model M3 predicted the measurements of high-complexity 279 
communities with high accuracy, demonstrating that the pairwise model structures could explain 280 
the quantitative trends in the data when provided with sufficient information (Figure 4e). The 281 
predictive capability of the model required information from complex communities, supporting 282 
recent theoretical work suggesting that the typical pairwise community experimental design may 283 
not be the most efficient for building predictive models of complex systems26. 284 

We next examined the changes in the inferred parameters between models M2 and M3 285 
to provide insights into key microbial interactions impacting complex community behaviors. The 286 
major changes in the updated gLV M3 model were new values for all previously unobserved 287 
pairwise interactions as well as modification of previously observed interaction parameters 288 
(Figure 4f, Figure S2f). Negative interactions (<-0.05 hr-1 (OD600 Species j)-1) dominated the 289 
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network, representing 49.8% of the interspecies interaction parameters. By contrast, only 1.7% 290 
of interactions were strong positive (>0.05 hr-1 (OD600 Species j)-1), consistent with previous 291 
observations of the prevalence of negative interactions in microbial communities6,50. Notably, 70% 292 
of the previously observed interspecies interaction parameters fell within the 60% confidence 293 
interval of the posterior distribution for model M2, demonstrating that our M2 model was accurate 294 
but lacked sufficient information to be highly confident in the estimated parameter values.  295 

In the updated gLV model, species which secreted lactate in monoculture tended to have 296 
a positive impact on the growth of AC (Figure 4f). Although DP is also a lactate consumer47, it 297 
did not tend to benefit from monospecies lactate producers. This result highlights the benefits of 298 
using data from multiple levels of community complexity for training gLV models as these 299 
interactions were not captured by models M1 and M2, trained only on lower-order community 300 
contexts. To understand how inter-species interactions vary across chemical composition 301 
contexts, we compared the inferred inter-species interaction coefficients in the M3 gLV model to 302 
those from a previous study that used a gLV model to study a 12-member subset of our 303 
community (PC, BV, BO, BT, BU, DP, CA, EL, FP, CH, BH, and ER) in a different (rich) media6 304 
and found that 27 parameters with magnitude >0.1 hr-1 (OD600 species j)-1 shared a sign and only 305 
5 had opposite sign (Figure 4f). The high percentage (84%) of qualitatively consistent interaction 306 
coefficients inferred based on measurements in two different environmental contexts provides 307 
confidence in using parameterized gLV models as prior information to forecast system behaviors 308 
in new environments. 309 

The regression model from M3 identified three interactions driving complementarity effects 310 
in the 5 butyrate producer communities including Eggerthella lenta (EL)-AC, DP-AC, and Dorea 311 
formicigenerans (DF)-RI (Figure 4g). In the absence of AC, substantial complementarity effects 312 
were not detected (Figure 4g), consistent with the absence of strong complementarity effects in 313 
lower-complexity communities lacking AC. In our system, AC has the unique capability to 314 
transform lactate to butyrate in addition to production of butyrate from sugars (Figure 2b), 315 
suggesting that metabolic flexibility may be a key determinant of complementarity effects. In sum, 316 
our modeling framework representing pairwise interactions could accurately predict community 317 
composition and butyrate production in complex communities and could be used to decipher key 318 
microbial interactions impacting metabolic outputs. 319 

Mechanistic insights identified from inferred interaction networks 320 

We sought to analyze the patterns in our inferred interactions to identify mechanistic hypotheses 321 
about the potential ecological and molecular factors driving butyrate production. The low butyrate 322 
productivity of specific communities could stem from a global reduction in metabolic activities for 323 
the conversion of sugars to organic acid fermentation products. However, the amount of total 324 
carbon in acetate, lactate, and propionate was inversely proportional to the amount of carbon in 325 
butyrate in complex communities (Figure S4), indicating that metabolic tradeoffs dictated the 326 
production of specific organic acids. Therefore, we considered how interactions identified by our 327 
model could influence such tradeoffs. 328 

We analyzed the inferred interaction networks to provide generalizable insights into 329 
metabolic processes impacting butyrate production in our system. We first considered the largest 330 
negative complementarity effect in our system between AC and DP (Figure 4g). While these two 331 
species have previously been shown to compete for lactate in vitro51, excess lactate was present 332 
in communities containing both DP and AC, suggesting that competition over limited lactate was 333 
not a major determinant of the negative complementarity effect (Figure 5a). In addition, a large 334 
negative complementarity effect was observed in the 3-5 member communities between DP and 335 
CC, which does not utilize lactate for butyrate production (Figure 3d).  336 

Since some Desulfovibrio species have the capability to use butyrate as an energy 337 
source52, we tested whether decreased butyrate in the presence of DP could be due to butyrate 338 
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consumption. To investigate this hypothesis, we grew DP in media supplemented with different 339 
concentrations of sodium butyrate ranging between 0 and 100 mM and measured the butyrate 340 
concentration after 48 hours of incubation. The presence of DP did not alter the concentration of 341 
butyrate in any condition, suggesting that decreased butyrate due to consumption or degradation 342 
was not a major factor contributing to the negative complementarity effects associated with DP 343 
(Figure S5). One unique metabolic characteristic of DP in our system is the capability to reduce 344 
sulfate to hydrogen sulfide (H2S). Therefore, we hypothesized that H2S may contribute the 345 
negative impact of DP on butyrate production (Figure 4a). To test this hypothesis, each butyrate 346 
producer was grown in media supplemented with a range of sulfide concentrations. Notably, the 347 
butyrate production per unit biomass decreased with increasing sulfide concentration for all 348 
butyrate producers (Figure 5b). These data suggest that the levels of H2S produced by the host 349 
and constituent members of gut microbiota could shape butyrate production in the human gut 350 
microbiome.  351 

We next investigated the factors that contribute to strong positive complementarity 352 
interactions influencing AC from EL or DF in complex communities with all butyrate producers 353 
(Figure 4f). Butyrate concentration exhibited a strong negative correlation with lactate 354 
concentration in complex communities (Figure 5a). Based on this correlation, we hypothesized 355 
that communities with higher butyrate concentration than expected based on monoculture 356 
butyrate yield (i.e. total positive butyrate complementarity) would exhibit lower lactate 357 
concentration than expected based on monoculture lactate yield (i.e. total negative lactate 358 
complementarity) (Methods). Our results demonstrated a negative correlation between butyrate 359 
and lactate complementarity in communities with AC, but not in communities without AC (Figure 360 
5a, inset). These results suggest that the majority of excess butyrate that was not predicted based 361 
on monospecies butyrate yield was attributed to conversion of lactate to butyrate by AC, 362 
suggesting that this metabolic mode for butyrate production was driving the inferred 363 
complementarity effects. Thus, we next considered potential environmental factors that could 364 
inhibit the conversion of lactate to butyrate. 365 

