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The behavioral strategies that mammals use to learn multi-step routes in natural settings are unknown. 8 

Here we show that mice spontaneously adopt a subgoal memory strategy. We first investigated how mice 9 

navigate to shelter in response to threats when the direct path is blocked. Initially, they fled toward the shelter 10 

and negotiated obstacles using sensory cues. Within twenty minutes, they adopted a subgoal strategy, initiating 11 

escapes by running directly to the obstacle’s edge. Mice continued to target this subgoal location after the 12 

obstacle was removed, indicating use of spatial memory. However, standard models of spatial learning – 13 

egocentric-movement repetition and internal-map building – did not explain how subgoal memories formed. 14 

Instead, mice used a hybrid approach: memorizing salient locations encountered during spontaneous ‘practice 15 

runs’. This strategy was also used during geometrically identical reward-seeking behavior. These results suggest 16 

that subgoal memorization is a fundamental strategy by which rodents learn efficient multi-step routes in new 17 

environments. 18 

 19 

Introduction 20 

For prey species such as mice, quickly finding effective routes to goals is critical for survival because it 21 

reduces exposure to potential predators (Lima and Dill, 1990). This is a challenging task: natural environments are 22 

complex, and wild animals must compute multi-step routes taking into account uneven terrain, obstacles, and 23 

dynamically changing environments. Ethological studies of wild rodents have emphasized the roles of locating salient 24 

landmarks (Drickamer and Stuart, 1984; McMillan and Kaufman, 1995) and adhering to familiar paths (Benhamou, 25 

1991; Thompson, 1982) in overcoming these challenges. However, observational studies are limited in their ability to 26 

identify the cues and behavioral strategies that animals actually use to navigate. 27 

Experimental evidence from rodents trained to locate goals has uncovered multiple types of spatial reasoning 28 

that can be used to solve complex navigational problems. On the one hand, rodents keep track of their position within 29 

an allocentric (environment-centered) reference frame (Morris, 1981). This sense of place is thought to be integrated 30 

into an internal topological map connecting locations within the environment, which allows animals to compute subgoal 31 
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locations whenever a new multi-step route to a goal is required (Edvardsen et al., 2020; Spiers and Gilbert, 2015; 1 

Stachenfeld et al., 2017; Tolman, 1948). This kind of cognitive-map-based reasoning is flexible, is learned by observing 2 

the structure of the environment, and it depends on the hippocampus (O’Keefe and Nadel, 1978). Alternatively, animals 3 

can navigate to goals without relying on an internal map. These strategies include integrating self-motion cues to 4 

compute a vector back to their starting position (Etienne and Jeffery, 2004); repeating egocentric movements at familiar 5 

junctions (Restle, 1957; Sutherland and Dyck, 1984); and using landmarks for visual guidance (Hamilton et al., 2004). 6 

The latter two tactics, known as “taxon” strategies, are inflexible, rely on proximal cues, and are learned through 7 

previous motivated actions (O’Keefe and Nadel, 1978).  8 

Despite all that is known about rodent navigation, the behavioral strategies that animals spontaneously use to 9 

quickly build up and deploy spatial knowledge in new environments remain unknown. The abilities listed above have 10 

mostly been demonstrated by repeatedly placing rodents in constrained mazes until they learn to navigate to a goal. In a 11 

natural setting, however, spatial learning must occur via internally generated exploration patterns and within a very 12 

limited timeframe. It is therefore unclear how well previous classifications of navigation strategies map onto the 13 

instincts and learning procedures that animals use during natural goal-directed navigation. 14 

Escape behavior offers a powerful model for studying naturalistic navigation in the laboratory. Diverse 15 

animals, including fishes, lizards, crabs, birds, and rodents, respond to threats by escaping to a familiar shelter (Cooper 16 

Jr. and Blumstein, 2015). Mice are known to rapidly identify and memorize shelter locations in new environments and 17 

instinctively respond to visual or auditory threats by running straight to the shelter (Vale et al., 2017; Yilmaz and 18 

Meister, 2013). Previous studies have shown that the spatial memory for running back to shelter (‘homing’) can be 19 

based on path integration or distal visual landmarks when a direct path is available. (Alyan and Jander, 1994; Etienne et 20 

al., 1985; Harrison et al., 2006; Vale et al., 2017). If the direct path is blocked on one side by a barrier, previous work 21 

has shown that gerbils can use spatial memory to reach the hidden shelter after a brief period of exploration (Ellard and 22 

Eller, 2009). Thus, rodent escape offers not only reliable, stimulus-locked trajectories and rapid learning within a single 23 

session but also a reliance on spatial reasoning. These qualities make escape a useful model for understanding how 24 

animals learn and execute complex goal-directed trajectories within the time constraints compatible with survival in 25 

natural settings. 26 

 Here we first investigate the strategies that naïve mice use to navigate to shelter in response to auditory threats 27 

when the direct path is blocked by a wall. Through quantitative analysis of escape trajectories and their relationship to 28 

exploratory behavior, systematic variation of spatial conditions, and dynamic modifications to the environment, we 29 

describe how mice learn to execute efficient multi-step escape routes within minutes of entering a novel, obstacle-laden 30 

environment. We then show that the navigational strategy for escape is also used for reaching a food reward goal.  31 
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 1 

Results 2 

Mice rapidly learn efficient escape routes in the presence of an obstacle 3 

As a baseline condition for investigating how mice learn escape trajectories, we placed naïve animals in a 4 

circular, open-field platform with a shelter and overhead lighting. After a brief exploration period during which mice 5 

spontaneously located the shelter, we exposed them to a loud, overhead crashing sound while they were in a pre-defined 6 

threat zone (Fig. 1A). This reliably elicited rapid escapes directed at the shelter along a straight ‘homing vector’ (N=23 7 

escapes, 10 mice; Fig. 1A-B, Extended Data Fig. 2A; Supplementary Video 1-2), similar to previous results (Vale et al., 8 

2017). We then repeated this experiment in a separate group of mice, with a wall positioned between the threat zone and 9 

the shelter (N = 24 mice; Extended Data Fig. 1A). This wall was white against a black background, and all mice 10 

approached and walked along it during the exploration period (Extended Data Fig. 2B). To quantify escape trajectories 11 

in relation to the obstacle, we computed a target score: escapes aimed at the shelter get a score of zero; escapes targeting 12 

the obstacle edge get 1.0; and escapes aimed beyond the obstacle edge get scores >1.0 (Fig. 1A). Escapes are classified 13 

as “edge vectors” if their score surpasses the 95th percentile of escape scores in the open field (0.65) and are otherwise 14 

classified as “homing vectors”. Upon the first threat presentation, the majority of the mice (57%) executed homing-15 

vector escapes (Fig. 1A-B; Supplementary Video 3). Replacing the wall obstacle with an unprotective hole obstacle did 16 

not reduce this proportion (Extended Data Fig. 1B, Extended Data Fig. 2C-D); thus, homing-vector escapes cannot be 17 

accounted for by the safety provided by running along a wall and are likely directed at the shelter location.  18 

