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Summary 28 

Bidirectional communication between cells and their surrounding environment is critical in both 

normal and pathological settings. Extracellular vesicles (EVs), which facilitate the horizontal transfer 

of molecules between cells, are recognized as an important constituent of cell-cell communication. In 

cancer, alterations in EV secretion contribute to the growth and metastasis of tumor cells. However, 32 

the mechanisms underlying these changes remain largely unknown. Here, we show that centrosome 

amplification is associated with and sufficient to promote small extracellular vesicle (SEV) secretion in 

pancreatic cancer cells. This is a direct result due of lysosomal dysfunction, caused by increased 

reactive oxygen species (ROS) downstream of extra centrosomes. Defects in lysosome function 36 

promotes multivesicular body fusion with the plasma membrane, thereby enhancing SEV secretion. 

Furthermore, we find that SEVs secreted in response to amplified centrosomes are functionally distinct 

and activate pancreatic stellate cells (PSCs). These activated PSCs promote the invasion of pancreatic 

cancer cells in heterotypic 3-D cultures. We propose that SEVs secreted by cancer cells with amplified 40 

centrosomes influence the bidirectional communication between the tumor cells and the surrounding 

stroma to promote malignancy.  
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Introduction 

A variety of human cancer types often exhibit defects in the structure and number of centrosomes, 

the main microtubule organizing centers in animal cells [1, 2]. Work in fly and mouse models has 56 

shown that centrosome abnormalities, in particular centrosome amplification, are not mere 

byproducts of tumorigenesis but rather play direct roles in promoting and accelerating tumor 

progression [3-6]. While the full extent by which centrosome abnormalities promote tumorigenesis is 

still unclear, centrosome amplification can directly promote aneuploidy and cell invasion, which play 60 

important roles in malignant progression [7-9]. Recently, we reported that centrosome amplification 

induces the secretion of several proteins with pro-invasive properties, e.g. interleukin-8, which 

induces invasive behavior in neighboring cells [10]. This altered secretion is partially due to a stress 

response that results from increased ROS downstream of centrosome amplification [10]. Thus, the 64 

presence of amplified centrosomes can also influence tumors in a non-cell autonomous manner, via 

protein secretion, suggesting a broader and more complex role for these abnormalities in cancer. 

 

Secretion of cytokines, growth factors and extracellular vesicles (EVs) promote bidirectional 68 

communication between cancer cells and the tumor microenvironment (TME). This cross-talk impacts 

tumor initiation, progression and patient prognosis [11, 12]. EVs are membrane-bound vesicles 

containing proteins, lipids, DNA and RNA species (microRNA, mRNA and long non-coding RNAs) that 

can mediate the horizontal transfer of molecules between cells [13]. Their role in cell-cell 72 

communication is of particularly interesting due to their long-lasting effects and ability to influence 

distant tissues, e.g. during pre-metastatic niche formation [14]. Eukaryotic cells secrete two main 

types of EVs, microvesicles and exosomes, which differ in their size and biogenesis pathways. 

Microvesicles (large EVs, LEVs, ~100-1000 nm diameter) are formed through outward budding or 76 

“shedding” of the plasma membrane. In comparison, exosomes (small EVs, SEVs, ~30-150 nm 

diameter) are generated intracellularly as intraluminal vesicles (ILVs) within multivesicular bodies 

(MVBs), which are released upon the fusion of the MVBs with the plasma membrane [13]. Both types 
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of EVs are secreted by cancer cells and have been shown to play key roles in tumor progression, 80 

potentially via changes in their composition [15, 16]. 

 

Exosomes, a subtype of SEVs, are critical in shaping the TME [16]. This is particularly clear in the stromal 

compartment, where cancer-derived exosomes can activate fibroblasts through transfer of molecules 84 

such as TGF-b [16-19]. Fibroblast activation leads to the deposition of extracellular matrix (ECM), 

tumor fibrosis and metastasis [20]. This is particularly important in pancreatic cancer, where activation 

of the myofibroblast-like stellate cells, and consequent fibrosis, are the major contributors to the 

highly aggressive nature of these tumors and poor treatment efficacy [21-23].  While some exosomal 88 

components are known to contribute to fibroblast activation and recruitment (e.g. TGF-b and Lin28B) 

[19, 24], the pathways responsible for alterations in their packaging and secretion in cancer cells 

remain largely unknown.  

 92 

Here, we show that the presence of extra centrosomes is sufficient to increase secretion of SEVs, but 

not large LEVs. Characterization of these SEVs by immunoelectron microscopy (IEM) and SILAC 

proteomic analyses suggests that they are of endocytic origin and thus enriched for exosomes. 

Mechanistically, we found that disruption of lysosome function, as a consequence of increased ROS 96 

in cells with extra centrosomes, prevents efficient lysosome and MVB fusion, leading to SEV secretion. 

Furthermore, SEVs secreted by cancer cells with extra centrosomes are functionally distinct and can 

induce PSC activation. Consequently, pancreatic stellate cells (PSCs) pre-treated with SEVs from cancer 

cells with extra centrosomes promote invasion of pancreatic ductal adenocarcinoma (PDAC) cells in 100 

heterotypic 3-D cultures. Our findings demonstrate that centrosome amplification promotes 

quantitative and qualitative changes in secreted SEVs that could influence communication between 

the tumor and the associated stroma to promote malignancy.  

 104 
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Results  

Centrosome amplification induces secretion of sEVs  108 

Our previous work demonstrated that centrosome amplification leads to proteomic changes in the 

secretome, including an increase in proteins associated with EVs, suggesting higher EV secretion in 

cells with amplified centrosomes [10]. To explore this further, we used an established 

ultracentrifugation (UC) method [14] to crudely separate EVs according to their size: LEVs and SEVs, 112 

which we validated by nanoparticle tracking analyses (Figures S1A and S1B). To accurately measure 

secreted EV numbers, we used ImageStream flow cytometry to quantify fluorescently labelled EVs 

with the lipid dye BODIPY maleimide [25] and ensured that all serum was depleted for existing EVs by 

UC (Figures S1C and S1D). We found that in the mammary epithelial cell line MCF10A where the 116 

secretome analysis was previously performed [10], induction of centrosome amplification, by 

transient overexpression of the Polo-like kinase 4 (PLK4) in response to doxycycline (DOX) [26], led to 

increased secretion of SEVs, but not LEVs (Figure S1E).  