Previous studies have shown that the environmental pH has a major impact on organic 366 
acid production by gut microbiota53–56. For example, in batch cultures of fecal inocula, 367 
supplemented lactate was converted entirely to butyrate, propionate, and acetate at pH 5.9 and 368 
6.4, but not at pH 5.2. This abrupt metabolic shift at low environmental pH was attributed to 369 
inhibition of lactate consumption by AC and E. hallii (a closely related lactate-consuming butyrate 370 
producer in the clostridial cluster XIVa)55. Consistent with these results, butyrate concentration 371 
and pH were positively correlated in complex communities with AC (Spearman rho=0.73, 372 
p=1*10-57) or without AC (Spearman rho=0.29, p=1*10-4), though the correlation was much 373 
stronger in communities with AC (Figure 5c). A positive correlation between butyrate and pH 374 
could be attributed to reduced acidification of the media on a per carbon basis because one 375 
butyrate molecule is produced from (or as an alternative to) two acetate molecules (Figure 2b). 376 
However, we postulate that in the presence of AC, a different mechanism drives the substantially 377 
stronger correlation between pH and butyrate, wherein high butyrate production was enabled by 378 
an environmental pH maintained above 5.9 b  which lac n  by AC 379 
was inhibited55) Figure 5c). 380 

The abundance of EL and DF were both positively correlated with pH (Figure S6) and had 381 
positive complementarity effects in the regression model (Figure 4g), consistent with the potential 382 
role of pH in mediating positive complementarity effects. Further, EL had a unique environmental 383 
impact by increasing the pH in monoculture, suggesting that this mechanism could contribute to 384 
the inferred positive complementarity effect towards butyrate production (Figure S6). The 385 
environmental pH for monospecies did not forecast the correlations between species abundance 386 
and pH in complex communities. For example, Dorea longicatena (DL) and Dorea 387 
formicigenerans (DF) strongly acidify the media in monoculture but are positively correlated with 388 
pH in complex communities (Figure S6), highlighting a challenging problem in relating species 389 
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composition to broad functions such as environmental pH modifications across community 390 
contexts.  391 

In sum, we postulate that transformation of lactate into butyrate by AC was controlled by 392 
a combination of pH modification and resource competition (Figure 5d). Based on this 393 
mechanism, AC can switch between low and high butyrate producing states depending on the 394 
environmental pH and availability of sugars. In communities containing pH buffering species such 395 
as EL that maintain the pH above the threshold, the butyrate yield per biomass is dependent on 396 
the strength of competition for limited pools of sugars (high growth, low butyrate yield state). After 397 
sugars have been depleted, AC switches to a low growth and high butyrate yield metabolic state 398 
that transforms lactate into butyrate. The timing of the AC metabolic switch depends on the 399 
strength of resource competition in the community. In low pH environments, transformation of 400 
lactate to butyrate is inhibited and thus AC competes for limited sugars, resulting in butyrate 401 
production that is proportional to growth (i.e. no complementarity effects). Corroborating this 402 
notion, lactate-utilizing butyrate producers, including AC, have been shown to prefer glucose over 403 
lactate and produce ~5x more butyrate per unit biomass when grown on lactate versus glucose39. 404 
Consistent with the proposed mechanism, the abundance of AC was negatively correlated with 405 
butyrate in conditions with an endpoint pH > 6 (Figure S7). Above this pH threshold, there exists 406 
a tradeoff between the biomass of AC and butyrate production depending on the proportion of AC 407 
biomass derived from sugars (i.e. high biomass, low butyrate) or lactate (i.e. low biomass, high 408 
butyrate) (Figure 5d). In sum, the proposed mechanism indicates that in a pH buffered 409 
community, resource competition over energy rich nutrients could enhance butyrate production 410 
by AC by triggering a shift in metabolism from a low to high butyrate producing state. Further, this 411 
hypothesis may explain why positive butyrate complementarity effects from pH-buffering species 412 
were not captured by the M1 and M2 models trained on lower-order communities as there were 413 
fewer species and thus a reduced strength of resource competition. This analysis highlights that 414 
an interpretable statistical model that maps community composition to function can provide key 415 
biological insights into ecological and molecular mechanisms driving community functions and 416 
illuminates key metabolic modes of ecological drivers of community functions. 417 

DISCUSSION 418 

We demonstrated that community-level functions can be designed using a modeling framework 419 
that predicts community assembly (selection effects) and then maps community composition to 420 
function (complementarity effects). Our results showed that the capability for butyrate production 421 
can vary over a broad range (0-20 mM or 10-60 mM butyrate in the absence and presence of AC, 422 
respectively) by manipulating the presence/absence of diverse non-butyrate producing species, 423 
highlighting the critical role of microbial interactions in community-level functions. We used a DTL 424 
cycle to develop a predictive model of butyrate production by synthetic human gut microbiome 425 
communities which enabled the identification of key microbial interactions and insights into 426 
potential molecular mechanisms driving butyrate production. Our results demonstrated that 427 
accurate prediction of community function in complex multi-member consortia (i.e. >10 species) 428 
required measurements of communities at similar levels of complexity. Thus, the predictive 429 
capability of computational models of microbial communities could be improved by choosing 430 
communities that span the range of complexities of interest, rather than implementing a standard 431 
procedure of characterizing pairwise communities6,14,42. Consistent with this proposed 432 
experimental design approach, recent theoretical work has demonstrated a similar perspective26. 433 