Over the course of three threat presentation trials (17±4 minutes into the session, mean±std), mice performed 19 

escapes that were increasingly spatially efficient (ratio of the shortest possible path to the actual escape path: median for 20 

trial 1 = 0.77; for trial 3 = 0.87; F(2, 30)=7.2, P=.003, repeated measures ANOVA on trials 1-3; Fig. 1C) and rapid 21 

(normalized escape duration: median for trial 1 = 3.8 s; for trial 3 = 3.2 s; F(2, 34)=6.2, P=.005; Extended Data Fig. 22 

2E). By this point, almost all trajectories were aimed directly at the obstacle edge (90% edge vectors; median target 23 

score = 0.98). Thus, while inefficient homing responses initially dominated, mice acquired rapid and streamlined routes 24 

to shelter over the course of 20 minutes and three escape trials. 25 

We next investigated whether mice use visual input to locate and run toward the obstacle edge. First, we 26 

examined how mice responded to an unexpected obstacle rising up at the same time as the threat stimulus onset (N=10 27 

trials, 10 mice); this trial occurred following 20 minutes with three escape trials in the open field. We found that 7/10 28 

escapes followed homing-vector paths until reaching the wall. The other 3/10 escapes deviated toward an obstacle edge 29 

before they were close enough to touch the wall, indicating that vision was used to navigate toward the obstacle edge 30 

(putative visual obstacle avoidance; 3/10 > 0/23 escapes in the open field; P=0.02, Fisher’s exact test; Extended Data  31 
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 1 

Fig. 3A; Supplementary Video 4). This suggests that visual and tactile cues can both be used to negotiate 2 

obstacles during escape, in the absence any experience with an obstacle. Second, we examined whether visual cues 3 

were necessary for generating edge-vector escapes. We repeated the obstacle experiment from Figure 1, but now in 4 
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complete darkness (Extended Data Fig. 3B-D; Supplementary Video 5). Mice now executed fewer edge-vector escapes 1 

(% edge-vector escapes on trials 1-3: 33% with the lights off vs. 74% with the lights on, P=0.002, permutation test), to 2 

a level that was not significantly different than chance (P=0.2 for the comparison with the 22% edge-vector escapes in 3 

the dark without an obstacle; permutation test). However, after 20 minutes with three escape trials in the light, mice 4 

were able to execute mostly edge vectors in the dark (55% edge-vector escapes vs. 22% in the open field, P=0.002, 5 

permutation test; Extended Data Fig. 3C-D). Thus, for naïve mice with limited experience, visual cues are required for 6 

efficient obstacle avoidance. However, immediately after experiencing a 20-minute behavioral session, streamlined 7 

escapes can occur even in complete darkness. 8 

 9 

Mice develop a spatial memory strategy for efficient obstacle avoidance 10 

We thus considered that learning efficient escapes might entail developing a memory of the obstacle edge 11 

location, making perception of the obstacle unnecessary. To further test this hypothesis, after the animals explored the 12 

environment with the obstacle for 20 minutes and with three escape trials, we removed the obstacle at the moment of 13 

threat onset (“acute obstacle removal”; Supplementary Video 6). Although the obstacle disappeared before the initial 14 

orientation movement could be completed, all animals escaped along the edge vector and did not turn toward the shelter 15 

until they passed the location where the obstacle edge used to be (median target = 0.98; N=8 escapes, 8 mice; Fig. 2A-16 

B). Next, we examined how persistent this memory-based strategy is. In a “chronic obstacle removal” experiment 17 

(CORE), we allowed mice to explore after this acute obstacle removal trial (for 9±5 minutes, mean±std), during which 18 

time they visited the now empty center of the platform (Extended Data Fig. 4A). 44% of the subsequent escapes were 19 

still directed at the location where the obstacle edge used to be (N=18 escapes, 8 mice; more than the 9% edge-vector 20 

rate in the open field: P=0.02, permutation test; Fig. 2A-B; Supplementary Video 6), while the remaining 56% mice 21 

reverted to the homing-vector response. 22 

This spatial memory for edge-vector escapes could in principle be learned during escapes trials or through 23 

spontaneous exploratory behavior. To distinguish between these possibilities, we repeated the CORE with zero threat 24 

stimuli during the initial 20-minute exploration period. As in the previous experiment, we then removed the obstacle 25 

and allowed the mice to explore the newly unobstructed environment (for 5±4 minutes, mean±std). Threat presentation 26 

after this period resulted in mostly edge-vector responses (57% edge-vector escapes; N = 23 escapes, 10 mice; more 27 

edge vectors than in the open field: P=0.004, permutation test; Fig. 2A-B). Thus, within 20 minutes in a novel 28 

environment, mice spontaneously develop a persistent spatial memory for efficient, multi-step escapes.  29 

Our experiments so far have revealed a memory-based obstacle avoidance strategy. We have also shown, 30 

however, that visual input is used to navigate around the obstacle when experience is limited. We therefore tested how 31 
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perception and spatial memory operate in tandem when both are fully available. In a novel environment, we performed 1 

an experiment similar to the CORE, but instead of removing the obstacle, we changed its length by 25% (Fig.2C; 2 
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obstacle shortened: N=14 escapes, 9 mice; obstacle lengthened: N=13 escapes, 9 mice; obstacle always short: N=15 1 

escapes, 9 mice; obstacle always long: N=10 escapes, 8 mice). Initial escape trajectories were consistently biased 2 

toward the previous edge location (Fig. 2D-E, Extended Data Fig. 4B-E; Supplementary Video 7). However, this result 3 

differed from the obstacle removal experiments in two ways. First, the memory bias was intermediate in magnitude: 4 

escape targets were biased only partway toward the former edge location (Fig. 2D, Extended Data Fig. 4D-E). Second, 5 

the second segment of the escape was equally biased: after reaching the obstacle edge, mice ran toward where the 6 

shelter would be if the edge had not moved (Fig. 2E, Extended Data Fig. 4D-E). These results show that, when 7 

available, the current obstacle position is an important cue for anchoring and adjusting memory-guided paths to both the 8 

edge and the shelter.  9 

 10 

Characterizing the spatial memory strategy for escape past an obstacle 11 

We next aimed to characterize the spatial-memory strategy and how it is learned. We evaluated three possible 12 

strategies: habitual learning of turn angles, sampling the environment to build a cognitive map, and memorizing 13 

subgoals encountered during practice homings. We evaluated each possibility by analyzing the relationship between 14 

escapes and spontaneous behavior during exploration, primarily in the chronic obstacle removal experiment with zero 15 

baseline trials (CORE-ZB). For each analytical finding, we then performed further experiments to validate the analysis. 16 

