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Abstract

To convey meaning, human language relies on hierarchically organized, long-range relation-1

ships spanning words, phrases, sentences, and discourse. The strength of the relationships2

between sequentially ordered elements of language (e.g., phonemes, characters, words) de-3

cays following a power law as a function of sequential distance. To understand the origins of4

these relationships, we examined long-range statistical structure in the speech of human chil-5

dren at multiple developmental time points, along with non-linguistic behaviors in humans6

and phylogenetically distant species. Here we show that adult-like power-law statistical7

dependencies precede the production of hierarchically-organized linguistic structures, and8

thus cannot be driven solely by these structures. Moreover, we show that similar long-range9

relationships occur in diverse non-linguistic behaviors across species. We propose that the10

hierarchical organization of human language evolved to exploit pre-existing long-range struc-11

ture present in much larger classes of non-linguistic behavior, and that the cognitive capacity12

to model long-range hierarchical relationships preceded language evolution. We call this the13

Statistical Scaffolding Hypothesis for language evolution.14

Keywords language · hierarchy · power law · evolution15

1 Significance Statement16

Human language is uniquely characterized by semantically meaningful hierarchical organization, conveying17

information over long timescales. At the same time, many non-linguistic human and animal behaviors are18

also often characterized by richly hierarchical organization. Here, we compare the long-timescale statistical19

dependencies present in language to those present in non-linguistic human and animal behaviors as well as20

language production throughout childhood. We find adult-like, long-timescale relationships early in language21

development, before syntax or complex semantics emerge, and we find similar relationships in non-linguistic22

behaviors like cooking and even housefly movement. These parallels demonstrate that long-range statistical23

dependencies are not unique to language and suggest a possible evolutionary substrate for the long-range24

hierarchical structure present in human language.25
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2 Introduction26

Since Shannon’s original work characterizing the sequential dependencies present in language, the structure27

underlying long-range information in language has been the subject of a great deal of interest in linguistics,28

statistical physics, cognitive science, and psychology [1–20]. Long-range information content refers to the29

dependencies between discrete elements (e.g., units of spoken or written language) that persist over long30

sequential distances spanning words, phrases, sentences, and discourse. For example, in Shannon’s original31

work, participants were given a series of letters from an English text and were asked to predict the letter32

that would occur next. Using the responses of these participants, Shannon derived an upper bound on the33

information added by including each preceding letter in the sequence. More recent investigations compute34

statistical dependencies directly from language corpora using either correlation functions [3, 4, 7, 8, 10, 12, 13]35

or mutual information (MI) functions [2, 5, 6, 14] between elements in a sequence. In both cases, sequential36

relationships are calculated as a function of the sequential distance between events. For example, in the37

sequence a → b → c → d → e → f , at a distance of three elements, relationships would be calculated over38

the pairs a and d, b and e, and c and f .39

On average, as the distance between elements increases, statistical dependencies grow weaker. Across many40

different sequence types, including phonemes, syllables, and words in both text and speech, the decay of long-41

range correlations and MI in language follows a power law (Eq. 6) [2–14, 18, 19]. This power-law relationship42

is thought to derive at least in part from the hierarchical organization of language, and has been variously43

attributed to human language syntax [5], semantics [3], and discourse structure [4]. To understand the link44

between hierarchical organization in language and a power-law decay in sequential dependencies, it is helpful45

to consider both the latent and surface structure of a sequence (Fig. 1). When only the surface structure46

of a sequence is available, as it is for language corpora, a power-law decay in the MI between sequence47

elements gives evidence of an underlying hierarchical latent structure. This phenomenon can be demonstrated48

by comparing the MI between elements in a sequence generated from a hierarchically-structured language49

model, such as a probabilistic context-free grammar (PCFG), to the MI between elements in a sequence50

generated by a non-hierarchical model, such as a Markov process (Fig. 1). For sequences generated by a51

Markov process, the strength of the relationship between elements decays exponentially (Eq. 5) as sequential52

distance increases [5, 21] (Fig. 1A). In the PCFG model, however, linear distances in the sequence are coupled53

to logarithmic distances in the latent structure of the hierarchy (Fig. 1B-C). While information continues to54

decay exponentially as a function of the distance in the latent hierarchy (Fig. 1D), this log-scaling results55

in a power-law decay when MI is computed over corresponding sequential distances (Fig. 1E).56

In language, long-range relationships convey meaning across hierarchical levels of organization. This latent57

linguistic structure is thought to underlie the power-law relationships observed across texts and speech [2–5].58

The presence of power-law sequential and temporal relationships in natural phenomena is not restricted59

to human language, however. Here, we demonstrate that the power law underlying long-range statistical60

relationships in human speech precedes complex morphosyntactic production in language and is part of a61

larger set of natural behaviors exhibiting similar temporal relationships. The potentially numerous generative62

mechanisms for these phenomena remain to be established; however their existence evinces a substrate that63

may have been exploited in the evolution of a cognitive capacity to represent long-range signals prior to the64

evolution of language.65

Beyond language, power-law temporal relationships are observed in both human-unique behaviors like music66

production [22] and stock market turbulence [23, 24] as well as behaviors that are shared with other animals67

such as sleep patterns in infants [25] and heart rates in healthy adults [26, 27]. In fact, the ubiquity of68

power laws in the physical and biological sciences spreads beyond temporal and sequential relationships69

and is well documented across a variety of phenomena. 1/f noise, a power law in the spectral density of70

a stochastic process, is observed in signals ranging from neural oscillations to flocking patterns in birds71

[28–31]. The relationship between biological variables often scale following a power law, for example, the72

allometric scaling laws observed between an organisms size and metabolic rate [32]. A variety of natural73

distributions such as word frequencies are well described by power-law distributions, a phenomenon termed74

Zipfs law [33–37]. Power-law distributions are also observed in the connectivity of many biological and social75

networks, a property called scale-freeness [38–41]. Over much of the past several decades, heated debates76

have arisen over claims of universal organizing principles of natural phenomena characterized by power laws77

[28, 31, 34, 41–44].78

Across the diverse phenomena described by power-law relationships in the natural sciences, one commonality79

is that the origins of the observed power law are still not fully understood and mechanistic implications80

of power laws are often overstated [28, 31, 34, 41, 43, 44]. Although mechanisms have been proposed to81
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Figure 1: Comparison between sequences with deep latent relationships and iteratively generated sequences.
(A) The MI between elements in an iteratively (Markov model) generated sequence decays exponentially
as a function of sequential distance. (B) An example sequence with hierarchical latent structure. The
latent distance between the two end elements in the sequence is 6 (blue), while the sequential distance is
17 (red). (C) In sequences with hierarchical latent structure, the sequential distance between elements is
logarithmically related to the latent distance (fit model: a ∗ logx∗b + c where x is sequential distance). (D)
Like sequential distance in (A), The MI between elements in a hierarchically generated sequence decays
exponentially as a function of latent distance. (E) The MI between elements in a hierarchically generated
sequence decays following a power law as a function of sequential distance, which is related to the exponential
MI decay seen in (D) and the logarithmic relationship between sequential and latent distance seen in (C). In
(A), the probabilistic Markov model used to generate the empirical data has 2 states with a self-transition
probability of 0.1. In (C-E) a probabilistic context-free grammar [5] with the same transition probability is
used.

account for the various forms of power laws observed in natural phenomena, the presence alone of a power82

law provides little insight into the underlying generative mechanism [31, 34, 42–44]. This is true of language83

as well. While the power laws characterized in language are consistent with generative mechanisms posited84

in syntactic theory [5, 45], they are not confirmatory. The presence of a power law in language does confirm,85

however, that relationships spanning long distances exist in the signal. Given the presence of power-law86

sequential relationships in human language, the question remains whether the power law is a product of87

linguistic structure, or whether these relationships originate in lower-level phenomena that are not unique88

to human language. If long-range relationships predate the evolution of language, they may have influenced89

the structure of temporal relationships that evolved with language.90

Beyond human language, numerous other human behaviors [46–51], animal behaviors [52–57], animal vo-91

calizations [37, 58–66], and other biologically-generated processes [25–27, 31, 67–70] have been described as92

being hierarchically organized or display long-timescale organization. Such behaviors range from the seem-93

ingly non-complex patterns of behavior exhibited by fruit flies [52, 56] to tool usage in great apes [53, 54]. For94

this reason, it has been argued that hierarchical organization is an inherent property of biological processes,95

including human behavior [50, 71, 72] and that the hierarchical structure of behavior is inherited from the96

lower-level organization of neurophysiological mechanisms that produce it [73–76], which themselves can be97

characterized by power-law relationships in temporal sequencing [29, 30, 77]. The developmental and/or evo-98
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lutionary dependence of linguistic structure on underlying, domain-general, cognitive and neural processes99

has been posited by several researchers [50, 51, 76, 78].100

Despite the numerous observations of hierarchical structure and long-range dependencies in non-human101

animal behaviors, few studies have examined the statistical dynamics of these behaviors quantitatively.102

Those that do have found power-law dynamics in the communication and behaviors of animals that are103

phylogenetically distant from humans [2, 79–81]. This, along with the prevalence of long-range power-law104

relationships in other natural phenomena [28, 31], supports the generality of these organizing principles105

across all behaviors. On the other hand, sequential organization in the vocal communication signals of non-106

human primates may extend over only a few elements [82, 83], and descriptions of hierarchical non-vocal107

behaviors in non-human primates tend to only be a few elements long [53, 54, 84], supporting at most a very108

shallow hierarchical structure. Thus, the extent to which a power-law decay provides a unified description109

of long-range statistical dependencies in behavior has yet to be determined. This question has particular110

relevance to human language, where it is unknown whether power-law relationships in sequential organization111

are present throughout language development, or emerge as linguistic structure develops. Understanding the112

ubiquity of power-law relationships across non-linguistic and non-human behavior, as well as across human113

language acquisition, may help to explain the origins of this organizing principle in language.114

2.1 Present work115

In the present work, we perform three groups of analyses exploring whether non-linguistic and pre-linguistic116

long-range statistical relationships parallel the long-range statistical relationships present in adult language.117