While our approach lacks a host-interaction component, the mechanistic nature of insights 434 
derived from our model will enable future work to adapt our pipeline to predict community-level 435 
functions in the mammalian gut environment. For instance, DP has been previously associated 436 
with IBD57, attributed to its H2S activity inhibiting oxidation of short chain fatty acids by the host 437 
via short-chain acyl-CoA dehydrogenase58. However, an additional mechanism through which 438 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.241315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.241315
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

hydrogen sulfide producers could contribute to IBD is by inhibiting microbial production of the anti-439 
inflammatory metabolite butyrate via the analogous bacterial short-chain acyl-CoA 440 
dehydrogenase. Indeed, a previous study demonstrated that cecal contents of gnotobiotic mice 441 
colonized with an 8-member community plus DP contained less propionate and elevated 3-442 
hydroxybutyrate (upstream intermediate of butyrate production) compared to the 8-member 443 
community alone. In this study, the butyrate concentration did not vary between conditions, which 444 
could have been masked by host butyrate consumption as the concentration was very low for 445 
both communities (<1 mM)47. This could be explained by H2S inhibition of bacterial short chain 446 
acyl-CoA dehydrogenases in butyrate and propionate metabolic pathways, observed as 447 
accumulation of 3-hydroxybutyrate in the former case and decreased propionate production in 448 
the latter. Additionally, this mechanistic insight could explain associations between colitis and 449 
other sulfur-reducing bacteria, such as Bilophila wadsworthia59, which has been shown to be 450 
associated with reduced expression of microbial butyrate synthesis pathways in a mouse model 451 
of colitis60.  452 

A major strategy for microbiome modulation involves administration of non-resident 453 
species predicted to perform a target beneficial function61, including butyrate-producing bacteria32. 454 
Due to the plasticity of microbial metabolism, our results demonstrate that it is important to 455 
consider both how the resident community will enable growth of supplemented butyrate-producing 456 
bacteria as well as promote the desired metabolic states. Indeed, our results showed that in the 457 
presence of AC, the abundance of functional strains may not correlate with community-level 458 
metabolic functions due to complementarity effects that modify microbial metabolic modes.   459 

More broadly, our work provides a foundation for implementing model-guided procedures 460 
to design community properties and guide development of ecological and mechanistic hypotheses 461 
for a wide range of applications. Simple modifications can be made to this framework to 462 
accommodate different observed system behaviors. For instance, we modeled our system using 463 
two models incorporating only pairwise interaction terms. While this provided a high level of 464 
interpretability, it has a limited flexibility for studying higher-order interactions, which may play a 465 
critical role in shaping microbiome properties. Additionally, we focused on a predicting single 466 
function, whereas designing communities for multifunctionality may be desirable in many cases. 467 
Both of these limitations could be addressed by modifying our approach using alternative growth 468 
and function models, leveraging advances in machine learning62 or integrating information from 469 
genome-scale metabolic models13. 470 

In this work, we constructed models of community dynamics and function in a single 471 
media. The gut microbiome is exposed to a wide range of dietary substrates and the temporal 472 
changes in resource availability can dramatically shape community composition63. Our approach 473 
could be adapted to represent the molecular environment as a design variable to allow 474 
simultaneous exploration of the community and chemical composition design spaces to better 475 
understand how the molecular environment shapes microbial community functions. In sum, our 476 
methods provide a flexible foundation to explore design strategies for building microbial 477 
communities with target functions from the bottom-up and to understand molecular and ecological 478 
mechanisms influencing community-level functions. 479 

METHODS 480 

Strain Maintenance and Culturing 481 

All anaerobic culturing was carried out in an anaerobic chamber with an atmosphere of 2.5±0.5% 482 
H2, 15±1% CO2 and balance N2. All prepared media and materials were placed in the chamber at 483 
least overnight before use to equilibrate with the chamber atmosphere. The strains used in this 484 
work were obtained from the sources listed in Table S2 and permanent stocks of each were 485 
stored in 25% glycerol at -80°C. Batches of single-use glycerol stocks were produced for each 486 
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strain by first growing a culture from the permanent stock in anaerobic basal broth (ABB) media 487 
(HiMedia or Oxoid) to stationary phase, mixing the culture in an equal volume of 50% glycerol, 488 
and aliquoting 400 𝜇L into Matrix Tubes (ThermoFisher) for storage at -80°C. Quality control for 489 
each batch of single-use glycerol stocks included (1) plating a sample of the aliquoted mixture 490 
onto LB media (Sigma-Aldrich) for incubation at 37°C in ambient air to detect aerobic 491 
contaminants and (2) Illumina sequencing of 16S rDNA isolated from pellets of the aliquoted 492 
mixture to verify the identity of the organism. For each experiment, precultures of each species 493 
were prepared by thawing a single-use glycerol stock and combining the inoculation volume and 494 
media listed in Table S2 to a total volume of 5 mL (multiple tubes inoculated if more preculture 495 
volume needed) for stationary incubation at 37°C for the preculture incubation time listed in Table 496 
S2. All experiments were performed in a chemically defined medium (DM38), the composition of 497 
which is provided in Table S3. 498 

Monoculture Dynamic Growth Quantification 499 

Each species’ preculture was diluted to an OD600 of 0.0066 (Tecan F200 Plate Reader, 200 uL in 500 
96-Well Microplate) in DM38 and aliquoted into 3 replicates of 1 mL each in a 96 Deep Well 501 
(96DW) plate and covered with a semi-permeable membrane (Diversified Biotech) for stationary 502 
incubation at 37°C. At each time point, samples were mixed and OD600 was measured by diluting 503 
an aliquot of each sample into phosphate-buffered saline (PBS) into the linear range of the plate 504 
reader. 505 

Community Culturing Experiments and Sample Collection 506 

To produce all desired community combinations, each species’ preculture was diluted to an OD600 507 
of 0.0066 in DM38. Community combinations were arrayed in 96DW plates by pipetting equal 508 
volumes of each species’ diluted preculture into the appropriate wells using a Tecan Evo Liquid 509 
Handling Robot inside an anaerobic chamber. Each 96DW plate was covered with a semi-510 
permeable membrane and incubated at 37°C. After 48 hours, 96DW plates were removed from 511 
the incubator and samples were mixed. Cell density was measured by pipetting 200 𝜇L of each 512 
sample into one microplate and diluting 20 𝜇L of each sample into 180 𝜇L of PBS in another 513 
microplate and measuring the OD600 of both plates (Tecan F200 Plate Reader). We selected the 514 
value that was within the linear range of the instrument for each sample. 200 uL of each sample 515 
was transferred to a new 96DW plate and pelleted by centrifugation at 2400xg for 10 minutes. A 516 
supernatant volume of 180 𝜇L was removed from each sample and transferred to a 96-well 517 
microplate for storage at -20°C and subsequent metabolite quantification by high performance 518 
liquid chromatography (HPLC). Cell pellets were stored at -80°C for subsequent genomic DNA 519 
extraction and 16S rDNA library preparation for Illumina sequencing. In some experiments, 20 𝜇L 520 
of each supernatant was used to quantify pH using a phenol Red assay64. Phenol red solution 521 
was diluted to 0.005% weight per volume in 0.9% w/v NaCl. Bacterial supernatant (20 𝜇L) was 522 
added to 180 𝜇L of phenol red solution, and absorbance was measured at 560 nm (Tecan Spark 523 
Plate Reader). A standard curve was produced by fitting the Henderson-Hasselbach equation to 524 
fresh media with a pH ranging between 3 to 11 measured using a standard electro-chemical pH 525 
probe (Mettler-Toledo). We used the following equation to map the pH values to the absorbance 526 
measurements.  527 