 17 

Habitual, egocentric movements do not explain the spatial memory for escape: analysis 18 

First, we tested whether mice learn egocentric movements from the threat zone to the obstacle edge, similar to 19 

the habitual response strategy in mazes (Restle, 1957). We extracted all spontaneous homing runs, defined as sustained 20 

turn-and-run movements from the threat area toward the shelter during the CORE-ZB’s exploration period (see 21 

Methods; median [IQR] number of runs = 7 [6,7]; time from their end point until reaching the shelter: 11 [5, 19] sec; 22 

Fig. 3A; Extended Data Fig. 5A; Supplementary Video 8). We then computed each run’s starting position and 23 

orientation, and the angle turned during its initial turn-and-run segment (Fig. 3A; see Methods and Extended Data Fig. 24 

10 for examples of starting-point extraction).  25 

Homing runs were sparse, and their initial positions and body orientations were highly variable. It was unlikely 26 

for any escape’s starting conditions to closely match a previous homing: only 22% of escapes were preceded by a run 27 

with starting points within 10 cm distance and 30º body orientation (Extended Data Fig. 5A). Despite this lack of 28 

stereotypy, we attempted to account for the memory-guided edge-vector escapes observed in the CORE-ZB using the 29 

assumption that mice repeat turn angles from previous homing runs. First, we validated a method to predict escape 30 

targets based on homing-run turn angles. We put mice on a modified platform with two narrow corridors, ensuring that 31 
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homings and escapes were stereotyped (N=30 escapes, 10 mice; Extended Data Fig. 5B). Here, we could precisely 1 
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predict escape targets using the mouse’s starting point and its history of previous turn-and-run movements (R2 of the 1 

prediction = 0.97 using the homing run with the most similar turn angle; R2 = 0.65 using the homing run with the 2 

closest initial position; R2 = 0.58 using the homing run with the closest initial body orientation; Fig. 3B; Extended Data 3 

Fig. 5C). In the CORE-ZB, however, repeating turning movements did not explain any of the variance in post-removal 4 

escape targets (R2 of the prediction = 9x10-4 (most similar turn angle); R2 = 0.04 (closest initial position); R2 = 9x10-6 5 

(closest initial body orientation); R2 = 0.05 (randomly generated prediction); Fig. 3B; Extended Data Fig. 5D).  6 

 7 

Habitual, egocentric movements do not explain the spatial memory for escape: experiments 8 

This analysis suggests that memory-guided edge-vector escapes are not based on repeating egocentric actions. 9 

We performed two new experiments to test this finding. First, we performed a variant of the CORE-ZB designed to 10 

induce a distinct pattern of movements during exploratory paths from the threat zone toward the shelter. We added an 11 

additional barrier in front of the threat zone, which was removed simultaneously with the main obstacle (Fig. 3C; N=20 12 

escapes, 10 mice). This new geometry altered the homing-run turn angles during exploration (relative to the two 13 

COREs with the original geometry; P=0.001, chi-square test on the distribution of homing-run turn angles; Fig. 3C). 14 

However, the distribution of escape turn angles was indistinguishable (P=0.6, chi-square test on the distribution of 15 

escape turn angles; Fig. 3C). Thus, different fine-grained movements during exploration do not necessarily produce 16 

different escape movements. We also observed that escape routes did not deviate around the second, distal obstacle 17 

location (Fig. 3C). This further suggests that memory-guided escapes are not merely a function of the movements made 18 

during exploration but instead depend on the geometry of the mouse’s location, the obstacle, and the shelter. In a 19 

second experiment, we directly tested whether memory-guided escapes are sensitive to the shelter location; this would 20 

not be expected from a habitually repeated action (Fig. 3D; N=18 escapes, 10 mice). After a 20-minute exploration 21 

period just like in the CORE-ZB, we moved the shelter to the middle of the platform. As expected from a goal-directed 22 

or geometry-dependent process, escape turns differed from the two original COREs, with zero escapes targeting the 23 

obstacle edge location (P=0.5, chi-square test on homing-run turn angles; P=0.03, chi-square test on escape turn 24 

angles; Fig. 3D). Both of these experiments demonstrate a dissociation between egocentric turning movements and 25 

memory-guided escapes: distinct exploratory movements can lead to identical escape movements, and identical 26 

exploratory movements can lead to distinct escape movements. 27 

 28 

Mice memorize previously encountered target locations as subgoals: analysis 29 

The goal-directed nature of these escapes suggests that the obstacle edges become subgoal locations. An 30 

alternative possibility, however, is that mice target the edge by learning allocentric heading directions. For example, 31 

edge-vector escapes could be generated by consistently running in the southwest or southeast direction, relative to the 32 
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north-south axis connecting the shelter and the threat zone. Analysis of our data indicates that mice instead target 1 

allocentric locations. Following obstacle removal, escape heading directions follow whichever direction is required to 2 

reach the edge location (correlation between the heading direction to the edge and the heading direction taken in the 3 

escape: r=0.85, P=1.2x10-6; Extended Data Fig. 5E). This corroborates the results above, suggesting that mice learn true 4 

subgoals at the obstacle edge. 5 

We next investigated the learning process that generates these subgoals during the spontaneous exploration 6 

period. We found two variables in the CORE-ZB with high, positive correlations to subgoal-targeting behavior: the 7 

total distance of exploratory movement on the threat side of the platform (correlation with post-removal escape targets: 8 

r=0.72, P=1x10-4; Extended Data Fig. 6A) and the number of homing runs from the threat area that directly targeted the 9 

obstacle edge (within 10 cm; correlation with post-removal escape targets: r=0.75, P=5x10-5; Fig. 4A-C). Two primary 10 

interpretations of these correlations are possible. The first is that routes are computed directly from a ‘cognitive map’: 11 

investigating the obstructed area updates the mouse’s internal map, which is reflected behaviorally in the mouse’s use 12 

of subgoals. If this were true, we would predict that: 1) investigating relevant features like the obstacle or its edge will 13 

also correlate with the subgoal memory; and 2) after obstacle removal, investigating the region where the obstacle used 14 

to be will suppress edge-vector escapes. Neither prediction matched the data. The amount of exploration near the 15 

obstacle or the obstacle edge was not correlated to subsequent escape target scores (correlation with distance moved 16 

around the obstacle: r= -0.09, P=0.7; with distance moved around the obstacle edge: r=0.06, P=0.8; Extended Data Fig. 17 

6A). Furthermore, after obstacle removal, mice that densely sampled the empty center of the arena more did not execute 18 

different escape trajectories from mice that explored very little (correlation with distance moved around where the 19 

obstacle used to be: r= -0.12, P=0.6; with total post-removal exploration distance: r= -0.17, P=0.4; Extended Data Fig. 20 