 120 

Due to the well-established role of SEVs in activating fibroblasts, and its downstream effects on 

pancreatic cancer prognosis and treatment [16, 22], we decided to investigate if the presence of extra 

centrosomes would impact SEVs secretion in pancreatic cancer. To do this, we quantified the number 

of EVs and percentage of centrosome amplification in a panel of PDAC cell lines. We observed that cell 124 

lines with higher levels of centrosome amplification secreted increased numbers of EVs, in particular 

SEVs, demonstrating a significant correlation between extra centrosomes and SEV secretion (Figures 

1A-1C and S1F). Furthermore, we confirmed that induction of centrosome amplification in two 

pancreatic cell lines, PaTu-S and HPAF-II, is sufficient to increase secretion of SEVs, but not LEVs (Figures 128 

1D and S1G). Additionally, depletion of SAS-6, a protein important for centrosome duplication, in cells 

exposed to DOX and PLK4 overexpression prevented both centrosome amplification and increased SEV 

secretion, suggesting that SEV secretion is indeed a consequence of centrosomal alterations (Figures 

1D and S1G).  132 
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The SEVs fractions isolated by UC were enriched for several markers associated with exosomes, such 

as ALIX, CD63, TSG101 and CD81 [27], but not for general membrane markers, such as flotillin (Figure 

1E). We further confirmed the presence of bona fide EVs in the SEVs fractions by EM and immunogold 136 

labeling using the SEV marker CD63 [28]. Consistent with increased SEV secretion, we found that the 

percentage of CD63+ve EVs was higher in cells with extra centrosomes (+DOX) (Figure 1F). Moreover, 

these SEVs were slightly larger, assessed by EM and also nanoparticle tracking analyses, suggesting 

that qualitative changes might also occur in these EVs (Figures 1G and S1H).  Altogether, our results 140 

demonstrate that centrosome amplification promotes SEV secretion. 

 

Proteomic analyses of sEVs demonstrates their endocytic origin  

To further understand the origin and composition of these SEVs, we performed stable isotope labelling 144 

by amino acids in cell culture (SILAC) proteomic analyses [29]. SILAC labelling with medium and heavy 

isotopes enables the exclusion of contaminant serum proteins, which would be unlabeled (equivalent 

of light labeling), and allows for simultaneous processing of purification steps to decrease sample-to-

sample variability (Figure 2A). Because UC isolated fractions can contain contaminants, such as protein 148 

aggregates and cellular debris, we further purified the SEVs UC fraction using size exclusion 

chromatography (SEC) prior to proteomics analysis (Figure S2A). Commercially available qEV SEC 

columns designed to purify exosomes were used [30, 31] and SEVs were quantified by ImageStream, 

as before. As expected for these columns, SEVs collected from PaTu-S.iPLK4 cells (-/+ extra 152 

centrosomes) eluted in fractions 7-10, with the majority eluting in fractions 8 and 9 (Figure S2B). SILAC 

reverse and forward labelling was performed to conduct proteomic analyses of fractions 7, 8 and 9. 

Quantitative analyses of the proteomic data for each SEC fraction revealed that approximately 464 

proteins were common to all fractions, and included known SEVs components such as ALIX, TSG101, 156 

CD81 and CD9 (Table S1). There were also proteins unique to each fraction suggesting that these SEVs 

are heterogeneous (Figure 2B). Comparison of our SEV proteomics data with the EV database 

Vesiclepedia [32] revealed that the majority of proteins in our datasets have been previously identified 
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in other EV studies, confirming the robustness of our purification protocol. Enrichment analyses of 160 

common proteins present in both SILAC forward and reverse labeling experiments were performed to 

identify common pathways (Tables S2 and S3). Importantly, the most significantly enriched categories 

were associated with EV, SEV and linked to pathways unique for exosome biogenesis, such as recycling 

endosome and endocytic vesicles (Figure 2D). Moreover, pathways linked to cell communication, 164 

response to stress, pancreatic secretion and immune response were also enriched in our dataset 

(Figure 2D), indicating that these SEV might have diverse functions.  

 

To investigate if centrosome amplification impacts on SEV protein composition, we analyzed changes 168 

in the ratio of proteins present in heavy and medium labelled SEV. Protein abundance was initially 

median normalized to ensure that heavy and medium intensities in each sample were equivalent. 

Interestingly, for proteins that a SILAC ratio could be calculated for, the ratio values did not 

significantly change in any SEC fraction (Figure S2C and Table S4), suggesting protein composition is 172 

largely unchanged in SEV secreted from cells with and without extra centrosomes. Overall, our SILAC 

data demonstrate that while extra centrosomes do not induce a major change in the SEVs protein 

composition, the content of these SEVs is consistent with an endocytic origin, indicating that this 

fraction is likely enriched for exosomes. 176 

 

Impaired lysosomal function in cells with extra centrosomes promotes SEVs secretion 

MVBs are generally destined for degradation, by fusion with the lysosomal compartment, or are 

trafficked to the cell periphery where they fuse with the plasma membrane, resulting in exosome 180 

secretion [27, 33]. Lysosome dysfunction can shift the fate of MVBs targeted for degradation to fusion 

with plasma membrane, leading to increased SEVs secretion (Figure 3A) [34-36]. We demonstrated 

previously that centrosome amplification increases ROS [10], which can disrupt lysosomal function 

[37, 38]. Therefore, we hypothesized that defective lysosomal degradation of MVBs could lead to 184 

increased SEVs secretion in cells with amplified centrosomes (Figure 3A). To test this, we first assessed 

whether induction of centrosome amplification led to increased ROS production in PDAC cell lines. 
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Indeed, induction of extra centrosomes increased ROS in both PaTu-S.iPLK4 and HPAF-II.iPLK4 cell 

lines, as measured by the ratio of reduced versus oxidized glutathione, where a decrease indicates 188 

higher ROS levels. Increased ROS can be abolished by treating cells with the ROS scavenger N-acetyl 

cysteine (NAC), while hydrogen peroxide (H2O2) is sufficient to increase ROS levels in these cells 

(Figures 3B and S3A). Using Magic Red fluorescence intensity to assess the function of the lysosomal 

cathepsin B protease [39], we found that cells with extra centrosomes have compromised lysosomal 192 

function. Treating cells with NAC prevented this defect, indicating that it was ROS dependent (Figures 

3C, 3D and S3B). Furthermore, levels of LAMP1, a lysosomal marker, did not change in cells with extra 

centrosomes or in response to increased ROS (Figures S3C-3E), suggesting that ROS specifically impair 

lysosome function, consistent with their role in disrupting the integrity of lysosomal membranes [37]. 196 

Next, we analyzed SEVs secretion in response to ROS. These analyses revealed that whilst increased 

ROS were sufficient to increase SEVs secretion in PDAC cells, preventing higher ROS production in cells 

with amplified centrosomes, using NAC, abolished enhanced SEVs secretion (Figure 3E). These results 

suggest that compromised lysosome function in cells with amplified centrosomes leads to SEVs 200 

secretion. In agreement, inhibition of lysosome function with the vacuolar proton pump inhibitor 

Bafilomycin A1, which impairs lysosome acidification [40], was sufficient to increase SEVs secretion 

(Figures S3F-S3H) [41]. 

 204 

Next, we investigated if ROS could prevent fusion between MVBs and lysosomes, thereby promoting 

MVB fusion with the plasma membrane and release of SEVs (Figure 3A). Using an antibody against 

phospholipid lysobisphosphatidic acid (LBPA), a lipid enriched at the membranes of late endosomes 

and MVBs [42], and lysotracker as a pH-based dye for functional lysosomes [43], we quantified the co-208 

localization of MVBs and lysosomes in the different conditions. Centrosome amplification decreased 

the number of lysotracker-positive intracellular vesicles in a ROS-dependent manner but not LBPA-

positive intracellular vesicles, further supporting defective lysosomal function as consequence of 

centrosome amplification (Figures 4A-4C). Strikingly, the percentage of co-localization between MVBs 212 

and lysosomes was significantly decreased in cells with extra centrosomes. NAC treatment restored 
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lysosome function and MVB-lysosome co-localization in cells with extra centrosomes, while H2O2 was 

sufficient to decrease MVBs-lysosome co-localization (Figures 4A, 4B and 4D). Moreover, impairing 

lysosome function with Bafilomycin A1 dramatically reduced MVB-lysosome co-localization (Figures 216 

S4A-S4D). Taken together, our data suggest that decreased MVB-lysosome fusion as a consequence 

of increased ROS, and subsequent lysosome dysfunction, promotes SEVs secretion in cells with 

supernumerary centrosomes.  