First, we analyze a series of language development corpora of children learning English, starting at six months118

of age [85–98], to determine whether long-range relationships are present in human vocalizations prior to119

the production of hierarchically-organized linguistic structure. Second, we analyze the long-range statistical120

dependencies of a human non-linguistic corpus of transcribed actions taken by humans while cooking [99],121

to determine whether power-law relationships are present in the sequential organization of non-linguistic122

human behaviors. Finally, we analyze the long-range sequential relationships in datasets of freely moving123

fruit flies (Drosophila melanogaster) [56] and zebrafish (Danio rerio) behavior [100], both of which have been124

previously characterized as being hierarchically organized, to determine whether a power law is present in125

the sequential organization of non-human non-linguistic behavior.126

We show that both human non-linguistic and non-human non-linguistic behavior exhibits long-range power-127

law statistical dependencies like those observed in mature human language. In child language datasets, we128

observe a power-law as early as 6 to 12 months of age, while children are still in the "babbling" stage of129

language development. In the animal behavior datasets, we observe long-range power-law decays spanning130

many minutes (>6 minutes in Drosophila and >20 minutes in zebrafish).131

3 Results132

3.1 Language acquisition133

Although much work has explored the information content and long-range sequential organization of human134

language, relatively few studies have examined these properties in speech [2] or language development directly.135

Here we investigate the long-range information present in speech during language development using datasets136

from the TalkBank project [85, 86].137

We first examined MI decay in sequences of words over nine datasets of natural speech from English speaking138

children included in the CHILDES repository [86, 91–98] and three datasets of sequences of phonemes from139

the PhonBank repository [85, 87–89], both of which are part of the TalkBank repository [86]. Each dataset140

within CHILDES and PhonBank was collected in a slightly different manner. In our analyses, we included141

only transcripts of spontaneous speech that were collected from typically-developing children (usually at142

an in-home setting with family or an experimenter). The subset of CHILDES we used includes word-level143

transcripts of speech from children aged 12 months to 12 years of age. The subset of PhonBank we used144

includes phonetic transcriptions of speech given in the International Phonetic Alphabet (IPA) from children145

aged 6 months to four years of age. Between the phoneme and word-level datasets, a large range of speech146

and language development is covered.147

For the MI analysis on phonemes, we binned transcripts into five 6-month age groups (6-12, 12-18, 18-148

24, 24-30, 30-36) and one age group from 3 years to 4 years. Each transcript was analyzed as sequences of149

phonemes, where phoneme distributions for each transcript are treated independently to account for variation150

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.256792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.256792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sainburg, Mai, and Gentner

Figure 2: Mutual Information decay over words and phonemes during development. (A) MI decay over
phonemes for each age group. MI decay is best fit by a composite model (solid grey line) for all age groups
across phonemes and words. Exponential and power-law decays are shown as a dashed and dotted grey lines,
respectively. (B) The MI decay (as in (A)) with the exponential component of the fit model subtracted to
show the power-law component of the decay. (C) The same as in (B), but with the power-law component
subtracted to show exponential component of the decay. (D-F) The same analyses as A-C, but for words.

in acquired vocabulary across individuals during development. Because transcript lengths varied between151

age groups (Fig. S1), we analyzed MI at sequential distances up to the median transcript length for each152

age group. Across all age groups, the decay in MI over sequences of phonemes is best fit by a composite153

power-law and exponential decay model (Fig. 2A-C; relative probabilities 0.897 to >0.999; Table S2). In154

each age group, we observe both a clear power law prominent over long distances (Fig. 2B) and a clear155

exponential decay at short word distances (Fig. 2C), consistent with prior results on adult speech [2].156

For the MI analysis on words, we binned transcripts into four 6-month age groups (12-18, 18-24, 24-30, 30-36)157

and one age group from 3 years to 12 years. The MI decay between words is best fit by a composite model158

of power-law and exponential decay (Eq. 7; relative probability = 0.989 for 12-18 months and > 0.999 for159

all other age groups; Fig. 2D-F; Table S1).160

We also computed the MI decay over control sequences of words and phonemes that had been shuffled to161

isolate sequential relationships at different levels of organization (e.g. phoneme, word, utterance, transcript;162

Figs. S2, S3, S4). Consistent with Sainburg et al., [2], we observe that short-range relationships captured by163

exponential decay are largely carried within words and utterances, while long-range relationships captured164

by a power-law decay are carried across longer timescales between words and utterances. In particular,165

long-range relationships are eliminated when between-utterance structure is removed by randomly shuffling166

the order of utterances within a transcript (Figs. S2E, S3C) and retained when within-utterance structure167

is removed by shuffling words or phonemes within utterances (Figs. S2D, S3B) or phonemes within words168

(Fig. S2C). When MI decay is computed over part-of-speech labels for the words in CHILDES, we find169
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a transition from MI decay that is best fit by a power-law decay alone at 12-24 months of age, to MI170

decay that is best fit by a composite model of power-law and exponential decay after 24 months (Fig171

S3D). Shuffling word order eliminates all long-range sequential relationships while preserving short timescale172

exponential relationships (Figs. S2B, S3E), and shuffling phoneme order within transcripts removes all173

sequential relationships (Figs. S2F). Across each shuffling analysis, we observe that short-range information174

content captured by exponential decay is largely captured within words and utterances, while long-range175

information is carried between utterances, even during early language production.176

As an additional control to ensure that the observed MI decay patterns are not the product of mixing datasets177

from multiple individuals, we also computed the MI decay of the longest individual transcripts comprising178

each age cohort across both phonemes and words. The decay of the longest individual transcripts parallels179

the results across transcripts from Fig. 2 (Figs. S5, S6).180

3.2 Human behavior181

Figure 3: Mutual Information decay over actions in the Epic Kitchens dataset [99]. Data is fit by a power-law
decay model (Eq. 6).

To contrast the long-range statistical structure of human language with non-linguistic human behaviors, we182

require a relatively large dataset of long, discrete, sequences of behavior. We chose the Epic Kitchens dataset183

[99], as it was the largest available segmented dataset of long sequences of individual actions, and because184

cooking has previously been described as having complex hierarchical syntactic structure [101].185

The Epic Kitchens dataset consists of a series of videos in which each section of the video is labeled with an186

action and noun, for example open door → turn-on light → close door → open fridge → . . . . We calculate187

MI only over the sequences of verb classes, of which there are 119 unique classes. We computed the MI up188

to a distance of the median sequence length of 45 actions.189

In contrast with the speech datasets, we found that the Epic Kitchens dataset was best fit by a power-law190

decay model with no exponential component (Eq. 6; Fig. 3; relative probability = 0.597; Table S3). We191

additionally looked at the MI decay of the longest cooking transcripts and found the MI decay of individual192

sequences were similar to MI decay across the entire dataset (Fig S7).193

3.3 Animal behavior194

The datasets of animal behavior used in our analyses were videos of zebrafish [100] and Drosophila [56] move-195

ments that had been transcribed in an unsupervised manner, i.e without external reference to a priori state196

labels. In both datasets, raw data recorded from individual animals were projected into a low-dimensional197

space and were then clustered into discrete states. These states were then labelled post hoc with human-198

interpretable descriptions such as "slow", "side leg", or "anterior" for Drosophila, and "O-bend" or "J-turn"199

for zebrafish. Drosophila behavior has a long history of being described in hierarchical terms [52, 56, 102],200

and the dataset used here, in particular, demonstrates long-range relationships extending over hundreds to201

thousands of states [56]. The zebrafish dataset used here has also previously been shown to contain sequen-202

tial information that unfolds over multiple timescales [100, 103]. Both datasets were chosen because they203

contain large sets of discrete behaviors from individuals over long periods of time.204
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Figure 4: Mutual Information decay over Zebrafish and Drosophila behavior. Data is displayed in the same
manner as Fig. 2.

In both the zebrafish and Drosophila datasets, we observe an MI decay that is best fit by a composite205

power-law and exponential decay model (Fig. 4; relative probabilities > 0.999; Table S3). The shape of206

the MI decay differs somewhat between the two datasets, however. In the case of the zebrafish, the relative207

contributions of the exponential and power-law components of the decay mirror the results obtained in208

speech. That is, an exponential component to the decay is observed at short distances under 10 elements,209

which gives way to a power-law at longer distances. In the case of the Drosophila, the power-law component210

of the decay is dominant throughout the signal, and the exponential component of the decay only captures211

a small portion of the variance at a distance of around 10-200 elements.212

We additionally looked at a subset of the longest individual transcripts of Drosophila (Fig. S8) and zebrafish213

(Fig. S9) behavior and found that MI decay at the individual level varies between individual transcripts but214

matches the long-range decay observed across the datasets.215

4 Discussion216

We analyzed the long-range sequential information present in language production during development, and217

several sequentially organized and putatively hierarchical non-linguistic behaviors in other species. In all218

cases, the information between behavioral elements decays following a power law as sequential distance in-219

creases. For language, we find that that the long-range statistical relationships characteristic of adult usage220

[2] are present as early as 6 to 12 months in phonemes and 12-18 months in words, preceding the production221

of complex linguistic structure [84]. We see similar long-range power-law structure in the sequential organi-222

zation of human food preparation and cooking. Cooking is a relatively modern and human-unique behavior223

[104], however, and may have arisen after humans developed more deeply hierarchical and highly planned224

tool usage behaviors [84, 105]. Yet, we also observe similar long-range organization in the movement pat-225

terns of Drosophila and zebrafish, consistent with previous reports for birdsong [2]. Long-range statistical226

relationships are present developmentally in speech before hierarchical linguistic structures are produced,227

and exist in widely varying animal species. Thus, the long-range statistical relationships present in language228

are not unique to linguistic behaviors or to humans.229
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These results compel reconsideration of the mechanisms that shape long-range statistical relationships in230

human language. Traditionally, the power-law decay in information between the elements of language231

(phonemes, words, etc.) has been thought to be imposed by the hierarchical linguistic structure of syn-232

tax, semantics, and discourse [3–5]. Early development provides a natural experiment in which one can233

examine human vocal communication absent the production of complex syntactic and semantic structures.234

Remarkably, even at a very early age, prior to the production of mature syntactic structures, vocal sequences235

show adult-like long-range dependencies. This does not rule out the possibility that long-range dependencies236

in adult language are driven in part by linguistic structure, but this hierarchical organization alone cannot237

explain our observations. What seems most reasonable to us, is that multiple mechanisms impose long-range238

dependencies on human speech and language, and that these operate on different developmental timescales.239

We take our observations of similar power laws in diverse non-linguistic behaviors to reinforce the idea that240

multiple mechanisms impose power-law dynamics on behavioral sequences. Indeed, power-laws are found in241

natural phenomena as distant from language as the sequential organization of earthquakes [106] and river242

water levels [107]. It may be that the power-law structure of human language reflects a very deep embedding243

of multiple, hierarchically structured complex systems, at varying levels of abstraction from linguistic, to244

motor control, to even more general underlying processes. Understanding the various power-law relationships245

in natural phenomena, and their origins, remains an area of active research [28, 31, 42].246