6A; see Extended Data Fig. 4A for examples of exploration during this period). 21 

A second possibility is that learning occurs during the ‘practice’ edge-vector homings. In this case, we would 22 

predict that: 1) subgoals do not form in mice with zero edge-vector homings; and 2) the correlation with spontaneous 23 

homing runs would be specific to the edge targeted during escape (i.e., left vs. right) and to the direction taken during 24 

escapes (i.e., from the threat side to the shelter side). Both predictions were confirmed by the data. Every edge-vector 25 

escape following obstacle removal was preceded by at least one homing run targeting that same edge (100% of post-26 

removal edge-vector escapes have ≥1 prior edge-vector run; greater than chance: P=0.02, permutation test; Fig. 4C). 27 

Second, escape targets in the CORE-ZB were not significantly correlated with homing runs from the threat area to the 28 

opposite edge (r=0.15, P=0.5), with homing-vector runs from the threat area to the middle of the obstacle (r=0.06, 29 

P=0.8), or with runs from the shelter area to the same obstacle edge (r=0.30, P=0.2; Fig. 4A).  30 

 31 

 32 
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Mice memorize previously encountered target locations as subgoals: experiments 1 

Our analysis of the CORE-ZB suggests that executing edge-vector homings, rather than sampling the 2 

environment, could be the rate-limiting step in spontaneously learning subgoals. To further test this hypothesis, we first 3 

examined whether spontaneous homings explain escape routes in the obstacle-present condition. On the first trial with 4 

an obstacle, mice with prior edge-vector homings performed more efficient escapes than mice with none (median 5 

spatial efficiency with zero runs = 0.76; with one run = 0.82; P=0.04, permutation  6 

 

test; Fig. 4D; same data from Figure 1). As expected, this effect was specific to runs from the threat area to the side of 7 

the obstacle used during the escape (Extended Data Fig. 6B-D). Thus, subgoal memorization does appear to play an 8 

adaptive role when perception of the obstacle is still available. Next, we examined the acute obstacle removal 9 

experiment. We could not apply correlational analysis to the acute obstacle removal after three trials since this dataset 10 

had 100% edge-vector responses and 100% prior edge-vector homings. Thus, we performed a new experiment, 11 

removing the obstacle acutely on the first trial (10±1 minutes into the session, mean±std). Here, 50% of escapes took 12 

edge-vector paths (N = 10 escapes, 10 mice; Extended Data Fig. 6E). Among the variables examined – exploration in 13 

different parts of the platform and various running movements – only the number of runs from the threat area to the 14 

edge used in the escape was significantly correlated with escape targets (r=0.71, P=0.02; Fig. 4E; Extended Data Fig. 15 

6F-G). Furthermore, 100% of edge-vector escapes were preceded by at least one edge-vector homing (greater than 16 

chance: P=0.02, permutation test; Fig. 4E). 17 

 Next, we tested the practice-homing hypothesis with two new experiments. First, we repeated the CORE-ZB 18 

but without a shelter during the exploration period (N=24 escapes, 10 mice; Fig. 4F). This gives the mouse opportunity 19 

to observe the platform and obstacle, but without performing homings. After 20 minutes, we added the shelter and 20 

removed the obstacle as soon as the mouse entered the shelter (median [IQR] time to enter shelter: 84 [39, 154] sec). 21 

Subsequent escapes did not exhibit the subgoal memory (13% edge-vector escapes; not more edge vectors than in the 22 

open field: P=0.4, permutation test; Fig. 4F, 4H). Second, we repeated the CORE-ZB with an extra barrier blocking off 23 

the threat side of the platform during the exploration period (N=25 escapes, 10 mice; Fig. 4G). This prevents long-range 24 

homings while allowing investigation of the obstacle. Only 1/10 mice targeted the edge location with scores close to 25 

1.0, and post-removal escapes did not significantly differ from the open-field control (20% edge-vector escapes; not 26 

more edge vectors than in the open field: P=0.2, permutation test; Fig. 4G-H). Both experiments thus demonstrate a 27 

dissociation between investigating the obstacle and memorizing subgoals, and further support the hypothesis that 28 

subgoal locations are learned through practicing homings. 29 

 30 

 31 
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Spontaneous edge-vector runs are instinctive exploratory actions 1 

It remains unclear what prompts spontaneous edge-vector homings in the first place. One possibility is that 2 

during practice homings, a cognitive map is used to compute efficient routes to shelter; once this happens, subgoals are 3 

tagged for later use during escapes. Another possibility is that mice are innately predisposed to run to salient obstacle 4 

edges. Our data support the latter option. Spontaneous edge-directed movement occurs most during the first few 5 

minutes of the session and occur equally with or without a shelter in the environment (Extended Data Fig. 7A-B). When 6 

the obstacle is a hole instead of a wall (Extended Data Fig. 1B), edge-directed movement occurs with the same, low 7 

frequency as in the open field (computed relative to the location where the obstacle edges would be if the obstacle were 8 

present; Extended Data Fig. 7B). Correspondingly, it takes twice as long for mice to perform predominantly edge-9 

vector escapes in the presence of a hole obstacle (20% edge-vectors escapes on trial 2-3, 67% edge-vector escape on 10 

trial 6-7; Extended Data Fig. 7C-D).  11 

 

 Subgoal learning also supports food-seeking routes 12 

While subgoal memorization enhances spatial efficiency in a static environment, it can also generate 13 

unnecessarily roundabout routes past an obstacle that no longer exists. In fact, edge-vector escapes can persist over at 14 

least 20 minutes and 7 trials following obstacle removal (Extended Data Fig. 8A-B). We considered that subgoal 15 

memorization may be specific to escape behavior, as mice might sacrifice flexibility for the sake of quickly reacting to 16 

imminent threats. To test this, we performed an obstacle removal experiment in the context of a less urgent, reward-17 

based task (open field control: N=32 reward runs, 6 mice; obstacle removal: N=34 reward runs, 6 mice). First, we 18 

trained food-deprived mice to approach and lick a reward port in response to a 10-kHz tone, which indicated the 19 

availability of condensed milk at the port. This took place across 5 sessions, in an operant conditioning box (Extended 20 

Data Fig. 9A-C). Next, we transported this task to the platforms previously used for escape behavior. The shelter was 21 

replaced by the reward port, and the threat stimulus was replaced by the 10-kHz tone. To start the session, mice were 22 

given 20 minutes in the open-field or obstructed environment. This included ~1 food-approach trial per minute with 23 

start points throughout the platform, to facilitate transferring the task to this new environment. After this point, mice 24 

successfully ran to the reward port during tone presentation on 85% of trials starting in the trigger zone (the same 25 

region as the threat zone), but with slower reaction times than escape (median [IQR] time to start running toward the 26 

goal for food-seeking = 1.5 [0.7, 3.5] sec; for threat response = 0.6 [0.4, 1.2] sec; P=0.005, permutation test). Next, we 27 

removed the obstacle and triggered food-approach trials (trials occurred 5±3 minutes after obstacle removal, mean±std). 28 