 220 

sEVs secreted by cells with extra centrosomes activate pancreatic stellate cells to facilitate cancer 

cell invasion  

Cancer-associated SEVs often carry altered cargoes, rendering them functionally distinct from SEVs 

secreted by non-transformed cells [15, 16]. The exact causes of these changes, however, remain 224 

elusive. In PDAC, secreted SEVs may contribute to fibrosis through the activation of PSCs [44]. Thus, 

we investigated whether SEVs secreted by PDAC cells with extra centrosomes could promote the 

activation of PSCs. SEVs collected from PDAC cells -/+ extra centrosomes (donor cells) were added to 

PSCs (Figures 5A and 5B). Equal numbers of SEVs were added per condition to ensure that any 228 

differences observed were not due to the number of secreted SEVs. Activation of PSCs cells was 

assessed by immunofluorescence of alpha smooth muscle actin (aSMA). Increased expression and 

association of aSMA with stress fibers is a common feature of PSC activation towards a myofibroblast-

like phenotype [45] (Figure 5C). Interestingly, treatment of PSCs with SEVs secreted by PDAC cells with 232 

extra centrosomes led to activation of ~25-30% of the cell population (Figure 5D). It is important to 

note that by normalizing SEVs numbers, we are likely underestimating the differences between SEVs 

secreted by cells -/+ centrosome amplification.  As a positive control, PSCs were treated with TGF-b, 

a well-established activator of PSCs, known to lead to a strong activation phenotype (Figures S5A and 236 

S5B) [46]. To validate these results, we further purified the SEVs by SEC (Figures S2B and S5C) and 

tested the activation potential of the different isolated fractions. Not only were the SEVs harboring 

the potential to activate PSCs retained after SEC fractionation, but these SEVs associated mainly with 
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one fraction (SEC8 for PaTu-S.iPLK4 and SEC9 for HPAF-II.iPLK4) (Figure 5E), further supporting the 240 

idea that secreted SEVs are indeed heterogeneous. 

 

Fibroblast activation is a common feature of cancer and can promote cancer cell invasion through 

various mechanisms including ECM remodeling and proteolysis [47]. To determine the functional 244 

relevance of PSC activation by SEVs secreted by PDAC cells with amplified centrosomes, we 

investigated their impact on PDAC cell invasion. To do so, we used 3-D heterotypic cultures of HPAF-

II cells that form spheroids in 3-D with PSCs (Figure 6A) [48]. In contrast to non-treated PSCs, or PSCs 

pre-treated with SEVs from cells with normal centrosome numbers, PSCs pre-treated with SEVs 248 

harvested from cancer cells with extra centrosomes significantly induced invasion (Figures 6B and 6C). 

TGF-b pre-treated PSCs, used as positive control, showed higher invasion potential, consistent with 

the stronger levels of PSC activation observed (Figures 6B, 6C and S5B). Confocal imaging of 3-D 

spheroids composed of cancer cells expressing H2B-RFP and PSCs expressing H2B-GFP revealed that 252 

activated PSCs lead the invasive front (Figure 6D). Our findings demonstrate that sEVs secreted by 

PDAC cells with extra centrosomes are functionally different and can induce PSCs activation to 

promote cancer invasion. 

 256 

 

 

 

 260 
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Discussion 

In this study, we demonstrate that centrosome amplification induces secretion of SEVs that activate 268 

PSCs promoting the invasion of cancer spheroids. Activated PSCs are major players in the development 

of the pancreatic cancer stroma and associated fibrosis [21-23], suggesting a role for centrosome 

amplification in shaping the pancreatic cancer TME. Our data support a model whereby elevated ROS 

levels induced by extra centrosomes lead to loss of lysosomal function, favoring MVBs fusion with the 272 

plasma membrane and SEVs secretion (Figure 7).  

 

Lysosomes are signaling centers that integrate many cellular responses to changes in nutrients, 

growth factors and stresses [49]. Fusion of lysosomes with autophagosomes is critical during 276 

autophagy, a self-degradative process important for the removal of protein aggregates, damaged 

organelles and intracellular pathogens [49]. Interestingly, centrosome amplification was recently 

shown to disrupt autophagy, rendering these cells sensitive to autophagy inhibitors [50]. Whether 

lysosome dysfunction is responsible for the autophagy defects observed in these cells is currently 280 

unknown. However, it is reasonable to assume that ROS-mediated lysosomal dysregulation could have 

a broader impact on the physiology of cells carrying centrosomal abnormalities. 

 

SEVs secreted by cells with extra centrosomes exhibit many characteristics of exosomes: correct size 284 

range (30-150nm) and proteomic profiling revealed an enrichment for proteins associated with 

exosomes and exosome biogenesis. Sub-fractionation of secreted SEVs by SEC demonstrated not only 

the existence of different sub-types of SEVs, as previously reported [51, 52], but that functional 

differences between these different SEV populations also exist, as assessed by their ability to activate 288 

stellate cells. How changes in SEVs composition occur and how these induce stellate cell activation, 

however, remains elusive. One possibility is that changes in the SEV cargoes (proteins, RNA species) 

could be involved in stellate cell activation. Indeed, whilst SILAC ratio values for most detected 

proteins remained unchanged, we identified a number of proteins that were only identified in one 292 

label, for which a SILAC ratio could not be calculated. Therefore, it is possible that some of these 
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proteins could play a role in PSC activation, but further studies will be required to assess if this is the 

case.  

 296 

Alternatively, the presence or absence of specific proteins could influence SEV uptake and indirectly 

contribute to PSC activation. Cargo transfer by EVs can be mediated by delivery of surface proteins to 

membrane receptors, fusion with the plasma membrane, micropinocytosis, phagocytosis and 

receptor-mediated endocytosis to deliver their content [53]. In addition, interaction between EVs and 300 

secreted proteins has been shown to modulate their uptake, highlighting the complex regulation of 

this process [54]. Tetraspanins, such as CD9, CD63 and CD81, have been shown to be involved in the 

interplay between adhesion molecules and integrins to promote SEV uptake [55]. The presence of 

specific tetraspanins could also influence the specificity of target cells. For example, SEVs lacking the 304 

expression of the tetraspanin CD63 were found to be preferentially endocytosed by neurons [56]. 

Interestingly, we found that CD81 was the only protein absent specifically in the SEVs harvested from 

PDAC cells with amplified centrosomes that activate PSCs. Similarly, loss of CD81 has previously been 

reported in SEVs that are secreted upon induction of lysosome dysfunction [35]. Whilst the reason for 308 

this CD81 loss in response to lysosomal dysregulation is currently unknown, the striking similarity 

suggests a common response to lysosomal defects that could potentially modulate SEV uptake.   