Regardless of any deeper understanding of underlying mechanisms, our results demonstrate clear patterns247

in the information conveyed across time in both linguistic and non-linguistic behaviors. These patterns248

exist. Thus, they are potentially available and useful to any cognitive agent that engages with them. For249

example, in the movement patterns of a housefly, evolutionary fitness may be conferred to individuals (e.g.250

predators or mates) that can better anticipate the behavior of others by integrating long-range statistical251

dependencies. For human language, these selective advantages and abilities seem clear, as sensitivity to252

long-range organization has obvious benefit for comprehension. Outside of language, evidence for long-range253

sensitivities is more sparse, but humans do show scale invariance in retrospective memory tasks [108] and254

attention to power-law timescales in anticipation of future events in cognitive tasks [109]. The extent to255

which non-human animals are sensitive to the long-range dynamics (power-law or otherwise) of information256

in the environment is unknown. If non-human animals can model the long-range statistical dependencies257

present in their environment, this capacity would constitute a component of the broad faculty of language258

[110], that is, a necessary, but not uniquely-human, component of language. The presence of long-range259

statistical dependencies in non-linguistic behaviors and a generalized perceptual sensitivity to them would260

provide a scaffold on which language could evolve, and where hierarchical syntax and semantics can be261

understood as later additions that exploit existing long-range structures and sensitivities. We refer to this262

idea as the Statistical Scaffolding Hypothesis.263

5 Methods264

5.1 Mutual information265

For each dataset, we calculate the sequential MI over the elements of the sequence dataset (e.g. words266

produced by a child, actions performed by Drosophila). Each element in each sequence is treated as unique to267

that transcript to account for different distributions of behaviors across different transcripts within datasets.268

Given a sequence of discrete elements a→ b→ c→ d→ e We calculate mutual information as:269

I(X,Y ) = S(X) + S(Y )− S(X,Y ) (1)

Where X and Y are the distributions of single elements at a given distance. For example, at a distance of270

two, X is the distribution [a, b, c] and Y is [c, d, e] from the set of element-pairs (a − c, b − d, and c − e).271

Ŝ(X) and Ŝ(Y ) are the marginal entropies of the distributions of X and Y , respectively, and Ŝ(X,Y ) is the272

entropy of the joint distribution of X and Y .273

To estimate entropy, we employ the Grassberger [111] method which accounts for under-sampling true entropy274

from finite samples:275

Ŝ = log2(N)− 1

N

K∑
i=1

Niψ (Ni) (2)
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where ψ is the digamma function, K is the number of categories of elements (e.g. words or phones) and N276

is the total number of elements in each distribution.277

We then adjust the estimated MI to account for chance. To do so, we subtract a lower bound estimate of278

chance MI (Îsh):279

MI = Î − Îsh (3)

This sets chance MI at zero. We estimate MI at chance (Îsh) by calculating MI on permuted distributions280

of labels X and Y :281

Îsh(X,Y ) = Ŝ (Xsh) + Ŝ (Ysh) + Ŝ (Xsh, Ysh) (4)

Xsh and Ysh refer to random permutations of the distributions X and Y described above. Permuting X282

and Y effects the joint entropy S(Xsh, Ysh) in Ish, but not the marginal entropies S(Xsh) and S(Ysh). Îsh283

is related to the Expected Mutual Information [112–114] which accounts for chance using a hypergeometric284

model of randomness.285

Importantly, MI calculated over a sequence as a function of distance is referred to as a "mutual information286

function", to distinguish it as the functional form of mutual information, which measures the dependency287

between two random variables [14]. In the mutual information function, samples from the distributions X288

and Y are taken from the same sequence, thus they are not independent. MI as a function of distance acts289

as a generalized form of the correlation function that can be computed over symbolic sequences and captures290

non-linear relationships [14].291

5.2 Fitting mutual information decay292

We fit the three following models:293

An exponential decay model:294

MI = a ∗ e−x∗b + f (5)

A power-law model:295

MI = c ∗ xd + f (6)

A composite model of the power-law and exponential models:296

MI = a ∗ e−x∗b + c ∗ xd + f (7)

where x represents the inter-element distance between units (e.g. phones or syllables).297

To fit the model on a logarithmic scale, we computed the residuals between the log of the MI and the log of the298

models estimation of the MI. We scaled the residuals during fitting by the log of the distance between elements299

to emphasize fitting the decay in log-scale because distance was necessarily sampled linearly as integers.300

Models were fit using the lmfit Python package [115] using Nelder-Mead minimization. We compared model301

fits on the basis of AICc and report the relative probability of each model fit to the MI decay [2, 116]. The302

parameters for each best-fit model for Figs 2, 3, and 4 can be found in Table 4.303

5.3 Shuffling controls304

The speech datasets are organized hierarchically into transcripts, utterances, words, and phonemes allowing305

us to shuffle the dataset at multiple levels of organization. In the Epic Kitchens, Drosophila, and zebrafish306

datasets no levels of organization were available beyond individual transcripts. To ensure that our MI decay307

results are a direct result of the sequential organization of each dataset, we performed a control in each308

dataset in which we shuffled behavioral elements within each individual transcript. In each case, the MI309

decay is flat confirming that the observed MI decay is a result of sequential organization (Figs S2F, S2E,310

S10). To ensure that long-range relationships were not due to trivial repetitions of behaviors, we looked in311

each dataset at MI decay over sequences in which repeated elements were removed. Removing repeats does312

not qualitatively alter the pattern of long-range relationships between elements (Fig. S4).313
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5.4 Data Availability314

The five datasets can be acquired from the TalkBank repository [86], PhonBank repository [85], Berman et315

al. [56], Damen et al., [99], and Marques et al., [100]. We performed analyses over these transcripts without316

any modification. Example transcripts for each dataset are displayed in the Supplementary Information.317

The distribution of sequence lengths of each dataset is shown in Fig. S1. The code necessary for reproducing318

our results is available on GitHub [117].319
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Figure S1: Distribution of sequence lengths for each dataset.
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Figure S2: MI decay between phones under different shuffling conditions. (A) MI decay for each age group
from the entire dataset, as in Fig. 2A. The sequence above the MI decay shows an example set of utterances
of the corpus to illustrate the shuffling conditions. Utterances are grouped by color, words are grouped
by rounded rectangles, and phones are displayed in bold above orthographic transcriptions. (B) Words
are shuffled within each transcript. (C) Phones are shuffled within words. (D) Phones are shuffled within
utterances. (E) Utterances are shuffled within each transcript. (F) Phones are shuffled within each transcript.
The best fit model is printed above each plot, and is plotted as grey lies alongside the data and in Fig. 1.
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Figure S3: MI decay between words under different shuffling conditions. (A) MI decay for each age group
from the entire dataset, as in Fig. 2D. (B) Words are shuffled within each utterance. (C) Utterances are
shuffled within each transcript. (D) MI is calculated over part-of-speech transcriptions of words. (E) Words
are shuffled within each transcript. (F) Words are shuffled within each transcript. The best fit model is
printed above each plot, and is plotted as grey lies alongside the data and in Fig. 1.
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Figure S4: MI decay with repeated elements removed across each dataset.
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Figure S5: MI decay and best fit model of five largest transcripts for each age group across PhonBank.
Transcript identity and best fit model are displayed above each plot.
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Figure S6: MI decay and best fit model of five largest transcripts for each age group across CHILDES.
Transcript identity and best fit model are displayed above each plot.
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Figure S7: MI decay over the 20 longest Epic kitchens cooking sequences. Transcript identity and best fit
model are displayed above each plot.
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Figure S8: MI decay of example individual Drosophila behavioral sequences over one hour. Transcript
identity and best fit model are displayed above each plot.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.256792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.256792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sainburg, Mai, and Gentner

Figure S9: MI decay of several individual Zebrafish behavioral sequences. Each plot corresponds to the
continuous behavior of a single Zebrafish. Each row corresponds to a different behavioral setting. The
behavioral setting is written above the plot alongside the best fit model.
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Figure S10: MI decay of shuffled sequences for Drosophila, Zebrafish, and Epic Kitchens datasets. No
information decay is seen between elements of any sequence.
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Table 1: CHILDES dataset model fit results for each decay model as shown in Fig. 2.
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Table 2: PhonBank dataset model fit results for each decay model as shown in Fig. 2.
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Cooking Drosophila Zebrafish

AICc exp. -236.312 -6513.67 -5125.71
combined -269.057 -11115.3 -7340.27
power-law -269.846 -8894.93 -6066.59

r2 exp 0.98 0.952 0.918
combined 0.991 0.999 0.991
power-law 0.991 0.996 0.968

Relative likelihood exp. <0.001 <0.001 <0.001
combined 0.674 >0.999 >0.999
power-law >0.999 <0.001 <0.001

Relative probability exp. <0.001 <0.001 <0.001
combined 0.403 >0.999 >0.999
power-law 0.597 <0.001 <0.001

Table 3: Epic Kitchens, Drosophila, and Zebrafish model fit results at 45, 1000, and 1000 elements of distance
respectively.
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Dataset Age (yrs) a b c d f

CHILDES 1-1.5 0.387±0.101 0.645±0.113 0.145±0.038 -1.382±0.345 0.168±0.003
1.5-2.0 0.194±0.022 0.382±0.034 0.283±0.016 -1.461±0.083 0.057±0.001
2-2.5 0.185±0.022 0.418±0.033 0.346±0.014 -1.464±0.04 0.04±0.0
2.5-3.0 0.239±0.099 0.753±0.105 0.391±0.039 -1.367±0.053 0.027±0.0
>3 0.639±0.065 1.082±0.047 0.223±0.022 -1.238±0.041 0.008±0.0

PhonBank 0.5-1 0.326±0.065 0.391±0.045 0.301±0.041 -1.013±0.087 0.035±0.002
1-1.5 0.404±0.047 0.463±0.021 0.446±0.029 -1.137±0.027 0.016±0.0
1.5-2 0.891±0.098 0.794±0.032 0.358±0.042 -1.234±0.044 0.005±0.0
2-2.5 1.225±0.136 0.877±0.054 0.305±0.043 -1.219±0.046 0.002±0.0
2.5-3 1.112±0.255 0.908±0.1 0.38±0.082 -1.381±0.07 0.001±0.0
>3 1.019±0.371 0.857±0.137 0.476±0.132 -1.433±0.087 0.001±0.0

Drosophila - 0.155±0.002 0.014±0.0 1.1±0.004 -0.506±0.002 0.04±0.001
Zebrafish - 0.943±0.054 1.33±0.051 0.06±0.005 -0.661±0.052 0.0±0.001
Cooking - - - 0.227±0.029 -1.133±0.18 0.023±0.003