Similar to escape routes, a large proportion of paths in the obstacle-removal condition initially targeted the obstacle 29 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 8, 2021. ; https://doi.org/10.1101/2020.08.19.256867doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.256867
http://creativecommons.org/licenses/by/4.0/


 

 

14 

edge location (53% edge vectors; P=0.006 compared to 12% in the open field, permutation test; Fig. 5A-B; 1 

Supplementary Video 9).   2 

Finally, we tested whether experience with the obstacle induces a non-specific increase in edge-directed 3 

movement, as this could explain the apparent use of subgoal memorization across two distinct tasks. We compared 4 

spontaneous movements from the ends of the platform toward the center and obstacle edge locations. Exploration 5 

following obstacle removal were not enriched in edge-directed movements (number of edge-directed movements per 15 6 

min: median after obstacle removal = 4; in the open field = 6; with the obstacle present =12; P=4x10-5, permutation test 7 

on open field vs. obstacle; P=0.7, permutation test on open field vs. obstacle removed; Fig. 5C-D). Subgoal 8 

memorization therefore reflects a strategy for goal-directed navigation rather than a general bias in how mice move 9 

around their environment following experience with an obstacle. 10 
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Discussion 1 

During their first few minutes in an obstructed environment, mice escaped to shelter by relying on their 2 

memory of the shelter location and their innate ability to negotiate barriers using vision and touch. These escape routes 3 

were spatially inefficient; they resembled obstacle avoidance in animals with lower cognitive capacities, such as toads, 4 

crabs, and ant colonies (Collett, 1982; Layne, 2003; McCreery et al., 2016). Over a single 20-minute session, however, 5 

mice began to exploit their aptitude for spatial memory. They increasingly targeted the obstacle edge directly and could 6 

do so even in complete darkness or after the obstacle had been removed. We found that this capacity relied on 7 

memorizing allocentric subgoal locations rather than egocentric turning movements, and our data further suggested that 8 

mice identified and memorized subgoals during spontaneous homing runs. 9 

Previous work has shown that rodents use spatial memory to navigate to shelter in an open field (Alyan and 10 

Jander, 1994; Etienne et al., 1985; Vale et al., 2017). In such a simple environment, however, escape routes can be 11 

implemented by path integrating self-motion cues to keep track of a single vector to the shelter location – a one-step, 12 

egocentric process. With obstacles in the environment, a more advanced strategy is needed. Previous results in gerbils 13 

escaping in an obstructed environment suggested that spatial memory was employed to reach the shelter (Ellard and 14 

Eller, 2009), but their navigational strategy was unknown. Our results show that mice use subgoals in an allocentric 15 

reference frame. Several observations support this view. First, mice can accurately target the edge location minutes after 16 

the obstacle or the lights have been removed, which is not well explained by pure path integration. Second, escapes 17 

involved immediately orienting and running toward a subgoal ~50 cm away, which is not consistent with following 18 

odor trails or gradients (Liu et al., 2020; Wallace et al., 2002). Finally, repeating stereotyped turning movements or 19 

allocentric heading directions did not explain memory-guided escape paths in our assay; instead, mice consistently 20 

targeted the edge location. Future experiments on how escape routes transfer across multiple days, obstacles and tasks 21 

will help to specify the nature of this allocentric schema and how it is updated.  22 

Traditional models of allocentric navigation involve three key elements: an internal map of the environment 23 

(located in the hippocampus and entorhinal cortex), a stored goal location, and a mental search for paths to the goal 24 

(Burgess et al., 1994; Edvardsen et al., 2020; Spiers and Gilbert, 2015; Stachenfeld et al., 2017). The limiting factor is 25 

the quality of the map. Finding efficient multi-step routes – be it through a tree-search algorithm (Edvardsen et al., 26 

2020; Spiers and Gilbert, 2015), a map-partitioning algorithm (Stachenfeld et al., 2017), or warping around an 27 

‘obstacle-to-avoid’ feature (Burgess et al., 1994) – can occur as soon as the map faithfully reflects the current 28 

environment. To build up this map, animals simply have to investigate unfamiliar or altered parts of the environment. 29 

The amount of exploratory movement thus matters for spatial learning, but movements’ intentions or directions do not 30 

(Burgess et al., 1994; cf. Schölkopf and Mallot, 1995). Our observations of escape routes in naïve mice do not support 31 
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such views of allocentric learning. In our data, none of the following was sufficient to generate subgoals: 1) spending 1 

time exploring the obstacle; 2) running along the homing-vector path and then being blocked by the obstacle; 3) 2 

learning a subgoal at the other obstacle edge; 4) targeting the obstacle edge while running away from the shelter; 5) 3 

investigating the obstacle in the absence of a shelter; and 6) investigating the obstacle while the threat area was blocked 4 

off. Furthermore, investigating the formerly obstructed area following obstacle removal did not restore direct homing-5 

vector responses.  6 

The subgoal strategy does contain elements of classical map-based navigation: it is learned in all-or-none 7 

fashion and depends on a sense of allocentric space, i.e. a ‘map’; however, it also includes a component similar to taxon 8 

navigation, in which animals learn inflexible routes based on previous goal-directed movements (O’Keefe and Nadel, 9 

1978). Hybrid strategies – combining rapid learning, inflexible routes, and special ‘learning movements’ – have been 10 

discovered before, as in the orientation flights of wasps (Collett, 1995). However, orientation flights entrain one-step 11 

routes to a visual beacon rather than multi-step routes to an obstructed goal. Our working model is that mice 12 

instinctively execute visually guided movements toward a salient wall edge; if this movement gives the mouse direct 13 

access to a subsequent goal (e.g., the shelter), then its target is memorized as a subgoal location. We hypothesize that a 14 

rapid, all-or-none learning rule works on practice homings, but further experiments should be done to test the causal 15 

role of this putative moment of insight.   16 

Memorizing subgoals confers distinct survival advantages: it can drive escape routes with the optimality of 17 

map-based planning and the rapidity of instinctive responses. However, this strategy is less flexible than responding to 18 

sensation or updating maps. The steady persistence of ~50% biphasic escapes for tens of minutes after removing the 19 

obstacle was longer than expected, and it remains unclear how mice learn to reinstate the homing-vector response after 20 

obstacle removal. Responses to imminent predatory threats are known to favor quick reaction times at the expense of 21 

computational sophistication (Mobbs et al., 2020), and so this inflexible strategy could in principle be specific to 22 

defensive behavior. However, we found that it was also used in a less urgent food-seeking task. Thus, subgoals appear 23 

to be a building block for quickly learning spatial locations important for survival. 24 