 

In summary, we describe a mechanism by which a stress response downstream of extra centrosomes 312 

culminates with the secretion of functionally different SEVs by diverging the fate of MVBs.  Several 

cellular stresses have been shown to induce EV secretion, such as oxidative stress, hypoxia and 

radiation-induced cell stress [57]. Thus, it is possible that in response to multiple stressors, MVBs that 

are normally targeted for lysosomal degradation play a role in the release SEVs carrying protective 316 

functions in order to maintain tissue homeostasis.  Indeed, oxidative stress itself has been shown to 

induce changes in the mRNA content of exosomes secreted by mouse mast cells, which help to protect 

the surrounding cells by conferring resistance to subsequent oxidative insult [58]. Understanding how 
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stress communication protects cancer cells could allow us to exploit these mechanisms to prevent 320 

cancer cell adaptation. 
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Methods 

Cell culture 

Adherent cell lines were cultured at 37oC and 5% humidified CO2. The pancreatic cancer cell lines PaTu-348 

8988t (PaTu-T; gift from Y. Wang, BCI-QMUL) PaTu-8988s (PaTu-S), Capan-1, PANC-1, CFPAC-1, HPAF-

II, MIA-PaCa-2 and DEC-hTERT (derived from normal pancreas) (gifts from H. Kocher, BCI-QMUL) were 

grown in DMEM supplemented with 10% FBS and 1% penicillin and streptomycin. HPDE cells (derived 

from normal pancreas) (gift from H. Kocher, BCI-QMUL) were grown in keratinocyte-SFM (1X) serum 352 

free media +30µg/ml (BPE)+ 0.2ng/ml rEGF. The pancreatic stellate cell lines PS1 (gift from H. Kocher, 

BCI-QMUL) [59] were grown in DMEM/F12 supplemented with 10% FBS and 1% penicillin and 

streptomycin. 5 ng/ml of recombinant TGF-b (Peprotech) was used to treat PS1 cells for 72 hours. 

Tetracycline-free FBS was used to grow cells expressing the PLK4 Tet-inducible construct. STR profiling 356 

was performed for cell line authentication on the following lines: PaTu-S, PaTu-T, Capan-1, MIA-PaCa-

2, Panc-1 and PS1.  

 

Chemicals 360 

Chemicals and treatments were performed as follows: 2µg/ml Doxycycline hyclate (DOX; Sigma) for 

48 hours, 100 µM H2O2 (Sigma) for 48 hours, 5 mM N-acetyl cysteine (NAC; Sigma) for 48 hours and 

20 nM Bafilomycin A1 (Sigma) for 24 hours. 

 364 

Lentiviral production and Infection 

To generate lentivirus, HEK-293 cells were plated in antibiotic free medium. Transfection of the 

appropriate lentiviral plasmid in combination with Gag-Pol (psPAX2, Addgene, 12260) and VSV-G (VSV-

G: pMD2.G, Addgene, 12259) was performed using lipofectamine 2000® (Thermo Fisher Scientific), as 368 

per the manufacturer’s specifications. The resultant lentivirus was harvested 24 hours and 48 hours 

post infection, passed through a 0.4 µM syringe filter and stored in cryovials at -80οC. For infection, 

the appropriate lentivirus was then mixed with 8 μg/ml polybrene before being added to the cells in 
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a dropwise fashion. Infection was repeated the following day and antibiotic selection started 24 hours 372 

after final infection.  

Cells expressing the inducible PLK4 construct were generated as previously described [26]. Briefly, 

cells were initially infected with pLenti-CMV-TetR-Blast lentiviral vector (Addgene, 17492) and 

selected using Blasticidin (10 µg/ml). Post-selection, cells were then infected with a lentiviral vector 376 

containing PLK4 cDNA which had been previously cloned into the pLenti-CMV/TO-Neo-Dest vector 

and selected using Geneticin (200 µg/ml) [26, 60].  Cells expressing the PLK4 transgene were then 

induced for 48 hours using 2 µg/ml of Doxycycline.  

To generate H2B-RFP iPLK4 cells, lentivirus was produced by transfecting HEK-293 cells with LV-RFP 380 

(Addgene 26001), pMD2.G (Addgene, 12259) and µg pCMVDR8.2 (Addgene, 12263) using FuGENE 

(Promega, E2311), as per manufacturer’s instructions. 24 hours later the medium was replaced and 

48 hours post transfection the viral supernatant was collected, passed through a 0.4 µM syringe filter 

and stored in cryovials at -80οC. Cells were transduced with the lentivirus as described above.  384 

 

siRNA 

siRNA transfection was performed in antibiotic free growth medium using Lipofectamine® RNAiMAX 

as per the manufacturer’s specifications. For SAS-6 knock down experiments siNegative control 388 

(siNegative, Qiagen, 1027310) and siSAS-6 (siSAS6 on-TARGET smart pool, Dharmacon, M-004158-02) 

were used. Per 6 well, 20 nM of siRNA was used for PaTu-S.iPLK4 cells and 50 nM for HPAF-II.iPLK4 

cells as PaTu-S.iPLK4 cells were more sensitive to SAS-6 depletion and to prevent loss of centrioles 

below control conditions.  24 hours post transfection, the cells were trypsinized and seeded onto 392 

coverslips for analysis by immunofluorescence or into 15 cm dishes for exosome harvest experiments 

72 hours post transfection.  

 

 396 
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Immunofluorescence 2D 

Cells plated on glass coverslips were treated for up to 48 hours with the appropriate drug treatments, 

before being washed twice in PBS and fixed in 4% Formaldehyde for 20 minutes at room temperature. 400 

For centrin2 staining, cells were fixed in ice-cold methanol for 10 minutes at -20 ο C. Following fixation, 

cells were permeabilized in 0.2% Triton X-100 in PBS for 5 minutes then blocked for 30 minutes in 

blocking buffer (PBS, 5% BSA, 0.1% Triton X-100). Cells were then incubated with primary antibody 

diluted in blocking solution for 1 hour. Cells were then washed with PBS and incubated with species-404 

specific Alexa-conjugated secondary antibodies diluted in blocking buffer for 1 hour. Alexa Fluor 568 

Phalloidin (1:250) was incubated in blocking solution for 1 hour.  Cells were washed in PBS and DNA 

was stained with Hoechst 33342 diluted in PBS (1:5000) for 5 minutes. Finally, coverslips were 

mounted using ProLong™ Gold Antifade Mountant. Antibodies used included: Anti-centrin 2 N-17-R 408 

(Santa Cruz; 1:100), Anti α-tubulin DM1 α (Sigma-Aldrich; 1:1000), Anti LBPA 6C4 (Merck Millipore; 

1:100), Anti LC3B (D11) XP ® (Cell Signalling; 1:200), Anti α-SMA (Sigma-Aldrich; 1:300), Anti-Rabbit 

Alexa Flour 488 (Life Technologies; 1:1000), Anti-Rabbit Alexa Fluor 568 (Life Technologies 1:1000), 

Anti-Mouse Alexa Fluor 488 (Life Technologies 1:1000). Centrosome amplification was defined as the 412 

percentage of metaphase cells containing extra centrosomes (>4 centrioles per cell).  