Table 4: MI decay parameters for Figs 2, 3, and 4. The parameters correspond to Equation 7 (a ∗ e−x∗b+ c ∗
xd + f). a and b for the Cooking dataset are not shown because the best-fit model is the power-law model.
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7 Example sequences from datasets577

7.1 PhonBank578

A random sample of the transcripts used in this manuscript at different ages. Each line corresponds to an579

utterance and each utterance is followed by an orthographic representation in parentheses. ‘xxx’ in ortho-580

graphic transcription refers to unintelligible speech and ‘yyy’ refers to phonological coding. The meanings of581

other coding symbols such as ’@’ and ’&’ used in orthographic representations can be found in the TalkBank582

manuals for PhonBank and CHILDES.583

7.1.1 Davis/Nate/001105.xml 11 months584

hɛ (xxx)
je (xxx)
gɪg (xxx)
ɛ (xxx)
ʔe (xxx)
ʔɪʔe (xxx)
hɔ (xxx)
jæhɛʔ (xxx)
ʔæ (xxx)
hɛʔ (xxx)
he (xxx)
he (xxx)
ʔɪ (xxx)
hɪ (xxx)
hæ (xxx)
hɛ (xxx)
ʔɛ (xxx)
ʔɛːæ (xxx)
ɛæː (xxx)
ɛ (xxx)
æa (xxx)
ʔɛʔʔɪʔ (xxx)
ʔɛ (xxx)
ʔɛ (xxx)
dɪ (xxx)
ɛʔɛːæː (xxx)
jɛjɪ ̃ (j@l)
jæ̃jɛ ̃ (xxx)
hæ (xxx)
hɛ (xxx)
hæh (xxx)
hɛ (xxx)
ʔɛ (xxx)
hæ (xxx)
bʷʌʔβː (xxx)

ʔɛ (xxx)
hʌjʌlalalajæ (xxx)
bababa (xxx)
ʔɛoʷː (xxx)
bɪː (xxx)
jae (xxx)
æ (xxx)
hɛ (xxx)
βː (xxx)
dejehɛ (xxx)
ejɛːhe (xxx)
æ (xxx)
dʷæ (xxx)
ʔʌːoʷ (xxx)
m̩ (xxx)
hæ (xxx)
ʔæʔʌʔdɪ (xxx)
pʰ (xxx)
m̩bʊʔ (xxx)
bʊbwɪ (xxx)
ʔɛː (xxx)
ɛj̃æ̃ (xxx)
hʌː (xxx)
mʌ (xxx)
ɛ (xxx)
hɛjæ (xxx)
dæwu (xxx)
wɛ (xxx)
hɪ (xxx)
ʔɪʔɪhɛɛːʔɛʔɛ ̃ (xxx)
hɛːjæɛ (xxx)
ʔeʔ (xxx)
ɛæːe (xxx)
ʔɪʔɛ (xxx)
jæwɛ (xxx)

ɛ (xxx)
ʔɪ (xxx)
ʔeː (xxx)
ʔɛ (xxx)
hɛ (xxx)
ɛ (xxx)
ʔɪ (xxx)
ʔæ̃ʔ (xxx)
ʔɛ (xxx)
ijɛ ̃ː (xxx)
hæi (xxx)
hɛdʰ (xxx)
hɪ (xxx)
læ (xxx)
ʔʌ (xxx)
tɪtɪːdɛ (xxx)
sædɪ (xxx)
ʔʌːæo (xxx)
ʔæ (xxx)
ʔɛː (xxx)
ʔuʃ (xxx)
wɪ (xxx)
hɛː (xxx)
hɛ (xxx)
ʔæɪjɛː (xxx)
ʔʌɰoʔ (xxx)
ʔɪʔ (xxx)
ʔɪʔɛː (xxx)
ʔɛːæɛ (xxx)
æ (xxx)
ɛ (xxx)
ʔɛ (xxx)
ʔɛ (xxx)
gʊʧ (xxx)

7.1.2 Providence/William/011115.xml 23 months585

wəʃ ˈdi (what's this)
ˈni (yyy)
ˈʌ di ˈkwomə (are yyy yyy)
uˈkwo ˈwɑː (yyy yyy)
əˈkwo ˈwɑ (yyy yyy)
ˈmɑˈmi (mommy)
ˈjɑmi (yummy)
ˈðus (juice)

ˈjʌmiː (yummy)
ˈɡʊ ˈdʒus (good juice)
ˈjɑ (yah)
ˈaʊ ɪnə ˈtɑˈmeɪ (I wanna Thomas)
ˈʌwə ˈtɑmʊt (yyy Thomas)
ˈtɑm ɪˈɪʃɪʔ (Thomas yyy)
ˈbʌˈkeɪ (pocket)
ˈnoʔ ˈno ˈbɑɡɪt (yyy no pocket)

ˈno ˈbʌɡˈɛt (no pocket)
ˈno ˈbʌkɛt (no pocket)
ˈnu (no)
ˈokeɪ (okay)
ˈɔ (yyy)
ˈokeɪ (okay)
ˈokeɪ (okay)
ˈjɛ (yeah)
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ˈoɡɛ (okay)
ˈeɪ (yyy)
ˈwaɪ (why)
wə ˈtow ɪz ɪt (what time is it)
ˈwaɪ ˈwaɪ (why why)
ˈno (no)
ˈokeɪ (okay)
ˈjɛ (yeah)
ˈnːoː (no:)
ˈopɛn (open)
ˈo (no)
oˈbɛn (open)
ˈdæˈɾi (daddy)
ˈdæˈɾi (daddy)
ˈdæˈɾi (daddy)
ˈdæˈɾi (daddy)
ˈdæɾi (daddy)
ˈdæˈɾi (daddy)
əˈdæɾi (daddy)
ˈdæː (daddy)
ˈno (no)
ˈno (no)
ˈbɑˈbʌs (yyy)
ˈno (no)
ˈno ˈdʒɪkə ˈbu bum (no

chicka_boom_boom@si)↪→

ˈʌ ˈno ɔ ˈdʌn (yyy no all done)
ˈaɪjə ˈnʌʔ ˈʌʔ ˈnu ˈɡʌmə (yyy yyy

yyy yyy yyy)↪→

ˈwʌn ˈdæd ˈɑmɑ (wan dad yyy)
ˈno (no)
ˈno ˈɑ ˈwɑ (no ice pop)
ˈno (no)
ˈɛ ˈno (yyy no)
ˈæbəlæs (ambulance)
ˈhæmbəˈlɪnt (hi ambulance)
ˈæbəlæns (ambulance)
əˈwæˈwɪw (yyy)
ˈfaɪjəɛˈdʒɪnt (fire+engine)
ˈno (no)
ˈno ˈtʃrʌk (no truck)
ˈwɑ də ˈtivi (watch the tv)
ˈbɔni (Barney)
ˈbɔni (Barney)
ˈnʌʔˈo (no)
ˈmʊʔ (yyy)
ˈwʌ ˈhɪˈjʌ (right here)
ˈʌ ˈwʌɾ ˈiʔ (yyy what it)
ˈmʌ wʌɾ ˈɪz ˈɪt ˈtwʌk (yyy what is

it truck)↪→

ˈuː ˈu (ooh ooh)
ˈnoː (no)
ˈʌʔ ˈo (uhoh)
ðə ˈdʌmˈtrʌk (the dump+truck)
tʃ^ˈʌk (truck)
ˈiˈnaɪt (night+night)
* ˈtʃrʌk (xxx truck)

* ˈtsʙʌk (xxx truck)
* ˈtrʌk (xxx truck)
* (xxx)
ˈdi jə ˈsiː (do you see)
ˈnɪni ˈditʃi ˈtʃrʌk (yyy yyy truck)
ˈmɪbɛbit * (yyy xxx)
ˈtʃʌk (truck)
ˈnɪ ˈnɪnəðəðə ˈtrʌk (yyy yyy truck)
* ˈtʃrʌk (xxx truck)
* ˈtrʌk (xxx truck)
* ˈtʃrʌk (xxx truck)
ˈdʌˈtʃrʌk (dump+truck)
ɪz ˈdæ ə ˈtʃrʌk (is that a truck)
ˈhɪʒ ˈtrʌk (a truck)
ˈtrʌk ˈdæt ˈtʃrʌk (truck that truck)
ˈtʃʌ * (truck xxx)
ˈoˈheɪ (okay)
ˈʌʔ ˈʌ ˈɪzə * ˈpʌzə (yyy yyy yyy

xxx puzzle)↪→

* (xxx)
* (xxx)
ˈdɑ (yeah)
ˈnoː ˈno ˈno ˈnop (no: no no no)
ˈeɪ ˈbi ˈsiːz (abcs)

—— (continued) ——586

7.1.3 Goad/Julia/20510.xml 29 months587

tʰɜʃ pʰɑpʰ (toast pop)
ʔʌ bɨlũːw (a balloon)
bɪŋkʰ babɔ (big bubble)
ə najɨn (a lion)
wʊhəs dat kʰijə duwɪn (what's

that kid doing)↪→

dʌn pʰɛŋkʰ (can 0of paint)
wʌs də mæn dowɛ̃ (what's the

man doing)↪→

kʰʌpfajə (campfire)
ək̃ʰɛpfaj tʰɛw maj mam (campfire

tell my mom)↪→

mej kʰæpfajʌ (make campfire)
tʰʌm̥uw tʰʌmɪn (camel coming)
dɪ hə bəlow (this is blue)
ʔawfɪt˺ (elephant)
ʔʌ bejbij əfɪtʰ (a baby elephant)
wʌs ə neːj duwɪŋ (what's the lady

doing)↪→

wijθ dow ɾɑf (wings fell off)
wəhɛ ə fax duwɛñ (what are frogs

doing)↪→

tʰɛkʰɪn dowɛñ (chicken doing)
wʌ ɛ̣ tʰʌkijn duwɪn (what the

chicken doing)↪→

wɪ ɾʌ bejbij tʰawkʰɪ ̃ bawtʰ (what
the baby talkin about)↪→

jɪs maj dæʔ ʃɪftʰ ʔɪs (yes my dad
shaved his)↪→

ɪn ə bɔks (in a books)
wʌs kʰæmʌ dʌʔɪn (what's camel

doing)↪→

jɛs aj dʉuw (yes I do)
wʌ tʰæmʌ dʌəɪ ̃ (what camel

doing)↪→

pʰɪw mɑmɪ sej (what mommy
say)↪→

wə ðə mamij sejɪŋ (what the
mommy saying)↪→

wʊ dædij duwɪŋ (what daddy
doing)↪→

ʔa dʊ dæ tʰuw (I do that too)
æn mij tʰʌ (and me too)
wʌ hɪm duwəɪn (what him doing)
hʌ bejbij tʰajɪŋ (the baby crying)
wʌ ðə mæn duwəjɪn (what the