𝑝𝐻 = 𝑝𝐾! + 𝑏 ∙ 𝑙𝑜𝑔"# ,
𝐴 − 𝐴$%&
𝐴$!' − 𝐴

/ 528 

 529 
The parameters b and pKa were determined using a linear regression between pH and the log 530 
term for the standards in the linear range of absorbance (pH between 5.2 and 11) with Amax 531 
representing the absorbance of the pH 11 standard, Amin denoting the absorbance of the pH 3 532 
standard and A representing the absorbance of each condition. 533 
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Sulfide Titration Experiment 534 

Each species’ preculture was diluted to an OD600 of 0.0066 in DM38. FP cultures were 535 
supplemented with 1 g/L bacto yeast extract (BD) and 33 mM sodium acetate (Sigma Aldrich). 536 
Different volumes of a concentrated solution of sodium sulfide (Alfa Aesar) were added to the 537 
cultures to achieve the desired concentration and the cultures were incubated in capped 1.6 mL 538 
microfuge tubes for 24 hours at which point the OD600 was measured (Tecan F200 Plate Reader, 539 
200 uL in 96-Well Microplate) and supernatants were collected for organic acid quantification via 540 
HPLC. Sulfide concentrations in the initial cultures were measured via the Cline assay65 to 541 
account for degradation of the sulfide stock during experimental setup. Briefly, 14.8 uL of Cline 542 
reagent was added to 185.2 uL of culture supernatant and incubated in a sealed 96-Well 543 
Microplate for 2 hours before diluting in 1% zinc acetate (Fisher) to the linear range of absorbance 544 
measurement at 667 nm (Tecan Spark Plate Reader). A standard curve was prepared similarly 545 
using sodium sulfide fixed in 1% zinc acetate. Cline reagent was prepared by dissolving 1.6 g 546 
N,N-dimethyl-p-phenylenediamine sulfate (Acros Organics) and 2.4 g FeCl3 (Fisher) in 100 mL 547 
50% v/v HCl (Fisher) in water.  548 

HPLC Quantification of Organic Acids 549 

Supernatant samples were thawed in a room temperature water bath before addition of 2 𝜇L of 550 
H2SO4 to precipitate any components that might be incompatible with the running buffer. The 551 
samples were then centrifuged at 2400xg for 10 minutes and then 150 𝜇L of each sample was 552 
filtered through a 0.2 𝜇m filter using a vacuum manifold before transferring 70 𝜇L of each sample 553 
to an HPLC vial. HPLC analysis was performed using either a ThermoFisher (Waltham, MA) 554 
Ultimate 3000 UHPLC system equipped with a UV detector (210 nm) or a Shimadzu HPLC system 555 
equipped with a SPD-20AV UV detector (210 nm). Compounds were separated on a 250 x 4.6 556 
mm Rezex© ROA-Organic acid LC column (Phenomenex Torrance, CA) run with a flow rate of 557 
0.2 ml min-1 and at a column temperature of 50ºC. The samples were held at 4ºC prior to injection. 558 
Separation was isocratic with a mobile phase of HPLC grade water acidified with 0.015 N H2SO4 559 
(415 µL L-1). At least two standard sets were run along with each sample set. Standards were 560 
100, 20, and 4 mM concentrations of butyrate, succinate, lactate, and acetate, respectively. For 561 
most runs, the injection volume for both sample and standard was 25 µl. The resultant data was 562 
analyzed using the Thermofisher Chromeleon 7 software package. 563 

Genomic DNA Extraction and Sequencing Library Preparation 564 

Genomic DNA was extracted from cell pellets using a modified version of the Qiagen DNeasy 565 
Blood and Tissue Kit protocol. First, pellets in 96DW plates were removed from -80°C and thawed 566 
in a room temperature water bath. Each pellet was resuspended by pipette in 180 𝜇L of enzymatic 567 
lysis buffer (20 mM Tris-HCl (Invitrogen), 2 mM Sodium EDTA (Sigma-Aldrich), 1.2% Triton X-568 
100 (Sigma-Aldrich), 20 mg/mL Lysozyme from chicken egg white (Sigma-Aldrich)). Plates were 569 
then covered with a foil seal and incubated at 37ºC for 30 minutes with orbital shaking at 600 570 
RPM. Then, 25 𝜇L of 20 mg mL-1 Proteinase K (VWR) and 200 𝜇L of Buffer AL (QIAGEN) were 571 
added to each sample before mixing with a pipette. Plates were then covered by a foil seal and 572 
incubated at 56ºC for 30 minutes with orbital shaking at 600 RPM. Next, 200 𝜇L of 100% ethanol 573 
(Koptec) was added to each sample before mixing and samples were transferred to a Nucleic 574 
Acid Binding (NAB) plate (Pall) on a vacuum manifold with a 96DW collection plate. Each well in 575 
the NAB plate was then washed once with 500 uL Buffer AW1 (QIAGEN) and once with 500 𝜇L 576 
of Buffer AW2 (QIAGEN). A vacuum was applied to the Pall NAB plate for an additional 10 minutes 577 
to remove any excess ethanol. Samples were then eluted into a clean 96DW plate from each well 578 
using 110 𝜇L of Buffer AE (QIAGEN) preheated to 56°C. Genomic DNA samples were stored at 579 
-20°C until further processing. 580 
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Genomic DNA concentrations were measured using a SYBR Green fluorescence assay 581 
and then normalized to a concentration of 1 ng 𝜇L-1 by diluting in molecular grade water using a 582 
Tecan Evo Liquid Handling Robot. First, genomic DNA samples were removed from -20°C and 583 
thawed in a room temperature water bath. Then, 1 𝜇L of each sample was combined with 95 𝜇L 584 
of SYBR Green (Invitrogen) diluted by a factor of 100 in TE Buffer (Integrated DNA Technologies) 585 
in a black 384-well microplate. This process was repeated with two replicates of each DNA 586 
standard with concentrations of 0, 0.5, 1, 2, 4, and 6 ng 𝜇L-1. Each sample was then measured 587 
for fluorescence with an excitation/emission of 485/535 nm using a Tecan Spark plate reader. 588 
Concentrations of each sample were calculated using the standard curve and a custom Python 589 
script was used to compute the dilution factors and write a worklist for the Tecan Evo Liquid 590 
Handling Robot to normalize each sample to 1 ng 𝜇L-1 in molecular grade water. Samples with 591 
DNA concentration less than 1 ng 𝜇L-1 were not diluted. Diluted genomic DNA samples were 592 
stored at -20°C until further processing. 593 