Images were acquired using an inverted Nikon microscope coupled with a spinning disk confocal head 

(Andor). Unless otherwise stated, imaging of cancer cells was performed using a 100x objective and 

imaging of stellate cells with a 40x objective. Images/projection images (from z-stacks) were 416 

subsequently generated and analyzed with Image J (National institute of Health, Bethesda, MD, USA) 

[61]. Where Z-stack images were required to analyze fluorescence intensity, Z-stack parameters were 

determined using the following equation: Zmin = 1.4λn/(NAobj)2. λ = the emission wavelength, n= 

refractive index of the immersion media, NAobj = the numerical aperture of the objective. This 420 

equation calculates the ideal z stack step size to minimize overlap between each step of the stack. 

Sum intensity projection images were subsequently generated using Image J and fluorescence 

intensity was quantified using Image J. All conditions were quantified blindly.  
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Extracellular Vesicle (EV) Isolation  424 

Cells were grown for 48 hours in medium supplemented with EV depleted FBS. Vesicle depletion in 

FBS was performed via ultracentrifugation at 100,000 x g at 4οC for 18 hours. Where induction of 

centrosome amplification was necessary, cells were treated with DOX for 48 hours, before cells were 

washed in PBS and subsequently cultured in EV depleted media. Where drug treatments were 428 

required, cells were treated for the duration of the EV harvest (48 hours post addition of EV depleted 

media). After 48 hours, conditioned medium was collected, and a final cell count was performed to 

ensure the final cell count remained the same between cell types and conditions.  

Serial ultracentrifugation (UC). Extracellular vesicles were isolated from the conditioned media via 432 

serial ultracentrifugation steps at 4οC, similarly to [14]. Briefly, the cell culture medium was subjected 

to a low speed centrifugation of 500 x g for 10 minutes. The supernatant was then centrifuged at 

12,000 x g for 20 minutes to pellet the large EVs (LEVs), after removal of the supernatant the LEVs were 

re-suspended in 500µl of PBS. The supernatant was then subjected to a high-speed ultracentrifugation 436 

at 100,000 x g for 70 minutes to pellet the smaller EVs (SEVs). The pellet was then washed in PBS and 

a second high-speed ultracentrifugation was performed at 100,000 x g for 70 minutes (Figure S1A). 

The isolated SEV pellet was then re-suspended in 500 µl of PBS.  

Size exclusion chromatography (SEC). To further purify EVs isolated by serial ultracentrifugation, size 440 

exclusion chromatography (SEC) was performed using the qEV original izon science SEC columns (as 

per the manufacturer’s instructions). Briefly, the SEC columns were equilibrated to room temperature 

and flushed with 5ml of buffer (PBS filtered twice through 0.22 µM filters) prior to use. 500 µl of 

concentrated exosomes (isolated by serial ultracentrifugation) was added to the top of the column 444 

and the eluted fractions were collected immediately in 500 µl volumes. The column was kept topped 

up with buffer throughout the experiment. Fractions 7-12 containing the eluted EVs were collected.  

 

 448 
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Extracellular Vesicle Quantification and Analysis 

Amins ImageStream® Mark II Imaging Flow Cytometer (ImageStream). EV samples were analyzed by 

ImageStream as previously described [25]. Briefly, samples were prepared in 50 µl volumes, labelled 452 

with the fluorescent lipid dye BODIPY® FL Maleimide [BODIPY® FL N-(2-Aminoethyl) Maleimide] 

(Thermo Fisher Scientific; 1:200) and incubated at room temperature in the dark 10 minutes prior to 

analysis. Samples were then loaded onto the ImageStream and vesicles were acquired at a slow flow 

rate with 60x magnification, a 488 nm excitation laser (BODIPY detection) and 765 nm laser (side 456 

scatter). The “remove bead” function was turned off and the flow rate allowed to stabilize before 

acquisitions. For acquisition, the storage gate was set to collect all events and the stopping gate set to 

the vesicle population (low to mid BODIPY intensity and low side scatter). The stopping gate was set 

to ensure that at least 20,000 objects were analyzed per acquisition. Three separate acquisitions were 460 

collected per sample. Analysis was then performed using the IDEAS software. To quantify objects/ml, 

a graph was generated plotting channel 02 fluorescence intensity (BODIPY) against channel 12 scatter 

intensity (side scatter) and a vesicle gate was re-applied to select the population at the correct BODIPY 

and side scatter intensities to be EVs (see Figure S1C). Where necessary the gate was adjusted using 464 

the Image library to eliminate noise and artefacts from the vesicle population. The objects/ml statistic 

was then used to quantify the number of objects/ml in the gated region. The average objects/ml was 

calculated from three separate acquisitions from each sample.  

Nanoparticle tracking anlaysis. Performed using a NanoSight NS300 with a high sensitivity camera and 468 

a syringe pump. As previously described, isolated EVs were resuspended (UC) or eluted (SEC) in 

Dulbecco’s PBS filtered twice through 0.22 µM filters. The NS300 chamber was flushed with 0.22 µM 

filtered deionized water and then again with 500 µl of PBS (Dulbecco’s PBS filtered twice through 0.22 

µM filters) to remove any particle matter. Using a 1 ml syringe 400 µl of EV sample was then flushed 472 

through the chamber until vesicles were visible on the camera to allow the focus and gain settings to 

be optimized. The sample was then injected into the flow cell at speed 50 and 3 recordings of 60 

seconds each were acquired. Between samples filtered PBS was used again to flush the chamber 
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ensuring no residual particles remained. The data was then analyzed using the NTA 3.2 analysis 476 

software and averages of the three technical replicates were plotted per experiment.  

 

Immunolabeling electron microscopy (IEM) 

A drop (5µl) of SEVs (isolated by UC) suspended in PBS was deposited on formvar-carbon-coated 480 

electron microscopy grids for 20 min at room temperature, fixed with 2% paraformaldehyde in 0.2 M 

phosphate buffer (pH 7.4), for 20 min at room temperature, and post fixed with 1% glutaraldehyde in 

PBS for 5 min at room temperature. Grids containing sEV were then washed and then blocked for 5 

min at room temperature in blocking buffer (PBS, 1% BSA). sEVs were then immunolabelled with a 484 

mouse anti-human CD63 primary antibody (Abcam ab23792) diluted in blocking solution for 1 hour at 

room temperature, washed with PBS, 0,1 % BSA, incubated with a rabbit antibody against mouse Fc 

fragment (Dako Agilent Z0412) in PBS 0,1% BSA for 20 min at room temperature. The preparations 

were then immunogold labeled with protein-A gold-conjugates (10 nm; Cell Microscopy Center, 488 

Department of Cell Biology, Utrecht University). Grids were analyzed on a Tecnai Spirit G2 electron 

microscope (Thermo Fischer Scientific) and digital acquisitions were made with a 4k CCD camera 

(Quemesa, Soft Imaging System). Images were analysed with iTEM software (iTEM CE Olympus serie) 

and data with Prism-GraphPad Prims software (v8) [62]. 492 

 