man doing)↪→

ʔa dʊ dætʰ (I do that)
kʰɛc̃ĩj (sixteen)
ʔowh jɛ mʌk̃ʰɪñ dowɪ ̃ (what the

monkey doing)↪→

jɛ mij tʰuw aj dow dæʔ tʰuw
(yeah me too I do that too)↪→

ʔa duw dæʔ tʰow (I do that too)
ʔæn nɪçlɪs tʰʌ (and Nicolas too)
ʔaj owpʰẽj maj dʌf (I open my

mouth)↪→

wʌ jʌ pʰejnʔfɪʃ duwəjɪ ̃ (what the
peoples doing)↪→

we ja pʰɜʃɪ (what the person)
lɪtʰɵ pʰɛpʰɪʃ dɔjɪn (little peoples

doing)↪→

pʰɛtʰ ʔawʊ (pet owl)
ʔa duw dæt tʰuw awʊ (I do that

too Owl)↪→

nʌ fɪñ (no thanks)
hʌʔ hɪm duwəjɪñ (what him

doing)↪→

maj mʌm ʃow mij (my mom
show me)↪→

ʔɛn kʰeː tʰuw (and Kate too)
kʰɛt tʰowm (Kate too)
ʔɛsajkʰ (outside)
maj dæ duw dæt˺ (my dad do

that)↪→

ʔɛn maj mam duw dɛʔ (and my
mom do that)↪→
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bejbij tʰajɛː (baby tired)
də bejbɪθ tʰajə (the baby's tired)

dowĩj t͡ʃʌ (drying himself)
hapʰij tʰə jʌː (happy to you)

—— (continued) ——588

7.1.4 Providence/Alex/021122.xml 36 months589

ˈwo ˈwʌts ɪs ˈɛː (yyy what's this
yyy)↪→

ˈɪs ˈpwis ˈhɛt (yyy yyy yyy)
ˈuː (yyy)
* ˈprɪːɾi (xxx pretty)
ˈprʌi (yyy)
ˈwo ˈaɪ ˈlaɪk ˈðæt (whoa I like

that)↪→

ə ˈpɪsələ ˈkʊki ˈtʃwɛ ˈpʌ (yyy yyy
yyy yyy yyy)↪→

ə ˈpʌkɪn (a pumpkin)
ˈbuː (yyy)
ˈwu (yyy)
ˈwʌts ˈɪs (what's this)
ˈwʌts ˈɪs (what's this)
ˈwʌts zɪs (what's this)
ˈwʌts ɪs (what's this)
ˈʌi (yyy)
ˈuː (ooh)
ə ˈtʃwɔlo (a yyy)
ˈwoz ɜr˞ də ˈwʌ (those are the yyy)
ˈðoz ə ðə ˈwɑɾə (those are the

water)↪→

ðə ˈwɑɾə ˈsli (the water yyy)
əˈtiho * (yyy xxx)
ˈʌm ˈwʌts ɪs (&-um what's this)
ˈɡost ˈkukis ˈwʌts ˈɪs (ghost

cookies what's this)↪→

ə ˈkukis (a cookies)
ˈʌb (yyy)
ə ˈbʌɡ (a bug)
ˈwɔɑː ˈʌzə ˈtʃɪkɪn (yyy yyy

chicken)↪→

ˈʃɪki ˈaɪ ˈlaɪk ˈdæt ˈtʃɪkɪn (chicken I
like that chicken)↪→

ˈu (ooh)
ˈuː (ooh)
ˈuː (ooh)
ˈʌm (&-um)
ˈfwut (fruit)
ˈɑlɪvz (olives)
ˈweɪps (grapes)
ˈbluˈbɛvi (blueberry)
ˈwʌts ˈɪs (what's this)
ˈpʊpə ˈɡweɪps (purple grapes)
ˈwɑː ˈpwɛs^ˈdʌ (yyy pretzels)
ˈðɪs (this)
ˈpwɛsə (pretzels)
ˈwaʊ (wow)
ˈtʃɑ^kələt (chocolate)
ˈʃːɑklət (chocolate)

ˈtʃɑklɪt ˈdʌŋk (chocolate yyy)
ˈuː ˈwʌts ɪs (ooh what's this)
ˈwʌts ˈðɪs (what's this)
ˈuː ə ˈbɪɡ ˈkeɪk (ooh a big cake)
ˈwʌts ˈɪs (what's this)
ˈʌb ˈwʌts ˈɪs (yyy what's this)
ˈdʒɔðəts (yyy)
ˈwʌz ˈɪz ˈðɪs (what is this)
ˈwʌts ˈðɪs (what's this)
ˈʌjʊ ˈiɾ ɪt (yyy eat it)
ˈspweɪkos (sprinkles)
ˈno ðə ˈsteɪzəs (no yyy yyy)
ˈdʒiˈdʒi (Gigi)
ˈaɪː kə ˈdu ə ˈðɪ (I can do yyy it)
oˈkeɪ (okay)
ˈo (oh)
* ˈmɑm (xxx Mom)
ˈjɛ (yeah)
ˈdʒiˈdʒi * (Gigi xxx)
ˈdʒwʌːʒi (yyy)
* ˈdʒiˈdʒi (xxx Gigi)
ˈno ˈmɑmi (no Mommy)
ˈwʌz ˈdɑɾi (where's Daddy)
ə ˈspwikəl ˈdonət (a sprinkle

donut)↪→

ˈaɪ ˈlaɪk ə ˈspwiŋkəl ˈdonət (I like
a sprinkle donut)↪→

ˈmɑmi (Mommy)
ˈaɪ ˈlaɪk ə ˈspweɪŋkəl ˈdonət (I like

a sprinkle donut)↪→

ˈjæ (yeah)
ə ˈdʌn ˈpleɪiŋ (are 0we done

playing)↪→

əi ˈdʌn ˈpleɪiŋ (are we done
playing)↪→

ˈmɑmi (Mommy)
əˈlɑkətʃʌ * (yyy xxx)
ˈɑl ˈteɪk ju * (I'll take you xxx)
* ˈteɪk * (xxx take xxx)
* ˈteɪk ju (xxx take you)
ˈaɪ ˈlaɪk ə ˈteɪk ju ˈmɑm (I like yyy

take you Mom)↪→

ˈaɪ ˈteɪk ju (I take you)
ˈʌ wi ˈɑl ˈdʌn (are we all done)
ˈno ˈno (no no)
ˈno (no)
ˈæpəˈsɔs ˈjɑ (applesauce yyy)
ˈɑt (yyy)
ˈkæ̃ndi (candy)
ˈdʒus (juice)
ˈwʊt (yyy)

ˈpiz (peas)
ˈuː (school)
ˈskuː (school)
əˈweɪŋ (swing)
ˈstɑː (star)
ˈflæɡ (flag)
ˈstɛz (stairs)
ˈʌvɪn (oven)
ˈbɛntʃ (bench)
ˈbɛɾəm (bedroom)
ˈbɛd (bed)
ˈtaʊː (towel)
ˈtweɪ (tray)
ˈtæʃ (trash)
ˈpleɪt (plate)
ˈpleɪt (plate)
ˈmɑp (mop)
ˈkom (comb)
ˈbwum (broom)
ˈlɛɡ (leg)
ˈhæ̃nd (hand)
ˈɪː (ear)
ˈtʃɪn (chin)
ˈsɑk (sock)
ˈʃu (shoe)
ˈnɛkləs (necklace)
ˈhæt (hat)
ˈkaɪː (sky)
ˈpɑːrɾi (party)
ˈno (no)
ˈfwɛnd (friend)
ˈpɜs˞ən (person)
ˈbaɪ (bye)
ˈhaɪ (hi)
ˈno (no)
ˈʃɑpi (shopping)
ˈθeɪɡ ju (thank you)
ˈkæwi (carry)
ˈtʃeɪs (chase)
ˈdʌmp (dump)
ˈfɪnɪs (finish)
ˈfɪt (fit)
ˈhʌɡ (hug)
ˈlɪθː (listen)
ˈlaɪk (like)
ˈpwiˈtɛːnd (pretend)
ˈrɪp (rip)
ˈʃeɪk (shake)
ˈteɪst (taste)
ˈdʒɛntə (gentle)
ˈwɪk (think)
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ˈwɪʃ (wish)
ˈɪf (if)
ˈwʊd (would)
ˈnid (need)
ˈkʊd (could)
ˈmːʌtʃ (much)
ˈɑː (all)
ˈʌndɜ˞ (under)
ˈdaʊn (down)
ˈbiˈsaɪd (beside)
ˈwɛː (where)
ˈʌs (us)
ˈðɪs (this)
ˈðɛm (them)

ˈaʊː (our)
təˈnaɪt (tonight)
əˈɡɛː (yyy)
ˈæftɜ˞ (after)
ˈwɛt (wet)
ˈtɑni (tiny)
ˈlæst (last)
ˈhɑt (hot)
ˈhæpi (happy)
ˈfæt (fast)
ˈkotʰ (cold)
ˈɔ ˈɡɑn (all gone)
ˈʃeɪps (shapes)
ə ˈtʃwaɪeɪɡə (a triangle)

ə ˈbɪɡ ˈtʃwaɪeɪŋɡə (a big triangle)
ˈtʃwaɪeɪɡəː * (triangle xxx)
ˈtwaɪəɡə (triangle)
ˈsʌ ə ˈbɪɡ * ə ˈbɪɡ ˈtʃraɪeɪŋɡə (yyy

a big xxx a big triangle)↪→

ˈuː (ooh)
ə ˈbɪɡ ˈsɜr˞kəl (a big circle)
ə ˈbɪɡ ˈtʃraɪ^ˈeɪɡo ə ˈbɪɡ ˈskwɛː (a

big triangle a big square)↪→

ˈuː (ooh)
ə ˈbɪɡ ˈovəl (a big oval)
ˈoː (ooh)

—— (continued) ——590

7.2 CHILDES591

A random sample of the transcripts used in this manuscript at different ages. Each line corresponds to an592

utterance and each utterance is followed by transcribed part-of-speech tags.593

7.2.1 Eng-NA/Braunwald/010511.xml 17 months594

night_night (co)
night_night (co)
here (adv)
it is night_night (pro:per 0cop n)
Daddy (n:prop)
spiders (n)
oh (co)
me Dwww (pro:obj n:prop)
on (adv)
on (unk)
no (co)
buttons (unk)
uh ()
down (adv)
water (n)
water (n)
there (adv)
dance there (unk adv)
ahhah (co)
on (adv)
don't (mod~neg)
give (v)
I want (pro:sub v)
Daddy (n:prop)
dance (n)
on (adv)
I want that that that that