Amplicon libraries were generated from diluted genomic DNA samples by PCR 594 
amplification of the V3-V4 of the 16S rRNA gene using custom dual-indexed primers (Table S3) 595 
for multiplexed next generation amplicon sequencing on Illumina platforms (Method adapted from 596 
Venturelli et al. Mol. Sys. Bio., 2018). Primers were arrayed in skirted 96 well PCR plates (VWR) 597 
using an acoustic liquid handling robot (Labcyte Echo 550) such that each well received a different 598 
combination of one forward and one reverse primer (0.1 𝜇L of each). After liquid evaporated, dry 599 
primers were stored at -20°C. Primers were resuspended in 15 𝜇L PCR master mix (0.2 𝜇L 600 
Phusion High Fidelity DNA Polymerase (Thermo Scientific), 0.4 𝜇L 10 mM dNTP Solution (New 601 
England Biolabs), 4 𝜇L 5x Phusion HF Buffer (Thermo Scientific), 4 𝜇L 5M Betaine (Sigma-602 
Aldrich), 6.4 𝜇L Water) and 5 𝜇L of normalized genomic DNA to give a final concentration of 0.05 603 
𝜇M of each primer. Primer plates were sealed with Microplate B seals (Bio-Rad) and PCR was 604 
performed using a Bio-Rad C1000 Thermal Cycler with the following program: initial denaturation 605 
at 98°C (30 s); 25 cycles of denaturation at 98°C (10 s), annealing at 60°C (30 s), extension at 606 
72°C (60 s); and final extension at 72°C (10 minutes). 2 𝜇L of PCR products from each well were 607 
pooled and purified using the DNA Clean & Concentrator (Zymo) and eluted in water. The 608 
resulting libraries were sequenced on an Illumina MiSeq using a MiSeq Reagent Kit v3 (600-609 
cycle) to generate 2x300 paired end reads. 610 

Bioinformatic Analysis for Quantification of Species Abundance 611 

Sequencing data were demultiplexed using Basespace Sequencing Hub's FastQ Generation 612 
program. Custom python scripts were used for further data processing (Method adapted from 613 
Venturelli et al. Mol. Sys. Bio., 2018)6. Paired end reads were merged using PEAR (v0.9.10)66 614 
after which reads without forward and reverse annealing regions were filtered out. A reference 615 
database of the V3-V5 16S rRNA gene sequences was created using consensus sequences from 616 
next-generation sequencing data or Sanger sequencing data of monospecies cultures. 617 
Sequences were mapped to the reference database using the mothur (v1.40.5)67 command 618 
classify.seqs (Wang method with a bootstrap cutoff value of 60). Relative abundance was 619 
calculated as the read count mapped to each species divided by the total number of reads for 620 
each condition. Absolute abundance of each species was calculated by multiplying the relative 621 
abundance by the OD600 measurement for each sample. Samples were excluded from further 622 
analysis if they had OD600>0.1 and they had less than 1000 total reads or >1% of the reads were 623 
assigned to a species not expected to be in the community.  624 

Model-Free Quantification of Complementarity 625 

We quantified the contribution of complementarity effects to butyrate and lactate production in 626 
each community by calculating the difference between the measured metabolite concentration 627 
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and the expected metabolite concentration based on monoculture yield according to the following 628 
equation: 629 
 630 

𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑖𝑡𝑦	𝑜𝑓	𝑀( = [𝑀(])*$$+&%,- − >
[𝑀(].*&*/+0,+12	%
𝑋%,.*&*/+0,+12

𝑋%,)*$$+&%,-
%∈672/%28

 631 

 632 
The variables 𝑀( represents metabolite k (e.g. butyrate or lactate), [𝑀(])*$$+&%,- represents the 633 
concentration of metabolite k measured in the community, [𝑀(].*&*/+0,+12	% denotes the 634 
concentration of metabolite k in the monoculture of species i, 𝑋%,.*&*/+0,+12 represents the 635 
absolute abundance of species i in monoculture, 𝑋%,)*$$+&%,- is the absolute abundance of 636 
species i in the community, and the summation is across all species in the community. 637 

gLV Models and Training 638 

We used a model with two modules: the gLV model to predict composition of the assembled 639 
community and a regression model with interaction terms to predict butyrate production as a 640 
function of the predicted community composition (Figure 1a). The gLV model is a set of N coupled 641 
first-order ordinary differential equations, where N denotes the number of species, of the form: 642 
 643 

1
𝑋%
𝑑𝑋%
𝑑𝑡

= 𝑟% +>𝑎%9𝑋9

:

9;"

 644 

 645 
The species Xi is the abundance of species i, ri is a parameter that represents the basal growth 646 
rate of species i, and aij is a parameter that represents interactions by modifying the growth rate 647 
of species i proportional to the abundance of species j. To prevent unbounded growth, aij is 648 
constrained to be negative when i=j, representing intra-species competition. This model has 649 
previously been used to understand and predict the behavior of complex microbial communities6 650 
and provides an interpretable model form (e.g. which interspecies interactions are important) 651 
without introducing an excessive number of parameters (e.g. complex mechanistic models68). 652 

We used a Bayesian parameter inference approach to estimate parameters for the gLV 653 
model from experimental measurements (adapted from Shin et al., PLoS Computational Biology, 654 
201930). Briefly, our method has a prior distribution for each model parameter and then varies the 655 
parameters to fit the model to the measured species abundances (mean of biological replicates) 656 
while penalizing deviations from the parameter prior distributions. These penalties provide a 657 
regularization effect, which is necessary when the model is underdetermined. We used L2 658 
regularization because we expected inter-species competition to be prevalent and thus did not 659 
expect many interaction parameters to be negligible. After an optimal parameter set is found, this 660 
process is repeated hundreds of times after applying random noise to the experimental data 661 
proportional to the measured experimental variance to generate an ensemble of parameter sets 662 
(i.e. the posterior distribution). This posterior distribution is then used as the prior distribution when 663 
updating the model with new data. We adapted a previous implementation of this method in Julia 664 
for this work. 665 