Western Blotting 

Small extracellular vesicles harvested for protein extraction were isolated as previously described, 

however following the final ultracentrifugation, the pellet was lysed immediately in RIPA buffer 496 

supplemented with protease inhibitors on ice. To facilitate further lysis, samples were probe sonicated 

on ice. Protein concentration was determined using the Bio-Rad Protein Assay. 10µg of protein was 

loaded per well. Samples were resuspended in Laemmli buffer, resolved using the NuPAGE® Bis-Tris 

Electrophoresis System with NuPAGE™ 10% Bis-Tris Protein Gels and transferred onto PDVF 500 

membranes. Antibodies used included: Anti TSG101 EPR7130(b) (Abcam; 1:1000), Anti CD63 (Abcam; 
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1:1000), Anti CD81 B-11 (Santa Cruz; 1:500), Anti ALIX 3A9 (Cell Signalling; 1:1000), Anti Flotillin-1 18 

(Biosciences; 1:1000), HRP- anti rabbit secondary (GE Healthcare; 1:5000) and HRP- anti mouse 

secondary (GE Healthcare; 1:5000). Western blots were developed on X-ray film using a SRX-101A 504 

table top film processor. 

 

Stable isotype labelling by amino acids in cell culture (SILAC)  

SILAC based proteomic analysis of exosomes was performed as previously [63]. All SILAC amino acids 508 

(heavy and medium) were purchased from Cambridge Isotopes. SILAC media and dialyzed serum were 

purchased from Thermo Fisher Scientific. PaTu-S.iPLK4 cells with and without the induction of 

centrosome amplification were grown for 6 passages in Dulbecco’s modified Eagle’s medium for SILAC 

supplemented with 10% Gibco ™ Dialyzed Fetal Bovine Serum (ultracentrifuged for 18 hours at 512 

100,000 x g for EV depletion), 600 mg/L Proline and 100 mg/L of either heavy or medium Lysine and 

Arginine amino acids (Lys8 and Arg10 for heavy, and Lys4 and Arg6 for medium, respectively). Labelled 

cells were then plated at a density of 1x106 cells in 40 T175 flasks per condition. 24 hours later flasks 

were washed in PBS and 15 ml of fresh EV depleted medium supplemented with the correct amino 516 

acids (heavy or medium) was added to the cells. 48 hours later, the conditioned medium was 

harvested and samples heavy and medium labelled were pooled together (Figure 2A).  EVs were then 

isolated from the conditioned medium via ultracentrifugation and subsequent SEC as previously 

described. The experiment was then repeated with the labelling reversed.  520 

 

Mass spectrometry 

Extracellular vesicles were lysed in 8 M Urea in 50 mM Ammonium bi-carbonate (ABC) (pH 8).  Samples 

were then sonicated using a Diagenode Bioruptor sonicator at 4οC. Samples were sonicated at high 524 

power for 15 cycles of 30 seconds on and 30 seconds off. 10 mM DTT was added for 20 minutes at 

room temperature followed by 55 mM Iodoacetamide incubated for 30 minutes in the dark. Protein 

quantification was then performed as previously described. 15 µg of protein was then selected per 
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sample and Urea was diluted to 2 M final concentration with 50 mM ABC. Samples were then 528 

subjected to in-solution trypsin digestion overnight at 25oC. The digested peptides were then acidified 

and desalted via stagetipping [64]. Peptides were then dried by vacuum centrifugation and 

resuspended in 10 μl of buffer A* (2% ACN, 0.1% trifluoroacetic acid and 0.5% acetic acid). 

 532 

LC-MS/MS analysis 

Equivalent of ~1 µg of each digested SILAC mix was subjected to Liquid Chromatography coupled with 

tandem Mass Spectrometry (LC-MS/MS), using a Q-Exactive plus Orbitrap mass spectrometer coupled 

with a nanoflow ultimate 3000 RSL nano HPLC platform (Thermo Fisher Scientific). Briefly, samples 536 

were resolved at a flow rate of 250 nL/min on an Easy-Spray 50 cm x 75 μm RSLC C18 column with 2 

µm particle size (Thermo Fisher Scientific), using a 123 minutes gradient of 3% to 35% of buffer-B 

(0.1% formic acid in ACN) against buffer-A (0.1% formic acid in water), and the separated peptides 

were infused into the mass spectrometer by electrospray. The spray voltage was set at 1.95 kV and 540 

the capillary temperature was set to 255 ˚C. The mass spectrometer was operated in data dependent 

positive mode, with 1 MS scan followed by 15 MS/MS scans (top 15 method). The scans were acquired 

in the mass analyzer at 375-1500 m/z range, with a resolution of 70,000 for the MS and 17,500 for the 

MS/MS scans. Fragmented peaks were dynamically excluded for 30 seconds.  544 

 

Proteomics data analysis 

MaxQuant (version 1.6.3.3) software was used for database search and SILAC quantifications [65]. The 

search was performed against a FASTA file of the Homo Sapiens, extracted from Uniprot.org (2016). 548 

A precursor mass tolerance of 4.5 ppm, and a fragment mass tolerance of 20 ppm was applied. 

Methionine oxidation and N-terminal acetylation were included as variable modifications whilst 

carbamidomethylation was applied as a fixed modification. Two trypsin miss-cleavages were allowed, 

and the minimum peptide length was set to 7 amino acids. SILAC multiplicity was set to 3, with Lys4 552 

and Arg6 selected as medium, and Lys8 and Arg10 as heavy labels. Minimum SILAC ratio count was 
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set at 1. All raw files were searched together, with the match between runs option enabled. All 

downstream data analysis was performed by Perseus (version 1.5.5.3) [52], using the MaxQuant 

ProteinGroups.txt output file. Briefly, normalized SILAC H/M intensities were converted to Log 2 scale. 556 

Reverse (decoy) hits, potential contaminants, and proteins identified only by modified peptides were 

filtered out. Ratio values were then median subtracted. Category enrichment analysis was performed 

using the Fisher exact test function within Perseus. Scatter plots of the SILAC ratio values were also 

generated by Perseus. All mass spectrometry raw files and search results reported in this paper have 560 

been deposited at the ProteomeXchange Consortium via the PRIDE [66], with the PRIDE accession 

number of PXD020984. 

 

Measuring cellular reactive oxygen species (ROS) 564 

Cellular ROS was measured through the detection glutathione in its reduced (GSH) and oxidized 

(GSSG) forms using the luminescence-based GSH/GSSG-Glo™ Assay (Promega, V6611). Briefly, the 

Promega GSH/GSSG-Glo™ Assay is a linked assay utilizing glutathione S-transferase and Luciferin-NT 

that generates a luminescent signal in response to levels of GSH present in the sample. The ratio of 568 

GSH to GSSG can then be calculated to give a read out of oxidative stress in the cells, where a decrease 

in the ratio indicates an increase in oxidative stress. All reactions and calculations were carried out as 

per the manufacturer’s instructions. The final ratio of GSH/GSSG was normalized to protein content 

to control for any changes in cell number. Protein was quantified using the Pierce™ BCA Protein Assay 572 

Kit (Thermo Fisher Scientific, 23227) as per the manufacturer’s instructions.  