(0pro:sub v pro:dem)↪→

eh ()
go in there (v prep n)
uhoh (co)
uhoh (co)
uhoh (co)
yeah (co)
thank you (v pro:per)
thank you (v pro:per)

yeah (co)
on (adv)
Cee (n:prop)
spider (n)
Cee (n:prop)
down (adv)
byebye (co)
car (n)
car (n)
there (adv)
byebye (co)
car (n)
car (n)
baby (n)
night_night (co)
night_night (co)
Cee (n:prop)
cookie (unk)
spoon (n)
oh (co)
down (unk)
down (unk)
there (adv)
recorder (n)
aya (bab)
door (n)
key (n)
byebye (co)
car (n)
kitty (n)
outside (adv)
bow (on)
bye (co)
byebye (co)
bow (on)
bow (on)

she lives next door to us (pro:sub
v adj n prep pro:obj)↪→

bow (on)
recorder (n)
cookie (n)
no (co)
Deedee (n:prop)
here (adv)
cookie (n)
that that door (det:dem n)
that tata (comp chi)
nose (n)
eye (n)
ear (n)
Laura (n:prop)
toe (n)
tickle (n)
toe (n)
ah (co)
uh ()
toe (n)
recorder (unk)
toe (n)
ah (co)
toe (n)
my toe (det:poss n)
toe (n)
where (pro:rel)
here (adv)
no (co)
there (adv)

—— (continued) ——595
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7.2.2 Brown/Adam/020801.xml 32 months596

this is heavy (pro:dem cop adj)
saggy baggy doesn't eat a all up

(adj adj mod~neg v det:art
qn adv)

↪→

↪→

oh no (co co)
le me (v pro:obj)
you going faster (pro:per part

adj)↪→

washer (n)
going go little (part v adv adj)
what is what de the in (pro:int

det:art det:art prep n)↪→

pocket (n)
dis this one (pro:dem pro:dem

pro:indef)↪→

booking (chi)
booking booking booking

booking (chi chi chi chi)↪→

booking booking (chi chi)
tease book tease (n n n)
tease (n)
tease (n)
tease tease (n n)
teasing teasing teasing (part part

part)↪→

teasing (part)
teasing (part)
tease a Cromer (v det:art n:prop)
what this is car (pro:int det:dem

aux n)↪→

pin (n)
yeah Mommy pin (co n:prop n)
car (n)
yeah (co)
red car (adj n)
yellow car (n n)
watch (n)
where horses go (pro:int n v)
where horses (pro:int n)
horse go yes Mommy (n v co

n:prop)↪→

did he (mod pro:sub)

there he is Mommy (adv pro:sub
cop n:prop)↪→

corral corral (n n)
baby horses (n n)
horses (n)
baby horses (n n)
ready me go (v pro:obj v)
ready me (v pro:obj)
go down dere there (v prep n n)
go down right side (v adv adj n)
switch (n)
doing switch (part n)
trick (n)
doin trick (part n)
doing chair tricks (part n n)
yeah funny (co adj)
chair trick laughing (n n part)
chair tricks (n v)
Mommy chair tricks (n:prop v n

n)↪→

chair tricks chair tricks chair
tricks (n v n v n n)↪→

press a button (v det:art n)
press a button (v det:art n)
yeah (co)
what a happen have a tail

(pro:int det:art v v det:art n)↪→

yeah (co)
press a button (v det:art n)
doing rope tricks (part n n)
rope tricks (n v)
watch it rope tricks (v pro:per n

n)↪→

yeah (co)
watch it (v pro:per)
car car (n n)
fell down Mommy's floor (v prep

adj n)↪→

throw dat that (v pro:dem
pro:dem)↪→

what dat that (pro:int adv adv)
tricks (n)
yep tricks (co v)

press a button (v det:art n)
okay de the horses tail (co det:art

det:art n n)↪→

okay horses (co n)
okay horses okay horses (co n adj

n)↪→

good night rope tricks (adj n n n)
good night my rope tricks (adj n

det:poss n n)↪→

yeah rope tricks (co n n)
rope trick fell down (n n v adv)
go tired go tired (v part v part)
Mommy Mommy (n:prop n:prop)
holler doesn't fit in (v mod~neg

v prep n)↪→

horse fit in (n v adv prep adv)
ropes (n)
Mommy roller will stand up

(n:prop n mod v adv)↪→

try him dere there (v pro:obj adv
adv)↪→

Mommy Mommy (n:prop n:prop)
will fit in (mod n prep n)
see (v)
le me do rope tricks (v pro:obj v

n n)↪→

let me do ropes (v pro:obj v n)
hello hello hello (co n n)
what dat that Mommy cowboy

(pro:int adv adv n:prop n)↪→

hello cowboy (co n)
wh cowboy (pro:int v n)
wh cowboy (pro:int v n)
happen to him (v prep pro:obj)
wh him (pro:int v pro:obj)
yeah (co)
happen cow watching Rusty

down (v n part n:prop adv
prep adv)

↪→

↪→

see him down there (v pro:obj
prep n)↪→

—— (continued) ——597

7.2.3 Eng-NA/Carterette/first.xml 72 months598

you mean uh um like England or
something (pro:per v conj
n:prop coord pro:indef)

↪→

↪→

when we walk home from school
I walk home with two
friends (conj pro:sub v n
prep n pro:sub n n prep
det:num n)

↪→

↪→

↪→

↪→

and sometimes we can't run
home from school though
(coord adv pro:sub
mod~neg v adv prep n adv)

↪→

↪→

↪→

because um one girl where every
time she wants to runs she
gets the wheezes and stuff
(conj det:num n pro:rel qn n
pro:sub v inf v pro:sub v
det:art v coord n)

↪→

↪→

↪→

↪→

↪→

and then she can't breathe very
well and she gets sick (coord
adv:tem pro:sub mod~neg v
adv adv coord pro:sub v adj)

↪→

↪→

↪→

that's why we can't run
(pro:dem~cop pro:int
pro:sub mod~neg v)

↪→

↪→

I like to go to my grandmother's
house (pro:sub v inf v prep
det:poss adj n)

↪→

↪→
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well because she gives us candy
(co conj pro:sub v pro:obj n)↪→

well um we eat there sometimes
(co pro:sub v adv adv)↪→

sometimes we sleep overnight
there (adv pro:sub v adv
adv)

↪→

↪→

sometime when I go to go to my
cousin's I get to play softball
or play badminton and all
that (adv conj pro:sub v inf v
prep det:poss adj pro:sub v
prep n n coord n n coord qn
pro:dem)

↪→

↪→

↪→

↪→

↪→

↪→

thing I hate to play is doctor (n
pro:sub v prep n cop v)↪→

oh (co)
I hate to play doctor or house or

that (pro:sub v prep n n
coord n coord pro:dem)

↪→

↪→

don't like it or stuff (mod~neg v
pro:per coord n)↪→

we've been learning a_lot_of
Spanish words (pro:sub~aux
aux part qn n:prop n)

↪→

↪→

our teacher speaks Spanish
sometimes (det:poss n v
n:prop adv)

↪→

↪→

so does my father (adv v det:poss
n)↪→

yyy ()
well my father doesn't know very

much Spanish (co det:poss n
mod~neg v adv adv n:prop)

↪→

↪→

but he doesn't know what gray is
in Spanish (conj pro:sub
mod~neg v pro:int adj aux
prep n:prop)

↪→

↪→

↪→

and its (coord det:poss L2)
and he doesn't and he knows

what blue is in Spanish
(coord pro:sub v pro:int n
cop prep n:prop)

↪→

↪→

↪→

and he knows what um red is
(coord pro:sub v pro:int n
cop)

↪→

↪→

in Spanish (prep n:prop)
and sometimes I like to go to

Mexico but I've never been
there before (coord adv
pro:sub v inf v prep n:prop
conj pro:sub~aux adv cop
adv adv)

↪→

↪→

↪→

↪→

↪→

only when I was a little teeny
baby I been there and I don't
even remember it (adv conj
pro:sub cop det:art adj adj n
pro:sub cop adv coord
pro:sub mod~neg adv v
pro:per)

↪→

↪→

↪→

↪→

↪→

↪→

there this one night I couldn't get
any food (adv pro:dem
pro:indef n pro:sub
mod~neg v qn n)

↪→

↪→

↪→

I mean there was this one day I
couldn't get any food at
home unless I asked it for
Spanish (pro:sub v adv cop
det:dem det:num n pro:sub
mod~neg v qn n prep adv
conj pro:sub v pro:per prep
n:prop)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

my um my mother and father is
going to pretty soon take us
to Philadelphia (det:poss
det:poss n coord n aux part
inf adj adv v pro:obj prep
n:prop)

↪→

↪→

↪→

↪→

↪→

and we're going to see our
grandmother there (coord
pro:sub~aux part inf v
det:poss n adv)

↪→

↪→

↪→

I wish we went to (pro:sub v
pro:sub v prep)↪→

uh we went to Mexico not
Mexico San_Diego once
(pro:sub v prep n:prop adv)

↪→

↪→

and they had a little um pool that
was full of water and it was
two feet (coord pro:sub v
det:art adj n pro:rel cop adj
prep n coord pro:per cop
det:num n)

↪→

↪→

↪→

↪→

↪→

and then they and then they had
another pool (coord adv:tem
pro:sub v qn n)

↪→

↪→

it was five feet eight feet (pro:per
cop det:num n det:num n)↪→

Randy my brother went in eight
feet and I went in five feet
(n:prop det:poss n v prep
det:num n coord pro:sub v
prep det:num n)

↪→

↪→

↪→

↪→

and I think there was a three feet
(coord pro:sub v adv cop
det:art det:num n)

↪→

↪→

there was (pro:exist cop)
and I jumped off and I uh and I

jumped off the edge of the
swimming pool (coord
pro:sub v prep det:art n prep
det:art n:gerund n)

↪→

↪→

↪→

↪→

I got on the edge and I jumped
off (pro:sub v prep det:art n
coord pro:sub v adv)

↪→

↪→

and then I holded held on to a
edge because I couldn't swim
very well (coord adv:tem
pro:sub v v adv prep det:art
n conj pro:sub mod~neg v
adv adv)

↪→

↪→

↪→

↪→

↪→

when I start when I started to
swim I was always holding
on to the edge (conj pro:sub
v inf v pro:sub aux adv part
adv prep det:art n)