Subgoal learning bears some resemblance to hierarchical reinforcement learning, a technique in artificial 25 

intelligence for learning multi-step behaviors (Sutton et al., 1999). However, the learning process we have observed in 26 

mice does not fit cleanly into the dominant ‘model-free vs. model-based’ framework for reinforcement learning agents 27 

(cf. Spiers and Gilbert, 2015). Rather, it fuses action repetition with a model of space: mice discover a map of 28 

individual subgoals through targeted exploration and learning heuristics. 29 

Finally, our results provide an alternative entry point to studying the neural mechanisms of spatial learning. 30 

Experiments with constrained behaviors and open-field environments have been crucial for the spatial-memory field; 31 

they uncovered the hippocampal formation’s key role in allocentric spatial memory (O’Keefe and Nadel, 1978), 32 
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identified important activity dynamics in the hippocampus (Jadhav et al., 2012; O’Keefe and Recce, 1993; Wilson and 1 

McNaughton, 1994), and demonstrated the dorsal striatum’s involvement in repeating inflexible routes (Doeller et al., 2 

2008; Packard et al., 1989). However, models of navigation based on these data remain limited in their applicability to 3 

real-world learning. To improve on this, future work will benefit from an understanding of spontaneous learning 4 

strategies and complex behaviors (Datta et al., 2019; Krakauer et al., 2017; Mobbs et al., 2018). Probing brain activity 5 

during spontaneous subgoal memorization presents one such opportunity for reconciling neural models with natural 6 

learning. This behavior's rapid learning profile and reliable, stimulus-locked routes make it particularly tractable for 7 

testing theories of hippocampal and striatal functions and of the neural dynamics that underlie them.  8 
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Experimental procedures 1 

Animals 2 

All experiments were performed under the UK Animals (Scientific Procedures) Act of 1986 (PPL 70/7652) following 3 

local ethical approval. We used 158 singly housed (1 week), male, 8-12-week-old C57BL/6 mice during the light phase 4 

of the light cycle. For the main experiments, data come from the mice’s first-ever behavioral session. Table 1 describes 5 

all groups of mice used for this study, including the experimental conditions, any excluded mice, and re-use across 6 

experiments. 7 

 8 

Behavioral platforms 9 

The main platform was an elevated white acrylic circular platform 92 cm in diameter (Extended Data Fig. 1A). The 10 

platform had a 51 cm x 1 cm hole in its center; through this hole, the obstacle (white acrylic, 50 cm long x 12.5 cm tall 11 

x 0.5 cm thick) could be raised (obstacle condition) or lowered (open field condition). For experiments in which the 12 

obstacle appears or disappears, this was done by digitally triggering a custom-made pneumatic tubing system (time to 13 

raise or lower the obstacle was ~100 ms; Supplementary Video 10). In the acute obstacle removal experiment, this was 14 

triggered simultaneously with the stimulus onset. In chronic obstacle removal experiments, this was triggered while the 15 

mouse was in the shelter. Obstacle removal makes a “whooshing sound” (63 dB measured at the shelter) and usually 16 

triggers a startle response. The presence or absence of this response was unrelated to subsequent expression or 17 

extinction of the subgoal memory. The hole obstacle consisted of a 50 cm long x 10 cm wide rectangular hole in the 18 

center of the platform (Extended Data Fig. 1B). The modified platform with two narrow corridors consisted of the 19 

original platform with the obstacle, plus six additional panels (schematic in Extended Data Fig. 5B). Four of these 20 

panels were 50 cm long x 12.5 cm tall x 0.5 cm thick, and two were 12.5 cm long x 12.5 cm tall x 0.5 cm thick. 21 

Together, they formed two corridors that were 50 cm long x 7.5 cm wide and were at 65º and 115 º angles relative to 22 

the axis of the central obstacle. The interior panels forming the corridor were made of red acrylic so that the IR camera 23 

could see through them; all other panels were made of white acrylic. The platform in the sideways-moving-obstacle 24 

experiment was an elevated white acrylic square platform 80 cm x 80 cm. The obstacle (white acrylic, 70 cm long x 25 

12.5 cm high x 0.5 cm thick) was manually pulled to the “short” condition (obstructing 48 cm) or to the “long” 26 

condition (obstructing 66 cm) while the mouse was in the shelter. The shelter was a 10 cm cube of transparent red 27 

acrylic (opaque to the mouse). It included a mouse-hole-shaped entrance at the front and additional 2.5 cm tall square of 28 

red acrylic on top in order to prevent the mice from climbing on top. The platform was surrounded by a black, square, 29 

plastic surrounding. A projector screen was located above the platform. The platform was illuminated with 4 infrared 30 

lights (S8100-45-A-IR, Fuloon). Experiments shown in Extended Data Fig. 3 and Supplementary Video 5 were 31 
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performed in complete darkness (0.00 cd/m2 of visible light). At this light level, mice did not react to rapidly waving a 1 

hand in front of them, which is perceived as highly threatening when light is available. For all other experiments, light 2 

was projected onto the screen at 5.2 cd/m2 using a projector (PF1000U, LG). Note that the room was not totally 3 

sonically insulated and that neither the black surround nor the overhead illumination was circularly symmetric; these 4 

asymmetries could all provide spatial orientation cues. The platform and shelter were cleaned with 70% ethanol after 5 

each session.  6 

 7 

Escape behavior 8 

Animals were given a 7-minute acclimation period during which they discovered the shelter. Stimuli were subsequently 9 

delivered when the mouse entered the threat zone (the back 20 cm, on the end opposite from the shelter) and was 10 

generally facing away from the shelter. Only stimuli delivered in this zone were analyzed. At least one minute was 11 

allowed in between trials. Threat stimuli were loud (87 dB), unexpected crashing sounds played from a speaker located 12 

1m above the center of the platform. Sounds (“smashing” and “crackling fireplace”) were downloaded from 13 

soundbible.com. They were then edited using Audacity software such that they were 1.5 seconds long and continuously 14 

loud. Stimuli were alternated between the “smashing” sound and the “crackling” sound to prevent stimulus habituation. 15 

In some sessions (four with and four without an obstacle), we used an ultrasonic sweep stimulus (17-20 kHz, 3 sec). No 16 

difference in response between the stimuli was observed and therefore the data from these sessions were pooled. For 17 

each trial, the stimulus was triggered repeatedly until the mouse reached the shelter, for a maximum 9 seconds. Since 18 

escapes take longer with the hole obstacle and in the dark, stimuli in these conditions were played for up to 12 seconds. 19 

Stimulus responses were considered as escapes if the mouse reached the shelter within 12 seconds in the light or 18 20 

seconds for the hole obstacle and for the dark. Stimulus delivery was controlled with software custom-written in 21 