 

Magic Red assay 

The Magic Red™ Cathepsin B kit (Bio-Rad, ICT937) was used to analyze the protease activity of 576 

Cathepsin B in lysosomes as a proxy to lysosome function. In the presence of functional cathepsin B, 

the Magic Red substrate is cleaved allowing the Cresyl violet fluorophore to fluoresce red upon 

excitation at 550-590 nm. Briefly, cells to be analyzed were plated on coverslips and the Magic Red 
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substrate (Magic Red stock was reconstituted in 50 µl DMSO and diluted 1:10 in deionized water) was 580 

added to the growth media (20µl was added per 300µl of growth media as per the manufacturer’s 

instructions) for the final hour of the experiment. Cells were then fixed in 4% Formaldehyde as 

previously described. Cresyl Violet fluorescence was detected using an inverted Nikon microscope 

coupled with a spinning disk confocal head (Andor). Z-stack images were acquired, and sum intensity 584 

image projections were generated using Image J. Fluorescence intensity was then quantified per cell 

with ImageJ [61]. All conditions were quantified blindly. 

 

Extracellular vesicle uptake by recipient cells 588 

Fluorescently labelled EVs were generated using the previously described ultracentrifugation protocol 

with the following alteration: prior to the final PBS wash step, EVs were resuspended in 200 µl of PBS 

and fluorescently labelled with BODIPY (1:200). EVs were then incubated at room temperature for 5 

minutes before being diluted in 31.5 ml of PBS. The final 100,000 x g ultracentrifugation step was then 592 

performed, and the subsequent EV pellet resuspended in 200 µl of PBS. The isolated EVs were then 

added to the recipient cells that had been plated on glass coverslips 24 hours prior. 3 hours post 

addition of EVs, coverslips were fixed in 4% formaldehyde and stained with Alexa Fluor 568 Phalloidin 

(1:250) and Hoechst (1:5000) as previously described. Representative z-stack images were taken using 596 

a spinning disk confocal microscope as previously described.  

 

Extracellular vesicle-mediated PSC activation assay 

PaTu-S.iPLK4 cells untreated or induced to have amplified centrosomes (48 hours 2 µg/ml DOX 600 

treatment) were cultured for 48 hours in vesicle depleted media before the conditioned media was 

collected. EVs were then harvested from the conditioned media by ultracentrifugation alone, or in 

combination with SEC as described previously. EV number was then quantified by ImageStream as 

described above. 20 million EVs were then added to the culture medium of PS1 cells that had been 604 

plated on glass coverslips at a density of 1x104 cells 24 hours prior. 48 hours later, a second dose of 20 
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million EVs was administered. 24 hours later cells were fixed and stained for α-SMA and DNA as 

described previously. Images were acquired using an inverted Nikon microscope coupled with a 

spinning disk confocal head (Andor) with a 40x objective. PS1 activation was quantified based on α-608 

SMA organization, where the formation of α-SMA fibers was used as a measure of activation (maybe 

describe how the different categories were separated and we can reference the figure). Roughly 150 

cells were quantified manually per condition. All conditions were quantified blindly.  

 612 

3D co-culture spheroid invasion assay 

Prior to spheroid generation, PS1 cells were either treated for 72 hours with SEVs (as described above), 

with 5ng/ml TGF-β or left untreated. 3D spheroid cancer cell/PS1 co-cultures were generated using a 

hanging drop spheroid model developed by Ed Carter and Richard Grose (BCI-QMUL), based on 616 

previous work [48]. Briefly, PS1 H2B-GFP (4.4x 104 cells/ml) and HPAF-II.iPLK4-H2B-RFP cancer cells 

(2.2x104 cells/ml) were combined in a 0.24% methylcellulose solution (Sigma-Aldrich, M0512). 

Droplets containing 1000 cells were then plated on the underside of a 15 cm culture dish and left to 

form spheroids overnight at 37 οC. Spheroids were then collected and centrifuged at 100x g for 3 620 

minutes before being re-suspended in gel mix solution. Gel mix solution consisted of 1.6 mg/ml 

Collagen I (Corning Rat Tail High Concentration) and 17.5 % Matrigel ® Matrix Basement Membrane 

LDEV-free (Corning, 354234), prepared in PS1 culture medium and buffered to physiological pH with 

NaOH. Approximately 6 spheroids suspended in gel mix were added to a pre-coated well of a low 624 

attachment plate and left to solidify at 37 οC before PS1 culture medium was added on top. Spheroids 

were incubated for 3 days and images were taken by light microscopy. Percentage invasion was 

analyzed using Image J and calculated as a measure of the total invasive area relative to the central 

sphere. For confocal analyses, spheres were fixed in 4% formaldehyde prior to mounting for imaging 628 

on an LSM 880 Zeiss confocal microscope. All conditions were quantified blindly. 
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Statistical Analysis 632 

Graphs and statistics were generated using Prism 8 (GraphPad Software) where results are presented 

as mean ± standard deviation (SD) unless otherwise stated. Statistical analysis was performed using 

one-way ANOVA with either a Tukey’s (parametric) or Kruskal-Wallis (non-parametric) post hoc test 

unless otherwise stated. Significance is equal to *p<0.05, **p<0.01, ***p<0.001 and ***P<0.0001.  636 
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Figure legends 

Figure 1. Centrosome amplification promotes the secretion of SEVs in PADC cells.  

(A) Representative confocal images of mitotic cells with normal and amplified centrosomes. Cells were 660 

stained for a-tubulin (magenta), centrin2 (green) and DNA (cyan). Scale bar, 10 µm. (B) Quantification 

of SEVs and LEVs secreted by PDAC cell lines. Average of the percentage of centrosome amplification 

(CA) per cell line is highlighted in orange. (C) Linear regression of the data presented in B and 

Spearman correlation coefficients for SEVs and LEVs. (D) Quantification of secreted SEVs and LEVs in 664 

Patu-S.iPLK4 and HPAF-II.iPLK4 cell lines upon induction of centrosome amplification (+DOX), before 

and after depletion of Sas-6 by siRNA. Average percentage of centrosome amplification (CA) per 

condition is highlighted in orange. (E) Western blot analyses of proteins associated with SEVs in 

extracts from cells and SEVs collected by UC. (F) Top: Representative images of IEM of SEVs collected 668 

from HPAF.iPLK4 cells. Dark beads represent immunogold labelling with anti-CD63. Scale bar, 200 nm. 

Bottom: Quantification of the percentage of positive CD63 SEVs. (G) Quantification of SEVs diameter 

by cry-EM. Patu-S.iPLK4 SEVs n(-DOX)=232 and n(+DOX)=216; HPAF-II.iPLK4 n(-DOX)=541 and n(+DOX)=493. For 

all graphics error bars represent mean +/- SD from three independent experiments. *p < 0.05, 672 

**p < 0.01, ****p < 0.0001. The following statistic were applied: for graphs in D two-way ANOVA with 

Tukey’s post hoc test was applied and for graphs in G unpaired t test was applied. See also Figure S1. 