Before training the model on any data, we assumed a normally distributed prior for each 666 
parameter with mean of 0 and standard deviation equal to 1. We then trained the gLV model on 667 
time-series measurements of monoculture growth for each species, estimating a posterior 668 
distribution for each ri and aii parameter (other aij posterior distributions were equal to the prior 669 
distribution). We used this posterior distribution as a prior distribution to update the model with 670 
the pairwise community data and generated the gLV module of Model M1, where posterior 671 
distributions were estimated from experimental data for ri, aii, and aij where species i and species 672 
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j co-occurred in the experimental data and the posterior distribution of aij for unobserved pairs 673 
was equal to the prior. We similarly updated the model using the 3 to 5-member community 674 
experiments to generate Model M2. Regularization coefficients for each iteration of the model 675 
updating process are shown in Table S4. 676 

The gLV modules of Models M1 and M2 were underdetermined due to pairs of species 677 
never being observed in the same community within the training dataset. To generate parameters 678 
for these unobserved interactions, we used a matrix imputation approach to estimate the 679 
interaction parameters informed by the phylogenetic relatedness of species. First, we sorted the 680 
aij interaction parameter matrix such that the rows and columns occurred in the same order as the 681 
phylogenetic tree (Figure 2a). Next, we used K-nearest neighbors matrix imputation with K = 2 to 682 
estimate interaction parameters for species that were not observed in the training data 683 
(implemented in Python 3 using the fancyimpute package, https://pypi.org/project/fancyimpute/). 684 
This process was repeated independently for each parameter set in the posterior distribution. 685 

While the parameter optimization portion of this model-training process had previously 686 
been found to scale with increasing number of pairwise community datasets30, we found that the 687 
optimization problem became intractable when attempting to estimate parameters from complex 688 
community data (i.e. >10 species). To address this problem, we used the nonlinear programming 689 
solver FMINCON in MATLAB to generate the gLV module of Model M3 by training on all data 690 
simultaneously. Using this method, the cost function for the optimization algorithm is computed 691 
using an ODE solver to simulate each community and the sum of mean squared errors for the 692 
community is computed and added to a L2 regularization term penalizing the magnitude of the 693 
parameter vector. To ensure that the model did not sacrifice the goodness of fit to the time-series 694 
monospecies data, the mean squared errors for these data were weighted more highly. The 695 
resulting optimization function was as follows: 696 

 697 
𝜑 = ∑ (𝑋2'7,( − 𝑋$*<20,()=(	>	6%&?02 +𝑤∑ (𝑋2'7,0 − 𝑋$*<20,0)=0	>	@-&!$%/ + 𝜆∑ 𝜃9=9	>	A!1!$8 . 698 

 699 
In this equation, single denotes the set of experiments where only the end point community 700 
composition was measured, dynamic indicates the set of time-series monospecies 701 
measurements, w is the weighting factor the time-series monospecies measurements, and λ 702 
represents the regularization coefficient. The FMINCON function identifies a parameter estimate 703 
which minimizes the cost function. We provided the median parameter values from Model M2 as 704 
an initial guess for the FMINCON function. We repeated this process with various values of λ and 705 
w to find a parameter set that simultaneously fits the Dynamic and Single datasets with maximal 706 
regularization penalty to prevent overfitting to the data (Table S4). We used a procedure based 707 
on the one described above for the Julia implementation to generate an ensemble of parameter 708 
sets (i.e. the posterior distribution) using FMINCON. Because each iteration of the FMINCON 709 
parameter estimation took several hours to complete, we massively parallelized the generation of 710 
each of the hundreds of parameter sets in the ensemble using resources from the UW-Madison 711 
Center for High Throughput Computing. 712 

Regression Models and Training 713 

We used a regression model to represent a microbial community function with interaction terms: 714 
 715 

B = > 𝛼%𝜒%
%	>	BAB

+ > > 𝛽9(𝜒9𝜒(
(	>	CDD9	>	BAB

 716 

 717 
The variable B is the predicted butyrate concentration, 𝛼% are parameters corresponding to each 718 
of the variables 𝜒% (end point abundances and time 0 presence or absence (1 or 0) for each 719 
butyrate producer, 10 variables total), and 𝛽9( are interaction parameters corresponding to each 720 
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pair of variables 𝜒9 (end point abundances and time 0 presence or absence (1 or 0) for each 721 
butyrate producer,10 variables total) and 𝜒( (end point abundances and time 0 presence or 722 
absence (1 or 0) for all species, 50 variables total), excluding cases where 𝜒9 and 𝜒( refer to the 723 
same species (450 total parameters). Model fitting was performed using custom scripts written in 724 
MATLAB and Python. We used L1 regularization to minimize the number of nonzero parameters. 725 
Regularization coefficients were chosen by using 10-fold cross validation and choosing the 726 
coefficient value with the lowest median mean-squared error for the test data. For models M1 and 727 
M2, ensembles of regression models were generated, one for each possible combination of 728 
butyrate producers, where samples containing butyrate producers from outside of each set were 729 
excluded. In this case, butyrate production from less productive species (e.g. FP) were small 730 
compared to more productive species (e.g. AC, ER, RI, CC) thus reducing the model accuracy 731 
for communities lacking the high productivity species. For Model M3, one regression model was 732 
generated using all data because all communities of interest contained highly productive butyrate 733 
producers.  734 