LabVIEW (2015 64-bit, National Instruments). Stimuli were triggered manually, when the mouse had been in the threat 22 

zone (demarcated on the live video) for at least one second and was facing in approximately the opposite direction from 23 

the shelter. While manual stimulation could be a source of bias, we found that mice executing homing-vector vs. edge-24 

vector escapes did not have significantly different starting positions or heading directions, limiting the impact that this 25 

bias could have (Extended Data Fig. 10A-C). We also found that the obstacle-removal experiments with differing 26 

results did not exhibit significantly different starting positions or orientations (Extended Data Fig. 10D). The sound was 27 

played from the PC, through an amplifier (TOPAZ AM10, Cambridge Audio) and speaker (L60, Pettersson). The audio 28 

signal was fed in parallel through a breakout board (BNC-2110, National Instruments) into a multifunction I/O board 29 

(PCIe-6353, National Instruments) and sampled at 10 KHz. To synchronize the audio and video, this signal was 30 

compared to the 30 Hz pulse triggering video frame acquisition, which was also fed as an input to the input/output 31 

board and sampled at 10 KHz. To verify correct synchronization, in most experiments the audio output cable was also 32 
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fed in parallel to an infrared LED (850nm OLSON PowerStar IR LED), which flashed in synch with sound 1 

presentation. Mice varied in how many trials they performed in each experiment, due either to remaining in the shelter 2 

rather than entering the threat zone or not escaping in response to the stimulus (7% of trials). We thus limited analysis 3 

to the first three escapes in each condition (more than 50% of mice completed at least three escapes in all experiments).  4 

 5 

Food-seeking behavior 6 

Mice were food restricted to 85% of their baseline weight. Training and pretraining were done in a 60cm x 15cm 7 

rectangular arena, with a shelter on one side and a reward port on the other side. The reward consisted of a 7-µL drop of 8 

condensed milk (diluted 1:1 with water) delivered through the spout. For pretraining, during which the mouse learned to 9 

associate the metal spout with reward, 100 drops of milk were manually triggered and then collected by the mouse, with 10 

a minimum interval of 1 minute between each drop. They were then trained in five, ~1-hour sessions to approach and 11 

lick a metal spout in response to a 9-second, 10-kHz, 72-dB tone. Tone stimuli were triggered manually once per 12 

minute. Licking the spout while the tone was on resulted in reward. After reward delivery, there was a 5-second 13 

refractory period; thus, mice could trigger at most two rewards during the 9-second tone. On the last two day of 14 

training, the tone duration was reduced to 4.5 seconds after 30 minutes. Licks were registered with a capacitive touch 15 

sensor (Adafruit MPR121), connected to a microcontroller board (Arduino Uno). The milk was delivered through a 16 

peristaltic pump (Campden Instruments 80204E), connected to the same microcontroller. For testing food-seeking 17 

paths, these mice had two sessions. The first session was in the platform with no obstacle, the shelter on one side, and a 18 

lick port on the opposite end of the platform. They received “practice trials” of tone and milk, initially mostly when 19 

they were already near the lick port. After 20 minutes, test trials were initiated when the mouse was on the opposite side 20 

from the lick port, and these data were used for analysis. The second session followed the same protocol. However, in 21 

this session the obstacle was initially present, and then was removed after 20 minutes while the mouse was in the 22 

shelter. Mice performed more trials than with the escape behavior, so here we examined trajectories from the first nine 23 

successful trials (greater than 50% of mice completed at least nine trials). 24 

 25 

Video tracking and visualization 26 

Videos were acquired at 30 frames per second using an overhead camera (acA1300- 60gmNIR, Basler) with a near-27 

infrared-selective filter. Video recording was performed with software custom-written in LabVIEW (2015 64-bit, 28 

National Instruments). Videos were then fisheye-distortion corrected, aligned onto a common coordinate framework, 29 

and visualized with custom Python code using the OpenCV library (github.com/BrancoLab/Common-Coordinate-30 

Behaviour; Supplementary Video 1; Bradski, 2000). We used DeepLabCut (Mathis et al., 2018) to track the mouse 31 

from the video, after labelling 1500 frames with 13 body parts: snout, left eye, right eye, left ear, neck, right ear, left 32 
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upper limb, upper back, right upper limb, left hind limb, lower back, right hind limb, tail base. Post-processing includes 1 

removing low-confidence tracking, using a median filter with a width of 7 frames, and applying an affine 2 

transformation to the tracked coordinates to match the common coordinate framework. 3 

 4 

Analysis 5 

All analysis was done using custom software written in Python 3.6 (github.com/BrancoLab/escape-analysis) as well as 6 

open-source libraries, notably OpenCV and scikit-learn (Bradski, 2000; Pedregosa et al., 2011). The data that support 7 

the findings of this study are available from the corresponding authors upon request. 8 

Calculating position, speed, and allocentric heading direction (Supplementary Video 11): For analysis of 9 

trajectories and exploration, we used the center of the mouse. This was calculated as the average of all 13 points, which 10 

we found to be more stable and consistent than using any individual point. To determine the mouse’s speed for the 11 

color-coded visualizations, we smoothed the raw frame-by-frame speed with a gaussian filter (sigma = 3 frames = 0.1 12 

sec). To calculate the mouse’s heading direction, we computed the vector between the center of the body (averaging the 13 

tail base, right hind limb, lower back, left hind limb, right upper limb, upper back, and left upper limb points) and the 14 

front of the body (averaging the left upper limb, upper back, and right upper limb points). We set the south direction 15 

(threat to shelter) to 0°, north (shelter to threat) as 180°, and east/west (left/right sides) as ±90°. 16 

Quantification of escape targets: The initial escape target was computed by taking the vector from the mouse’s 17 

position at the escape initiation to its position when it is 10 cm in front of the obstacle. For the hole obstacle, this means 18 

10 cm in front of the obstacle’s outer perimeter, rather than its center. We computed a target score where a vector aimed 19 

directly at the shelter received a value of 0; one aimed at either obstacle edge received a value of 1.0; a vector halfway 20 

between these would score 0.5; and a vector that points beyond the edge would receive a value greater than 1.0. The 21 

formula is: target =  abs (
offsetHV−offsetEV+offsetHV−EV

2 ∗ offsetHV−EV 
), where offsetHV is the distance from the mouse to where the 22 

mouse would be if it took the homing vector, offsetEV is the distance from the mouse to where the mouse would be if it 23 

took the obstacle-edge vector, and offsetHV-EV is the distance from the homing-vector path to the obstacle-edge-vector 24 

path. Only the obstacle edge closest to the escape path was considered. Initial food-approach trajectories and 25 

spontaneous exploration trajectories were analyzed in the same manner. The threshold for classifying a trajectory as an 26 

edge vector was the 95th percentile of escapes in the open-field condition (0.65), which is equivalent to the 10th 27 

percentile of escapes on trial 3 with the obstacle. The rest were designated as homing vectors. Thus, we are slightly 28 

more conservative in labeling “edge vectors” (beyond the open field distribution with 95% confidence) than in labeling 29 