↪→

↪→

↪→

↪→

I wouldn't dare to go more than
this away from the edge or
else I I'd I'd start jumping
dancing into the water
(pro:sub mod~neg v inf v qn
prep pro:dem adv prep
det:art n coord post
pro:sub~mod v part part
prep det:art n)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

when my father wanted to take a
picture of me with you_know
one of those floating things
one of those floating rings
that you put around you but
I don't wanna because
you_know I know how to
swim (conj det:poss n v inf v
det:art n prep pro:obj prep
co det:num prep det:dem
part n pro:indef prep
det:dem part n pro:rel
pro:per v prep pro:per conj
pro:sub mod~neg v~inf
conj co pro:sub v pro:int inf
v)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

but when I took it off I almost
drownded drowned (conj
conj pro:sub v pro:per adv
pro:sub adv part part)

↪→

↪→

↪→

and I was jumping up and down
to see if I could swim or not
(coord pro:sub aux part adv
coord adv inf v conj pro:sub
mod v coord neg)

↪→

↪→

↪→

↪→

and (coord)
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um I live in an apartment and we
have a big pool and it's eight
and a half in part and four
and a half and three and a
half (pro:sub v prep det:art n
coord pro:sub v det:art adj n
coord pro:per~cop det:num
coord det:art n prep n coord
det:num coord det:art n
coord det:num coord det:art
n)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

and this summer I get to go
swimming in it (coord
det:dem n pro:sub v inf v
part prep pro:per)

↪→

↪→

↪→

in the summer we go swimming
(prep det:art n pro:sub v
part)

↪→

↪→

and that's when my birthday is
(coord pro:dem~cop conj
det:poss n cop)

↪→

↪→

we don't go in spring or winter
because it's too cold (pro:sub
mod~neg v prep n coord n
conj pro:per~cop adv adv)

↪→

↪→

↪→

my my brother can go swimming
in the winter though because
he gots got his tonsils out
you_know (det:poss n mod v
part prep det:art n adv conj
pro:sub v v det:poss n adv
co)

↪→

↪→

↪→

↪→

↪→

↪→

and he and he gets sick uh sick
um once in a few years
(coord pro:sub v adj adv
prep det:art qn n)

↪→

↪→

↪→

I get sick just about every day
(pro:sub v adj adv prep qn n)↪→

there's just one thing I can't stand
in my family (pro:exist~cop
adj det:num n pro:sub
mod~neg v prep det:poss n)

↪→

↪→

↪→

my baby makes too much noise
(det:poss n v adv qn n)↪→

I can't even get get to sleep for a
minute (pro:sub mod~neg
adv v prep n prep det:art n)

↪→

↪→

he won't stop jumping around in
the bath (pro:sub mod~neg
v part adv prep det:art n)

↪→

↪→

in the bath (prep det:art n)
no (co)
in the crib (prep det:art n)
he he keeps jumping around gets

tired (pro:sub v part adv v
part)

↪→

↪→

then he goes to bed then he
finally gets to sleep (adv:tem
pro:sub v prep n adv:tem
pro:sub adv v prep n)

↪→

↪→

↪→

can't go to sleep in about a hour
(mod~neg v inf v adv prep
det:art n)

↪→

↪→

not with that in the house (neg
prep pro:dem prep det:art n)↪→

it would just take two minutes to
get to sleep (pro:per mod
adv v det:num n inf v prep
n)

↪→

↪→

↪→

just about two minutes (adv prep
det:num n)↪→

if you just um why don't you get
some cotton and plug it in
your ears and then you can't
hear him (pro:int mod~neg
pro:per v qn n coord v
pro:per prep det:poss n
coord adv:tem pro:per
mod~neg v pro:obj)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

he makes so much noise he
makes so much noise it
probably sound effect
through it (pro:sub v adv qn
n pro:per adv adj n prep
pro:per)

↪→

↪→

↪→

↪→

↪→

well what does the baby do (co
pro:int v det:art n v)↪→

come out get out crawl out_of his
crib and then come along in
your bed and pull out your
ear (v adv v adv n prep
det:poss n coord adv:tem v
adv prep det:poss n coord v
adv det:poss n)

↪→

↪→

↪→

↪→

↪→

↪→

once once he keep jump jumping
jumping and then this thing
slide down (adv pro:sub v
part coord adv:tem det:dem
n n adv)

↪→

↪→

↪→

↪→

and then he fell over to the other
bed and he start crying
(coord adv:tem pro:sub v adv
prep det:art qn n coord
pro:sub v part)

↪→

↪→

↪→

↪→

and I couldn't get to bed so I I
hafta wake up put him back
in my crib (coord pro:sub
mod~neg v prep n conj
pro:sub mod~inf v adv v
pro:obj adv prep det:poss n)

↪→

↪→

↪→

↪→

↪→

in your crib (prep det:poss n)
no not in my crib (co neg prep

det:poss n)↪→

I don't have a crib (pro:sub
mod~neg v det:art n)↪→

you said put him back in your
crib (pro:per v v pro:obj adv
prep det:poss n)

↪→

↪→

I mean in his crib (pro:sub v prep
det:poss n)↪→

I don't have a crib (pro:sub
mod~neg v det:art n)↪→

uh sometimes I like to go to the I
like to go to my
grandmothers (adv pro:sub v
inf v prep det:poss n)

↪→

↪→

↪→

I would like to sleep over her at
her house every day because
she lets me stay up late
about ten o'clock or twelve
thirty (pro:sub mod v inf v
adv prep det:poss n qn n
conj pro:sub v pro:obj v adv
adv prep det:num n coord
det:num det:num)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

you're lucky (pro:per~cop adj)
I only get to stay up until eight

(pro:sub adv v inf v adv prep
det:num)

↪→

↪→

and I only get to stay up until
nine (coord pro:sub adv v inf
v adv prep det:num)

↪→

↪→

I get to stay up until um say
about between ten o'clock
and nine thirty (pro:sub v inf
v adv prep v adv prep
det:num n coord det:num
det:num)

↪→

↪→

↪→

↪→

↪→

uh and sometimes sometimes I
get to go to bed at twelve
thirty (coord adv pro:sub v
inf v prep n prep det:num
det:num)

↪→

↪→

↪→

↪→

sometimes but most of the times
I don't (adv conj qn prep
det:art n pro:sub mod~neg)

↪→

↪→

on holidays and you_know like
um weekends (prep n coord
co prep n)

↪→

↪→

on holitinna holidays and I mean
on holidays I get to stay up
all night (prep n n coord
pro:sub v prep n pro:sub v
inf v adv qn n)

↪→

↪→

↪→

↪→

uh on weekends like when I'm
not going to school (prep n
prep conj pro:sub~aux neg
part prep n)

↪→

↪→

↪→

see this day I I'm going to school
and then the next day you
don't hafta (v det:dem n
pro:sub~aux part prep n
coord adv:tem det:art adj n
pro:per mod~neg mod~inf)

↪→

↪→

↪→

↪→

↪→

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.256792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.256792
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sainburg, Mai, and Gentner

I can stay up late because I the
next day I can sleep all I
want (pro:sub mod v adv
adv conj pro:sub det:art adj
n pro:sub mod n adv pro:sub
v)

↪→

↪→

↪→

↪→

↪→

that's why we hafta go to bed
early on school days
(pro:dem~cop pro:int
pro:sub mod~inf v prep n
adv prep n n)

↪→

↪→

↪→

↪→

every holiday um um my my
grandmother and my aunt
come over (qn n det:poss n
coord det:poss n v adv)

↪→

↪→

↪→

well you_know it's because well
you_know it's just about
becoming Easter (co co
pro:per~cop conj adv co
pro:per~aux adj adv part
n:prop)

↪→

↪→

↪→

↪→

↪→

about just twenty days or twenty
one (adv adv det:num n
coord det:num det:num)

↪→

↪→

on Easter I hafta get all this
gooshy egg (prep n:prop
pro:sub mod~inf v qn
det:dem adj n)

↪→

↪→

↪→

—— (continued) ——599

7.3 Drosophila600

One hour of behavioral state transitions from a single example Drosophila. There are 117 unique behavior601

states. Behavioral states do not have names but belong to broad categories (Posterior, Side Legs, Anterior,602

Locomotion, Idle, Slow).603

59 43 11 21 11 51 52 46 52
60 59 65 46 27 32 33 40 52
43 39 43 76 106 76 52 43 9
4 9 21 9 21 11 21 69 59
46 42 52 43 9 21 4 9 10
52 46 80 69 80 84 103 60 43
9 21 4 21 52 69 66 46 52
43 21 43 52 53 60 59 68 46
52 40 52 39 43 21 10 21 43
52 43 52 76 52 31 9 10 9
10 9 4 43 52 48 59 32 65
38 45 52 45 33 46 33 40 52
39 4 43 52 65 53 60 52 43
4 9 4 10 21 51 43 52 53
65 46 55 52 43 21 9 10 21
4 43 40 32 33 49 46 15 33
39 51 4 9 43 52 53 59 65
59 65 45 52 43 52 60 62 65
62 60 52 48 21 9 51 43 52
53 50 46 68 59 50 46 27 69
80 65 68 59 49 57 66 59 65
49 44 41 44 46 48 53 59 66
65 66 59 67 77 60 43 52 59
65 59 69 77 53 55 59 64 54
65 44 46 65 50 65 49 32 59
50 44 49 47 50 65 69 53 52
43 51 21 51 57 39 43 52 65
52 45 65 66 43 53 65 80 53
43 21 39 71 52 43 52 55 66
46 55 53 52 43 52 43 52 60
77 60 67 71 84 106 98 87 84
93 108 93 67 87 67 60 52 53
59 65 59 48 52 39 21 9 11
21 11 31 52 45 65 59 52 43
52 53 59 69 27 46 27 15 32

34 39 43 52 43 52 60 53 59
46 66 27 47 49 35 47 49 1
38 14 38 50 19 25 49 7 38
46 15 22 32 38 44 46 15 38
35 38 32 44 65 49 44 46 47
69 59 52 43 39 21 10 4 9
11 4 9 4 10 4 39 40 33
19 27 46 27 32 33 45 40 33
46 33 65 71 79 71 87 84 69
79 46 54 32 22 46 15 27 44
27 35 49 20 19 46 27 15 29
14 20 28 35 15 44 28 50 47
49 57 41 37 52 51 61 49 65
43 51 21 39 52 66 68 65 49
46 19 40 31 21 10 21 4 21
39 20 28 20 32 33 22 35 28
46 19 38 36 46 65 66 65 68
45 49 47 49 44 50 46 68 69
87 77 87 84 87 77 87 79 46
27 20 30 38 46 49 65 49 41
32 45 65 56 49 65 49 57 44
46 27 23 34 31 39 21 39 19
38 19 40 34 33 32 15 35 38
36 46 44 66 35 49 28 15 47
15 14 27 46 49 14 1 2 14
19 15 14 38 15 13 19 38 46
20 15 38 20 38 65 49 27 46
32 33 21 10 9 21 9 21 9
11 9 10 9 11 9 21 43 52
34 32 49 46 27 32 23 33 40
39 21 9 21 9 21 43 52 53
68 49 46 27 32 39 43 21 43
52 48 40 44 49 44 32 46 45
65 59 80 46 33 32 52 49 52
45 65 52 45 49 32 46 38 46