Model Simulations to Predict New Communities 735 

Custom MATLAB scripts were used to predict community assembly and butyrate production, for 736 
many communities as described in the text (e.g. all communities containing all 5 butyrate 737 
producers for Figure 4a). For each community, the growth dynamics were simulated using each 738 
parameter set from the posterior distribution of the gLV model. The resulting community 739 
compositions for each simulation were an input to the regression model to predict butyrate 740 
concentration. Statistics on the resulting distributions of butyrate concentration and abundance of 741 
each species were stored for later plotting. Because of the large number of communities and the 742 
large number of parameter sets (i.e. hundreds of simulations per community), we used parallel 743 
computing (MATLAB parfor) to complete the simulations in a reasonable timeframe (~4 days for 744 
the communities in Figure 4a). 745 
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 936 
Figure 1. Iterative modeling framework to predict microbial community assembly and 937 
function. (a) Two-stage modeling framework for predicting community assembly and function. 938 
The generalized Lotka-Volterra model (gLV) represents community dynamics. The inter-species 939 
interaction terms represent the selection effects described in c. A Bayesian Inference approach 940 
was used to determine parameter uncertainties due to biological and technical variability. A linear 941 
regression model with interactions represents the complementarity effects as described in c. 942 
Combining these two models enables prediction of a probability distribution of the functional 943 
activity from initial species concentrations. (b) Model-guided iterative experimental approach for 944 
developing a model to predict community assembly and butyrate production. First, we use our 945 
model to explore the design space of possible experiments (i.e. different initial conditions of 946 
species presence/absence) and design communities that span the range of expected functional 947 
outputs. Next, we use high-throughput experimental methods to measure species abundance and 948 
functional outputs. Finally, we evaluate the model’s capability to accurately predict the 949 
experimental data and train the model on new data for the next iteration. (c) Inter-species 950 
interactions that impact the functional output of an organism can be driven by selection (top) or 951 
complementarity (bottom) effects. In this model, the total functional output of the communities is 952 
determined by a combination of these effects.  953 
  954 
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 955 
Figure 2. Characterizing interaction types in two-species communities. (a) Phylogenetic tree 956 
of the synthetic human gut microbiome community composed of 25 highly prevalent and diverse 957 
species. Branch color indicates phylum and underlined species denote butyrate producers. (b) 958 
Metabolic pathways for the transformation of sugars, acetate, and lactate into butyrate. 959 
Conversion of sugars or lactate to acetyl-CoA generates ATP and NAD(P)H, with higher ATP 960 
production per NAD(P)H from sugars. NAD(P)H is oxidized through conversion of acetyl-CoA to 961 
butyryl-CoA. Many substrates (X) can be used to exchange CoA between acetate and/or butyrate. 962 
In our system, Anaerostipes caccae has the unique capability to utilize the lactate conversion 963 
pathway (purple dashed arrows). (c) Monospecies growth responses over time. Transparent 964 
symbols indicate biological replicates connected to the corresponding mean (solid symbols) by 965 
transparent lines. Solid lines represent the generalized Lotka-Volterra (gLV) model fit to the data. 966 
Each plot shows the growth curves for species within the Bacteroidetes (top), 967 
Actinobacteria/Proteobacteria (middle) or Firmicutes (bottom) phylum. (d) Scatter plot of butyrate 968 
producer abundance and butyrate concentration for all pairwise communities containing at least 969 
one butyrate producer. Solid symbols indicate the mean of biological replicates of a community. 970 
Large symbols indicate butyrate producer monoculture. Smaller symbols indicate two-species 971 
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communities, with closed symbols denoting significant differences in butyrate concentration 972 
and/or butyrate-producer abundance from the monoculture (p<0.05, t-test, unequal variance). 973 
Transparent squares indicate biological replicates and are connected to the corresponding mean 974 
with lines. Dashed lines indicate the predicted butyrate concentration assuming a constant 975 
butyrate yield based on monoculture data. Inset: distribution of selection and complementarity 976 
effects normalized by monoculture butyrate concentration for two-species communities. Asterisks 977 
indicate significant difference in the mean across butyrate producers (p<0.05, t-test, unequal 978 
variance) (e) Network representation of the inferred gLV inter-species interaction network based 979 
on data from b and c. Nodes size represents the abundance of each species in monoculture 980 
(OD600) at 48 hr and edges indicate interaction parameters with widths proportional to magnitude 981 
(units of hr-1 OD600

-1) and color indicating sign (red negative, blue positive). Only edges with >95% 982 
confidence in sign are shown. (f) Network representation of regression model trained on data 983 
from b and c. Butyrate producer arrows denote monoculture butyrate production, nodes indicate 984 
non-butyrate producers, and edges represent modification of butyrate production in two-species 985 
communities. Edges connecting two butyrate producer arrows appear as bidirectional arrows 986 
since the directionality of the effect cannot be inferred. Edge widths are proportional to butyrate 987 
production (units of mM Butyrate). Only interactions with magnitude greater than 2 mM are shown. 988 
  989 
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 990 
Figure 3. Model-guided investigation of low complexity synthetic human gut communities. 991 
(a) Predicted (grey bars) and measured (data points) butyrate concentrations for all 3-5 member 992 
communities containing at least one butyrate producer. Vertical black lines separate groups of 993 
communities based on the identities of the combination of butyrate producers specified on the x-994 
axis. Communities with all combinations of 3-5 butyrate producers are included in the final bin for 995 
simplicity. Within each bin, communities are sorted in rank order of increasing median predicted 996 
butyrate production with a vertical grey bar indicating the 60 percent confidence interval of 997 
predictions for each community. Data points represent biological replicates of a selected subset 998 
of communities with replicates of a community connected by lines and the data point type 999 
indicating the number of species in each community (156 communities total). (b) Scatter plot of 1000 
predicted and measured butyrate concentrations for communities in a. Transparent datapoints 1001 
represent biological replicates of a community and are connected to the corresponding mean 1002 
measurement (solid datapoints) by transparent lines. Prediction error bars indicate the 60 percent 1003 
confidence interval of predicted butyrate. Solid grey line indicates x=y and dashed line indicates 1004 
the linear regression between the mean measurement and median prediction (y=0.79x-1.2, 1005 
Pearson r=0.83, p=6*10-41). Data point type indicates the number of species in each community. 1006 
(c) Network representation of generalized Lotka-Volterra model updated with data from b. Node 1007 
size represents the abundance of each species in monoculture (OD600), edge widths denote the 1008 
magnitude of the inter-species interaction coefficients (units of hr-1 OD600