“homing vectors” (beyond the third obstacle escape distribution with 90% confidence). For examining the effect of 30 

experience on spontaneous exploration, we used a threshold of 0.5 to distinguish center-directed and edge-directed 31 
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movements. In the narrow corridor experiment, a vector aimed at the left corridor opening received a value of 0, and a 1 

vector aimed at the left corridor opening received a value of 1.0. 2 

Extraction of homing runs and escape initiation points: Homing runs are continuous turn-and-run movements from 3 

the threat side of the platform toward the shelter side. They are defined as a series of movements that continuously 4 

bring the mouse closer to the shelter or obstacle edges. They are extracted by: 1) computing the mouse’s “homing 5 

speed”, i.e. speed with respect to the shelter or obstacle edges with gaussian smoothing (σ=0.5 sec) and the mouse’s 6 

“shelter turning speed”, i.e. rate of change of heading direction with respect to the shelter; 2) identifying all frames in 7 

which the mouse has homing speed ≥ 10 cm/sec or is turning toward the shelter at an angular speed ≥ 90º/sec; 3) 8 

selecting all frames within 1 second of these frames to include individual frames that might be part of the same homing 9 

movement but do not meet the speed criteria; 4) rejecting all frames in which the mouse is not approaching or turning 10 

toward an edge or the shelter; 5) rejecting sequences that do not decrease the distance to the shelter by at least 30%. 11 

Each series of frames that meet these criteria represents one homing run. The homing runs we analyzed were those that 12 

started within 5 cm of the threat zone (the “threat area”) and ended with 5 cm of the central axis (i.e., along the 13 

obstacle). The homing target location is where a homing run crosses a line parallel to and 5 cm in front of the obstacle. 14 

Edge-vector targets occur when this location is within 10 cm to the left or right of the obstacle edge. The escape 15 

initiation point is defined as the beginning of a homing run that goes from inside the threat zone to outside of the threat 16 

zone following a threat stimulus. This is computed in the same way for spontaneous homings. In practice, the escape 17 

initiation point occurs when the mouse starts turning to run along the path that leads it out of the threat zone. We use 18 

this this criterion because it allows us to fairly compare spontaneous and stimulus-evoked homings, it correctly rejects 19 

initial post-stimulus movement bouts directed away from the shelter, and it correctly identifies the beginning of a turn-20 

and-run movement as verified by manual inspection of the videos. Illustration of the escape initiation points for the 21 

main experiments are displayed in Extended Data Fig. 11. To characterize the urgency of the task based in the escape 22 

task vs. in the food task, we use the metric of the time until running toward the goal. This is when the mice cross a 23 

threshold on the homing speed of ≥20 cm/sec. 24 

Quantification of turning angles: Turning angles that initiated homing runs and escapes were taken as the difference 25 

between the mouse’s heading direction at the start of the movement (the homing-run or escape initiation point) and the 26 

mouse’s heading direction after it had traveled 15 cm away from this start location. The start location is when the 27 

mouse starts turning toward and/or moving toward the shelter or obstacle edge (see previous subsection). Left turns 28 

were defined as negative, and right turns were defined as positive. For predicting escape targets from turn movements, 29 

we first extracted all homing runs from the mouse’s previous exploration experience. We then identified the 1-3 homing 30 

runs most similar to the escape, using three different similarity metrics: the most similar turn angle, the closest starting 31 

position, and closest initial heading direction. For each homing run-escape pair, we computed what the escape target 32 
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would have been if the mouse had turned the same angle that it had turned during the homing run, i.e. if it had repeated 1 

the previous egocentric action. Finally, we performed a linear regression between the predicted targets (x) and the 2 

actual escape targets (y) to find the proportion of variance (R2) in escape targets predicted using this assumption that 3 

mice repeat previous egocentric turns. R2 = 1 −
∑ (𝑦𝑖−�̂�)2

𝑖

∑ (𝑦𝑖−�̅�)2
𝑖

, where �̅� is the mean escape target and �̂� is the predicted 4 

escape target based on the linear regression. For the negative control, we disregarded the homing experience and instead 5 

predicted a random turn angle, and then extrapolated that angle to predict an escape target. We repeated this procedure 6 

1000 times to get 1000 R² values and took the mean R². 7 

Quantification of exploration: The time spent exploring was computed as the time spent at least 5 cm away from the 8 

shelter. The amount of exploration, or distance explored, was the time exploring multiplied by the mouse’s speed at 9 

each time point. Mice spent ~ 1/3 of the session in the shelter (IQR: 20-52% of the time). Spontaneous exploratory 10 

traversals are paths during exploration that start at either end of the platform (within 20 cm the end) and then reach 11 

within 10 cm of the central x-axis. Traversals that go along the boundary of the platform (i.e. within 10 cm of the outer 12 

perimeter) or take longer than 2 seconds (~10 cm/sec) were excluded from analysis, as these paths contained pausing 13 

and looping behavior, hindering the analysis of trajectories.  14 

Statistical tests: For permutation tests, the test statistic is the group mean difference (e.g. in escape target or path 15 

efficiency). The condition of each mouse (e.g. open field vs obstacle) is randomly shuffled 10,000 times to generate a 16 

null distribution and a p-value. We used this test because it combines two distinct advantages: 1) Because the test 17 

statistic is the group mean, this test gives weight to each trial that a mouse performs rather than collapsing each 18 

animal’s data into one mean or improperly pooling trials (unlike the t-test or the Mann-Whitney test). 2) It is non-19 

parametric and does not assume gaussian noise (unlike the repeated-measures ANOVA), in line with much of our data. 20 

Tests for differences in efficiency, reaction time, and initial escape conditions were two-tailed; tests for targets being 21 

biased toward previous experience were one-tailed. A different test statistic was used for the permutation test testing the 22 

significance of the result that 100% of memory-guided edge-vector escapes had at least one prior edge-vector homing. 23 

In this test, the p-value reflects the proportion of random subgroups of all trials that also score 100%. For the CORE-ZB 24 

(23 escapes, 13 edge-vector escapes), the p-value 0.02 indicates a 2% chance that every member of a random sub-group 25 

of 13/23 escapes has ≥1 prior edge-vector movement. The ANOVA was performed using the linear mixed effects model 26 

package in R, after removing outliers (z-score > 0.975). Fisher’s exact test was performed for cases with one trial per 27 

mouse and a categorical outcome. The Pearson correlation coefficient was used for correlation analyses. R² values 28 

report the percent of the variance explained by the two variables’ linear relationship and is equivalent to the square of 29 

their Pearson correlation coefficient. The range illustrated in boxplots are limited from the first quartile minus 1.5 x 30 

IQR to the third quartile plus 1.5 x IQR. 31 
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