29 38 20 28 35 27 35 27 20
38 15 46 15 32 44 27 19 46
49 47 49 35 49 47 49 44 32
49 44 35 49 44 38 5 6 14
35 22 14 20 28 35 49 35 19
35 49 44 49 20 49 1 15 14
38 28 14 38 25 20 25 49 25
35 27 44 27 25 20 46 49 35
27 49 47 49 35 49 57 65 44
56 46 35 47 65 50 59 41 49
44 22 29 25 14 27 14 27 1
2 1 2 1 15 20 38 27 46
19 27 35 38 46 49 25 49 28
14 38 20 6 38 46 15 35 49
44 15 7 15 38 14 8 7 38
46 25 38 25 38 28 14 19 25
15 14 38 27 14 1 2 15 38
14 38 14 19 14 19 38 19 27
38 19 49 46 49 65 49 65 69
44 46 20 38 15 33 45 55 59
41 36 79 38 46 20 14 15 32
13 15 38 29 84 46 90 105 84
115 87 55 59 75 98 103 93 75
90 46 99 87 107 115 65 59 32
46 20 38 15 13 23 33 34 40
39 31 52 48 59 65 59 46 44
109 105 93 76 87 103 93 84 65
98 59 45 53 65 46 45 33 52
3 10 9 11 21 11 9 11 9
11 9 3 11 9 3 10 4 9
21 4 10 21 9 21 9 10 9

—— (continued) ——604

7.4 Zebrafish605

Behavioral states for zebrafish. Several behavioral contexts are used in this dataset. The example behavioral606

sequence shown below is acquired during a phototaxis paradigm (SCS: Short Capture Swims; LCS: Long607

Capture Swims; BS: Burst type forward Swim with high tail-beat frequency; SLC: Fast C-start escape Swims;608
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RT: Routine Turns; LLC: Long Latency C-starts; AS: Approach Swims; SAT: Spot Avoidance Turn; HAT:609

High Angle Turn).610

SAT RT S2 RT S1 S1 RT RT
HAT S1 RT RT RT RT RT RT
RT RT S1 S1 HAT RT SAT S2
S2 RT RT RT S2 RT S2 S2
HAT RT SAT RT S1 RT S1 S2
HAT S1 HAT S1 S1 S1 RT S1
HAT RT HAT HAT S2 RT HAT S2
S2 RT RT S1 S2 RT S2 RT
S1 RT SAT S2 SAT RT RT S2
S2 O-bend S1 S2 RT S2 RT S2
RT S2 S2 RT S2 S2 S2 RT
S2 S2 S2 S1 S1 RT RT HAT
RT S2 S1 S2 S2 S2 RT RT
S2 S1 RT RT S2 S2 S2 S2
RT S2 RT RT S2 RT RT S2
RT RT S2 S2 S2 S2 S2 S2
RT S2 HAT HAT RT S1 S2 RT
SAT S2 S2 S2 S2 RT S1 RT
S1 RT S1 S2 S2 S2 S1 S2
S2 S2 J-turn HAT S2 RT S2 S1
S2 RT RT S2 RT RT HAT S2
O-bend HAT S1 S2 S2 S2 S2 S2
S2 S2 S2 RT RT S2 RT HAT
S2 S1 S1 RT RT RT RT RT
RT HAT RT S2 RT RT HAT S1
S1 S1 RT S2 S2 RT S2 SAT
S2 S2 S1 S2 J-turn RT RT HAT
RT S2 S2 S2 HAT RT S2 S2
S2 S2 S2 HAT S1 RT HAT S1
S1 S2 AS HAT S1 S2 S1 RT
HAT RT S1 S1 RT S1 S2 S2
RT RT S2 S1 S2 S2 S1 J-turn
S2 S2 RT RT S1 S1 S2 RT
S2 S1 HAT S1 AS RT RT RT
S2 S2 HAT AS RT S2 RT S1
RT S2 RT S2 RT RT RT S1
S1 S1 S2 HAT S1 AS RT HAT

RT RT S2 S2 S2 S2 RT S2
RT HAT S2 RT S2 RT S2 S2
RT HAT S1 S1 S2 RT RT RT
HAT S1 HAT S2 S2 RT J-turn S2
S2 S2 RT S1 S2 S2 RT RT
HAT S1 S2 RT RT HAT HAT S1
S2 S2 S2 S2 S2 S2 S2 S2
RT S1 S1 S1 HAT HAT S2 HAT
S2 HAT S2 S2 S2 S2 S2 RT
HAT S1 S1 S2 S2 HAT S1 RT
SCS J-turn S2 HAT S1 S2 S2 S2
S2 RT S1 RT S1 AS J-turn RT
RT RT RT O-bend J-turn S1 RT

RT↪→

RT S2 S2 RT S2 RT O-bend S2
S2 S2 S2 S2 J-turn RT RT S2
S2 HAT S1 J-turn RT S2 S2 S2
S1 S2 S2 RT S2 S2 S2 RT
RT S1 S2 S2 S1 S2 HAT S1
RT S2 S2 S2 RT RT HAT S1
SAT HAT HAT S2 S2 HAT HAT

S1↪→

S2 S2 S2 S2 S1 S2 S1 S1
S2 S1 S1 RT S2 S2 RT RT
S1 S2 HAT S1 O-bend RT S1 S2
RT RT RT S1 S1 HAT SAT S1
S2 S2 S2 S2 S2 S2 S2 S2
S2 S2 RT HAT S1 S2 S1 RT
S1 S2 S2 S2 S2 RT S2 RT
RT HAT S1 RT RT S2 HAT S1
RT RT RT J-turn AS S2 S1 RT
S2 RT RT S1 S1 S1 S2 RT
HAT RT RT HAT S1 S1 S1 RT
S2 S2 HAT RT RT S1 HAT RT
S2 RT S2 S2 S2 S2 S2 SAT
S2 S2 S2 S2 RT S2 S2 RT

S2 S2 RT S2 S2 RT HAT S1
J-turn S2 RT S2 HAT S1 S2

J-turn↪→

RT S1 RT S2 J-turn HAT RT S2
RT SAT S2 RT HAT HAT S2 S2
S2 HAT S1 S1 S2 S2 RT RT
S2 HAT S1 HAT J-turn S1 RT S2
S2 HAT S2 RT J-turn J-turn SCS

S2↪→

J-turn J-turn S1 SAT S2 RT RT S2
S2 J-turn RT S2 RT S2 HAT HAT
S2 S2 S2 S2 SAT S1 S1 S2
S2 RT SAT S1 RT RT S1 S2
S1 S2 S1 S1 S1 S1 S1 S2
S1 RT S2 S2 RT RT S2 S2
S1 S2 S2 S2 S2 S2 S2 S2
S2 S2 RT S2 S2 RT RT RT
S1 RT RT S2 S2 HAT RT HAT
S1 S2 S2 S2 S2 S2 S2 S2
S2 S2 S2 RT RT S2 RT HAT
S1 RT S1 S2 RT S2 S1 RT
S2 S2 S2 S2 RT S2 S2 S2
RT RT S2 S2 HAT RT S1 HAT
SAT RT RT S2 S1 S1 S2 S2
S2 J-turn S1 HAT HAT S1 RT

HAT↪→

S2 RT S2 J-turn AS S1 S2 S1
S2 S2 S1 RT HAT S2 S2 S2
S2 HAT S1 S1 RT RT S2 RT
S1 RT J-turn HAT S1 S1 RT S2
S2 S2 S2 S2 S2 S2 S2 S1
S1 HAT HAT S2 S1 S1 S1 S1
HAT RT S1 RT S1 S1 S2 S2

—— (continued) ——611

7.5 Epic Kitchens612

Each transcript in Epic Kitchens contains a sequence of behaviors consisting of an action and object. One613

example sequence is shown below.614

open door
turn-on light
close door
open fridge
take celery
take container
take tofu
close fridge
open fridge
take carrot
open drawer
close fridge

put-down vegetable
open cupboard
take board:cutting
put-down board:cutting
close cupboard
open drawer
take knife
take knife
put-down knife
close drawer
put-down knife
open tap

wash courgette
wash courgette
wash carrot
wash carrot
close tap
put-down vegetable
open cupboard
take grater
take pan
put-down pan
close cupboard
close cupboard
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take courgette
cut courgette
turn-on hob
cut courgette
cut courgette
dice courgette
dice courgette
dice courgette
dice courgette
pour courgette
throw courgette
open drawer
close drawer
take spatula
stir courgette
take salt
open salt
pour salt
put-down salt
stir courgette
put-down spatula
take celery
wash celery

open tap
wash celery
close tap
put-down celery
cut celery
cut celery
pour celery
put-down board:cutting
take celery
throw celery
open fridge
put celery
close fridge
take spatula
stir spatula
put-down spatula
open container
take onion
take onion
put-down onion
close container
take spatula
take knife

cut onion
cut onion
cut onion
put-down knife
take kettle
open tap
pour water
pour water
close tap
turn kettle
take spatula
stir vegetable
stir vegetable
take glass
take glass
open cupboard
put glass
close cupboard

—— (continued) ——615

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2020. ; https://doi.org/10.1101/2020.08.19.256792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.256792
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Significance Statement
	Introduction
	Present work

	Results
	Language acquisition
	Human behavior
	Animal behavior

	Discussion
	Methods
	Mutual information
	Fitting mutual information decay
	Shuffling controls
	Data Availability
	Acknowledgements

	Supplementary Materials
	Example sequences from datasets
	PhonBank
	Davis/Nate/001105.xml 11 months
	Providence/William/011115.xml 23 months
	Goad/Julia/20510.xml 29 months
	Providence/Alex/021122.xml 36 months

	CHILDES
	Eng-NA/Braunwald/010511.xml 17 months
	Brown/Adam/020801.xml 32 months
	Eng-NA/Carterette/first.xml 72 months

	Drosophila
	Zebrafish
	Epic Kitchens