 

Figure 2. Proteomic analyses of SEVs secreted by cells with extra centrosomes support their 676 

endocytic origin. (A) Experimental flowchart. (B) Venn diagram comparing the SEVs proteomes of SEC 

fractions 7, 8 and 9. (C) Venn diagram comparing the depicting the SEVs proteome of SEC fractions 7, 

8 and 9 with the Vesiclepedia database. (D) Dotplot representation of the enrichment analyses 

performed for the common proteins in all SEC fractions. Only proteins that were identified in both 680 

forward and reverse labelling experiments were considered for this analysis. See also Figure S2 and 

Tables S1-S3. 
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Figure 3. ROS promote lysosome dysfunction and SEVs secretion in cells with extra centrosomes. (A) 684 

Schematic representation of intraluminal vesicle formation (ILVs) and multivesicular bodies (MVBs) 

fate and how ROS could affect this process. (B) Levels of intracellular ROS quantified by the ratio of 

GSH/GSSG in Patu-S.iPLK4 and HPAF-II.iPLK4 cell lines. Decrease in the GSH/GSSG ratio indicates 

higher ROS levels. 5 mM of NAC and 100 µM H2O2 was used. (C) Representative confocal images of 688 

cells stained with Magic red (magenta), as a proxy for lysosome function, and for DNA (cyan). Scale 

bar, 10 µm. (D) Quantification of intracellular Magic red fluorescence intensity normalized for cell area 

in Patu-S.iPLK4 cells. AU, arbitrary units. 5 mM of NAC and 100 µM H2O2 was used.  n(-DOX)=158, 

n(+DOX)=189, n(+DOX+NAC)=221 and n(-DOX+H2O2)=175. (E) Quantification of secreted SEVs and LEVs in Patu-692 

S.iPLK4 and HPAF-II.iPLK4 cell lines. For all graphics error bars represent mean +/- SD from three 

independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s. = not significant 

(p > 0.05). The following statistic were applied: for graphs in B one-way ANOVA with Tukey’s post hoc 

test, for D one-way ANOVA with a Kruskal-Wallis post hoc test and for E two-way ANOVA with Tukey’s 696 

post hoc test.  See also Figure S3. 

 

Figure 4. Centrosome amplification decreases lysosome-MVBs co-localization in a ROS-dependent 

manner. (A) Representative confocal images of cells stained for acidic lysosomes (Lysotracker, 700 

magenta), late endosomes/MVBs (anti-LBPA, green) and DNA (grey). Insets show higher magnification 

of lysotracker and LBPA-labelled vesicles. Scale bar, 10 µm. (B) Quantification of the number of 

lysotracker-labelled lysosomes per cell. 5 mM of NAC and 100 µM H2O2 was used. n(-DOX)=166, 

n(+DOX)=182, n(+DOX+NAC)=245 and n(-DOX+H2O2)=187. (C) Quantification of LBPA-labelled late 704 

endosomes/MVBs per cell. 5 mM of NAC and 100 µM H2O2 was used. n(-DOX)=88, n(+DOX)=102, 

n(+DOX+NAC)=129 and n(-DOX+H2O2)=x99. (D) Quantification of the percentage of lysotracker and LBPA-

labelled intracellular vesicles co-localization. 5 mM of NAC and 100 µM H2O2 was used. n(-DOX)=86, 

n(+DOX)=102, n(+DOX+NAC)=129 and n(-DOX+H2O2)=98. For all graphics error bars represent mean +/- SD from 708 
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three independent experiments. ****p < 0.0001, n.s. = not significant (p > 0.05). For all graphs a one-

way ANOVA with a Kruskal-Wallis post hoc test was applied. See also Figure S4. 

 

Figure 5. SEVs secreted by PDAC cells with amplified centrosomes activate pancreatic stellate cells. 712 

(A) Experimental flowchart. (B) Representative confocal image of PSCs incubated with SEVs. Cells were 

stained for f-actin (phalloidin, grey) and DNA (cyan). Isolated SEVs were labelled with Bodipy (green). 

Scale bar = 10 µm. (C) Representative confocal images of PSCs stained for a-SMA (green) and DNA 

(cyan). Scale bar, 10 µm. (D) Quantification of the percentage of PSCs activation upon treatment with 716 

SEVs collected by UC from Patu-S.iPLK4 (left) and HPAF-II.iPLK4 (right), with (+DOX) and without (-DOX) 

extra centrosomes. Patu-S.iPLK4 isolated SEV: PSCs n(-DOX SEVs)=398, n(+DOX SEVs)=373, and n(ctr)=475. HPAF-

II.iPLK4 isolated SEV: PSCs n(-DOX SEVs)=914, n(+DOX SEVs)=1057, and n(ctr)=718.  (E) Quantification of the 

percentage of PSCs activation upon treatment with SEVs collected by SEC from Patu-S.iPLK4 (left) and 720 

HPAF-II.iPLK4 (right), with (+DOX) and without (-DOX) extra centrosomes. Patu-S.iPLK4 isolated SEV: 

PSCs n(-DOX SEVs SEC7)=161, n(+DOX SEVs SEC7)=154, PSCs n(-DOX SEVs SEC8)=490, n(+DOX SEVs SEC8)=387, PSCs n(-DOX SEVs 

SEC9)=463, n(+DOX SEVs SEC7)=454. HPAF-II.iPLK4 isolated SEV: PSCs n(-DOX SEVs SEC7)=499, n(+DOX SEVs SEC7)=410, 

PSCs n(-DOX SEVs SEC8)=541, n(+DOX SEVs SEC8)=713, PSCs n(-DOX SEVs SEC9)=1035, n(+DOX SEVs SEC7)=914. For all graphics 724 

error bars represent mean +/- SD from three independent experiments. ***p < 0.001, ****p < 0.0001, 

n.s. = not significant (p > 0.05). For all graphs were analyzed using by two-way ANOVA with Tukey’s 

post hoc test. See also Figure S5. 

 728 

Figure 6. SEVs secreted by cells with extra centrosomes can promote PDAC invasion. (A) Experimental 

flowchart. (B) Representative brightfield images of heterotypic spheroids. Black arrows: invasive 

protrusions. Scale bar, 100 µm. (C) Quantification of the percentage of invasion in 3D spheroids. 5 

ng/ml TGF-b was used as positive control. Spheroids n(+PSCs)=40, n(+PSCs TGF-b)=34, n(+PSCs -DOX SEVs)=31 and 732 

n(+PSCs +DOX SEVs)=31. (D) Confocal images of spheroids composed of cancer cells (expressing H2B-RFP; 

magenta) and PSCs (expressing H2B-GFP; green). Scale bar, 100 µm. Insect depicts higher 
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magnification of invasive protrusion. Scale bar, 20 µm. For all graphics error bars represent mean +/- 

SD from three independent experiments. ****p < 0.0001, n.s. = not significant (p > 0.05). Graph was 736 

analyzed using one-way ANOVA with a Kruskal-Wallis post hoc test.   

 

Figure 7. Schematic representation of working model. Increased ROS levels in cells with extra 

centrosomes compromises lysosomal function. We propose that this changes MVBs fate towards 740 

fusing with the plasma membrane and secretion of SEVs. SEVs secreted by cancer cells with extra 

centrosomes are functionally distinct and can induce PSCs activation to promote cell invasion.  
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