-1) and color of the edges 1009 
corresponds to the sign (red negative, blue positive). Faint interaction edges indicate interactions 1010 
that did not change from the model trained on monospecies and pairwise communities (<2-fold 1011 
change in magnitude of parameter mean). Only edges with >95% confidence in sign are shown. 1012 
(d) Network representation of contributions of updated regression model to butyrate production in 1013 
communities from b. Butyrate producer arrows indicate contribution to butyrate production 1014 
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independent of interactions. Nodes indicate non-butyrate producing species, and edges indicate 1015 
modification of butyrate production in communities from b. Edges connecting two butyrate 1016 
producers are bidirectional because it is not possible to discern which organism is producing the 1017 
butyrate. For each butyrate producer, solid edge widths are proportional to the mean contribution 1018 
and faint edge widths are proportional to the maximum contribution of the interaction across 1019 
communities where those species were present (units of mM butyrate). Only interactions with 1020 
maximum contribution >5 mM and with at least 4 communities including that interaction are 1021 
shown. 1022 
  1023 
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Figure 4. Model-guided exploration of butyrate production landscape. (a) Scatter plot of 1025 
Euclidean distance in community absolute abundance from predicted full 25-member community 1026 
versus predicted butyrate concentration for all possible communities. Histograms indicate the 1027 
distribution of communities across the given axis. Communities are colored according to the 1028 
presence (red) or absence (blue) of Desulfovibrio piger (DP). Blue and red dashed lines indicate 1029 
the linear regression of communities with (red, y=-1.7x+25.5, r=-0.26) or without (blue, 1030 
y=3.1x+27.8, r=0.72) DP. The white star indicates the full 25-member community and black star 1031 
indicates the community of all butyrate producers. Large data points indicate communities chosen 1032 
for experimental validation. Black triangles indicate leave-one-out communities, black circles 1033 
indicate designed communities, and grey squares indicate random communities, with 1034 
open/closed symbols indicating absence/presence of DP. (b) Scatter plot of Euclidean distance 1035 
in community composition from predicted 24-member community excluding Anaerostipes caccae 1036 
(AC) versus predicted butyrate concentration for all possible communities. Histograms indicate 1037 
the distribution of communities across the given axis. Grey dashed line indicates the mean 1038 
predicted butyrate concentration across all communities. Blue dashed line indicates the linear 1039 
regression of all communities (y=8.3x-1.4, r=0.50). The white star indicates the full 24-member 1040 
community and the black star indicates the 4 butyrate-producer community. Large data points 1041 
indicate communities chosen for experimental validation. Inset: mean experimental 1042 
measurements of butyrate concentration (black) and total abundance of butyrate producers (red) 1043 
versus the distance from the full 24-member community. The grey and red dashed lines represent 1044 
the mean butyrate concentration and total butyrate producer abundances across measured 1045 
communities, respectively. (c) Scatter plot of predicted versus measured butyrate concentration 1046 
for communities in a. Transparent data points indicate biological replicates and are connected to 1047 
the corresponding mean values by transparent lines. Data points denote the median with error 1048 
bars spanning the 60% confidence interval. Solid line indicates x=y. Dashed line indicates linear 1049 
regression of median prediction versus mean measurement (y=1.2x+3.0, r=0.59, p=1*10-18). 1050 
Legend indicates statistically significant differences in measured butyrate between populations of 1051 
communities (Kruskal-Wallis test). (d) Scatter plot of predicted versus measured butyrate for 1052 
communities in b. Transparent data points indicate biological replicates and are connected to the 1053 
corresponding mean by transparent lines. Data points represent the median with error bars 1054 
spanning the 60% confidence interval. Solid grey line indicates x=y. Dashed line indicates the 1055 
linear regression of the median versus mean measurement (y=0.1x+2.6, r=0.44, p=2*10-5). (e) 1056 
Scatter plot of predicted versus measured butyrate for complex communities using model M3. 1057 
Transparent data points indicate biological replicates and are connected to the corresponding 1058 
mean by transparent lines. Solid grey line indicates x=y. Dashed line indicates linear regression 1059 
of prediction versus mean measurement (y=0.99x-4.6, r=0.86, p=1*10-44). (f) Heat-map of the 1060 
median value of the inter-species interaction coefficients (aij) for the M3 gLV model. Interactions 1061 
impacting AC and DP are annotated with L+ or L- if species j produced or consumed >10 mM 1062 
lactate in monoculture. Inter-species interactions included in the model community C1 from 1063 
(Venturelli et al., Mol. Sys. Bio., 2018)6 are annotated with C+ or C- if interactions from both 1064 
models had magnitudes greater than 0.05 hr-1 and had the same or opposite sign, respectively. 1065 
(g) Network representation of updated M3 regression model. Butyrate producer arrows indicate 1066 
contribution to butyrate production independent of inter-species interactions. Nodes indicate non-1067 
butyrate producing species, and edges indicate modification of butyrate production (blue, 1068 
increased; red, decreased) in all complex communities (>10 species). Solid edge widths are 1069 
proportional to the mean contribution and faint edge widths are proportional to the maximum 1070 
contribution of the interaction across communities where those species were present (units of mM 1071 
butyrate). Only interactions with maximum contribution >5 mM and with at least 4 communities 1072 
including that interaction are shown. 1073 
 1074 
 1075 
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 1076 
Figure 5. Model-guided identification of molecular mechanisms impacting butyrate 1077 
production. (a) Scatter plot of butyrate concentration versus lactate concentration for complex 1078 
communities (>10 species). Each data point indicates a biological replicate of a community. Grey 1079 
dashed line indicates the linear regression for communities containing AC (y=-1.3x+61, r=-0.91, 1080 
p=5*10-182), red dashed line indicates the linear regression for communities lacking AC (y=-1081 
1.1x+51, r=-0.56, p=8*10-16) and black horizontal dashed line indicates initial concentration of 1082 
lactate in the media (28 mM). Inset: butyrate complementarity versus lactate complementarity. 1083 
Grey dashed line indicates the linear regression for communities containing AC (y=-0.75x-7.5, r=-1084 
0.63, p=4*10-53). Pearson correlation for communities lacking AC was not statistically significant 1085 
(p=0.12). (b) Butyrate concentration per unit biomass as a function of sulfide concentration. 1086 
Butyrate yield per biomass was normalized to the no sulfide condition. Circles indicate the mean 1087 
of biological replicates, with individual replicates shown as transparent squares. Black squares 1088 
indicate the mean measured sulfide concentration for each treatment level with error bars 1089 
indicating the standard deviation of at least 10 technical replicates. Species labels are 1090 
accompanied by statistically significant Spearman correlation coefficients (ρ) between all 1091 
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biological replicates of that species and mean sulfide concentration for each level (p<0.05, AC 1092 
p=0.02; CC p=0.002; ER p=3*10-8; RI p=0.02; FP p=0.0008). (c) Scatter plot of butyrate 1093 
concentration versus pH for complex communities. Each data point indicates a biological replicate 1094 
of a community. (d) Schematic representing proposed driving mechanisms impacting butyrate 1095 
production by AC in complex communities. Red edges denote processes that negatively impact 1096 
butyrate production and blue edges represent processes that enhance butyrate production. The 1097 
abundance of species that acidify the environment were positively correlated with lactate 1098 
concentration and negatively correlated with pH in complex communities. The abundance of pH 1099 
buffering species were positively correlated with pH in complex communities. Note that species 1100 
contributions to these processes are expected to be context-dependent. Inset: proposed 1101 
qualitative butyrate landscape as a function of the strength of resource competition for sugars and 1102 
environmental pH.  1103 
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